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CALCULATING COMPONENTS OF THE EFFECTIVE TENSORS 

OF ELASTIC MODULI AND BIOT’S PARAMETER OF POROUS 

GEOCOMPOSITES
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Methods of composite mechanics were used to evaluate the effective elastic moduli and Biot’s parameter of 
porous media. Natural composites — dolomites and hyaloclastites — were considered as examples, which were 
also examined experimentally. The microscopic structure of the rocks was studied under a microscope, and their 
mineral composition was determined by the X-ray diffractometry. A comparison of experimental and calculated 
elastic moduli of dolomites showed their good agreement, which proved that the averaging method can be used 
to rapidly evaluate their effective elastic properties. For dolomites, Young’s modulus and Biot’s parameter 
were determined as functions of porosity using the calculation results and experimental data. The computation 
method described in this paper allows one to calculate Biot’s tensor in the general case of an anisotropic and 
inhomogeneous matrix and to evaluate the influence of pore shape on stresses and strains at the microlevel, 
which is not possible by experimental methods. Using samples of hyaloclastites with round and angular pores, 
the effect of pore shape on the elastic moduli and the effective stress coefficient was investigated. The effect of 
pore orientation was also studied using anisotropic dolomite samples with elongated pores.
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Introduction

The asymptotic averaging method was created in 1970 (see, for example, [1, 2]). It is widely used to determine 
the elastic moduli of composites [2]. Application of the method to determining the pore pressure transfer tensor (Biot’s 
tensor parameter) for natural composites is offered in [3-5].

The pore pressure transfer tensor aij  is a parameter that is included in the formula for the effective stresses 
σ ij

eff  [6]:

 σ σ αij ij ij peff full= + . (1)

In formula (1), the pressure p  of a liquid is a positive quantity at compression. The angular brackets mean 
averaging over a volume, for example,

 σ σij
V

ijV
dVfull = ( )∫

1 x � .  (2)

The effective stresses (1) are connected with macroscopical strains by governing relations. At a zero pressure, the 
effective stresses, according to formula (2), are the averaged full stresses.

For isotropic rocks, a  is a scalar factor varying from 0 to 1, depending on ground properties (porosity, pore form, 
and the Poisson ratio of the solid phase of ground) and the pressure applied. For the first time, the factor a  appeared 
already in work [7] in 1941, but up to now, there is no a settled term for it as yet. In the literature, it is named “Biot’s 
parameter,” “Biot’s coefficient,” “Biot–Willis coefficient,” “coefficient �a ,” “pore pressure transfer coefficient,” and “ef-
fective stress coefficient.” Later [8-10], a formula was offered for calculating the isotropic pore pressure transfer coefficient 
a  in terms of compressibility βs  of the matrix material and the effective compressibility β eff  of a porous material (or 
in terms of the coefficient Ks  of volumetric expansion of the matrix material and the effective coefficient K eff  of volu-
metric expansion):

 α β β= − = −1 1s sK K/ /eff eff .  (3)

A rigorous mathematical deduction of formula (3) for �a  is given in [11, 12]. 
From formula (3), it is seen that Biot’s coefficient a  is close to unity if the effective compressibility of a rock 

strongly exceeds that of the solid matrix material. On the contrary, α ≈ 0  if β βeff ≈ s . Such a situation can take place in 
low-porosity materials. The value a  is strongly affected by pore form, which determines the contact area between the 
liquid and solid components of ground [12]. The more the pore form differs from the round one and the more tortuous is 
the pore space, the greater is the contact area between the solid and liquid phases and, hence, the greater is the area of the 
rock skeleton surface on which the pore pressure operates, i.e., the greater the coefficient a .

Many researchers offer experimental ways for determining the effective stress coefficient a  (in the case of iso-
tropic materials) on the basis of static [13-16] or dynamic [16-19] experiments on rock samples. All these ways use rela-
tion (3) and are based on calculating the compressibility of matrix material and the effective compressibility. The static 
methods suggest three-axial compression tests on ground samples in high-pressure installations allowing one to indepen-
dently create an external hydrostatic pressure on a rock sample enclosed in a shell and the pore pressure inside the sample. 
The dynamic way to determine a  includes the measurement of speeds of longitudinal and transverse waves in rock 
samples and in the solid ground material, from which (with account of the effective density and density of the matrix 
material) K eff  and Ks  are calculated by the known formulas of elasticity theory. In other words, laboratory experiments 
for determining Biot’s coefficient a  are rather labor-consuming.

For anisotropic materials, a formula for calculating the tensor aij  in terms of the effective elastic moduli Cijkl  
and components Smnpq

s  of the compliance tensor of matrix material are deduced in [20], namely, 

 α δij ij ijkl klmm
sC S= − . 
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In [21], Biot’s tensor parameters are deduced separately in pores and cracks in so-called materials of “double 
porosity.” However, a practical determination of Biot’s tensor parameter has been offered in the literature only for special 
cases of structural anisotropy of rocks (for example, orthotropy and transverse isotropy) [20-23], for which the components 
Cijkl  and Smnpq

s  have been found experimentally.
An alternative is the application of a calculation method which allows one to determine Biot’s tensor parameter 

aij  in the case of general anisotropy of a porous natural composite, whose matrix can be nonuniform.
In the present work, the calculation technique for determining Biot’s tensor parameter aij  is presented by the 

example of dolomite and volcanic rocks (hyaloclastites), and the elastic moduli for these types of rocks are calculated and 
compared with experimental data.

1. Calculation of the Effective Elastic Moduli and Biot’s Tensor Parameter by the Asymptotic Averaging Method

The averaging method to determine the effective elastic moduli and the pore pressure transfer tensor (parameter 
Biot’s) leads to the solution of local problems in the representative volume of the material [3-5]. For its application, the 
structure of the pore and the elastic properties of matrix components have to be known. The pore structure and the mineral 
composition of ground are investigated microscopically on thin sections, and, to specify the mineral composition, the X-
ray diffractometry is employed. The elastic properties of minerals can be found in the literature.

1.1. The local boundary-value problem for determining the elastic moduli

The local boundary-value problem for determination of the elasticity moduli [5] following from the averaging 
method agrees with the general definition of effective moduli, well known in the mechanics of composites [2].

To find the effective elastic moduli of the porous medium in its representative volume VRVE , it is necessary to 
solve a problem with a special boundary condition in the form of a linear function of coordinates on the external border 
ΣRVE of VRVE  and a zero pressure p  on the border Σint  of pores and on ΣRVE  [5]:

 C u Vijkl k l j
x x x( ) ( )



 = ∈, ,

, ,1 0 RVE  

 u xk kq q
1 0= ∈ε , ,x ΣRVE  (4)

 C u nijkl k l jx x x( ) ( ) = ∈, , .1 0 Σint  

Here, Cijkl x( )  are the elastic moduli dependent on coordinates x ; uk
1  are displacements (the superscript numbers 

the local boundary-problems; εkq
0  are constant strains; n j  are components of the normal to ΣRVE  or Σint .

The numerical solution of problem (4) by the finite-element method does not cause difficulties if the 3D geo-
metrical structure of the material is known. However, a vague arises if there are only 2D images of some number of mi-
crosections. Here, two approaches were employed. First, using a 2D digitalized structure of inhomogeneities of the mate-
rial and the pore form, a 2D problem (4) in the case of plane strain state, schematically shown on Fig. 1a, was considered. 
This allowed us to calculate the elastic moduli Caaaa

eff , Cββαα
eff  and Cαβαβ

eff , α β, =1, 2,α β≠ , in the image plane of mate-
rial structure by the formulas

 C C Cαααα
αα

αα
ββαα

ββ

αα
αβαβ

αβ

αβ

σ

ε

σ

ε

σ

ε
eff eff eff= = =0 0 0, , .  
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For convenience, the integral in the expression of σαα  (see (2)) was transformed to an integral along the border 
with the help of Gauss–Ostrogradski formula.

Further, for a material, a priori known as isotropic, the elastic modulus Eeff  and Poisson ratio ν eff  were calcu-
lated (for simplicity, the superscript “eff” was omitted:

 C C Eαααα ββααλ µ λ ν
λ
λ µ

µ ν= + = =
+( )

= +( )2
2

2 1, , , .  

Here, λ  and m are the Lamé moduli.
Second, the local problem can be solved in the case of plane stress state (see Fig. 1b). Here, the upper and lower 

borders of the model can deform freely. Young’s modulus in the tension direction of sample is calculated as

 E
l

dl
l

α
αα β

αα βε
σ

β

eff = ∫
1
0 .  

The use of the two approaches allows one to compare results, and, at their good enough agreement, to conclude 
that calculation results are reliable.

For anisotropic samples, numerical experiments were carried out only in the case of plane stress state, i.e., the 
problem shown on Fig. 1b was solved. Such numerical experiments allow one to investigate Young’s modulus as a func-
tion of orientation of extended pores.

1.2. Local boundary-values problem for determination of Biot’s tensor parameter

To determine components aij  of the pore pressure transfer tensor in the representative volume VRVE , a boundary-
value problem was formulated, where the boundary ΣRVE  of the representative volume is fixed rigidly and a constant 
pressure p0  of liquid is given on the pore boundary Σint  (Fig. 2) [5]:

 C u Vijkl k l j
x x( )



 = ∈, ,

, ,2 0 RVE  

 C u n p nijkl k l j ix x x( ) = − ( ) ∈, , ,2
0 Σint  (5)

 uk
2 0= ∈, .x ΣRVE  

u2= 0��= 0l1

��= 0
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l2
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Fig. 1. Boundary conditions of the local boundary-value problem on determination of the effective 
elastic moduli of isotropic (а) and anisotropic (b) samples.
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Problem (5) was solved in the case of plane strain state, and the components of Biot’s parameter were calculated as

 α σ α σ11
0 2

11 2 22
0 1

22 1
1 1

2 1

= =∫ ∫p l
dl

p l
dl

l l

, .  

It this case [5],

 αij
ijkl k lC u

p
=

,
.

2

0
 

2. Analysis of the Effective Properties of Soils Determined Experimentally and by Numerical Methods

2.1. Analysis of the effective properties of dolomite

A comparison of values of the effective elastic moduli found experimentally and by numerical methods and the 
research of elastic moduli and Biot’s tensor as functions of porosity and pore orientation were carried out by the example of 
a porous one-component material — pure dolomite (> 95% CaMg(CO3)2 — according to the data of X-ray diffractometry). 
The dolomite samples were selected in the territory of the Southeast part of Moscow from wells at an interval of depth 
from 15 to 38 m. According to the microscopic investigations of microsections, dolomite has structures from micro- to 
fine-crystalline ones. The bulk of dolomite consists of its rhombohedral grains. The texture of dolomite is porous. The 
pores are distributed nonuniformly; sometimes they are accumulated in strips, which makes dolomite anisotropic.

 Experimentally investigated were 18 dolomite samples in the form of cube with 2.5-cm edges. For each sample, 
its density ρ  and the density of its solid phase, ρs , were determined. The porosity n  was calculated by the formula 
n s s= −( )( ) ⋅ρ ρ ρ/ %100 . The elastic properties of the samples were determined by the technique of ultrasonic raying. 
From the measured values of speeds of longitudinal, Vp  and transverse, Vs , waves, Young’s modulus Ed  and the Poisson 
ratio ν were calculated:

 E
V V V

V V

V V

V V
s p s

p s

p s

p s
=

−( )
−

=
−( )
−

ρ
ν

2 2 2

2 2

2 2

2 2

3 4 0 5 2
,

,
.  

On Fig. 3, Young’s modulus of dolomite Ed  as a function of porosity n  found in experiments is shown. As is 
seen, this relation is linear in the given range of porosities (from 13 to 37%). However, as calculations of the effective 
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Fig. 2. Boundary conditions of the local boundary-value problem on determination of components 
of the pore pressure transfer tensor.
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elastic moduli by the numerical method suggested showed, this linear relation cannot be extrapolated to lower values of 
porosity.

To create models for calculations, the porous structure of dolomite was digitalized on the photos of microsections 
manually in the AutoCAD program (student’s version). An example of the photo of a dolomite microsection and of its 
model created as a result of digitalization is shown on Fig. 4. The very fine pores that could not be digitalized, were taken 
into account in calculations in the properties of matrix material of the model. For this purpose, in the STIMAN program 
[24], the values of porosity were found by the model nmod  and from the photo of a small section nsect , and then on the 
porosity nm  of the solid matrix was calculated as

 n
V
V

n n
m

por m�

m

sect mod= ⋅ =
−

100% .
γ

 

where Vpor m� is the volume of pores in the matrix; Vm  is the volume of matrix material; γ  is the fraction of matrix mate-
rial in the model. The quantity nm  takes into account the fine pores which had not been digitalized, but were actually 
present in the matrix material. According to calculations, it turned out that nm » 3%  for all the samples investigated. 
Thus, the matrix material will be dolomite with a porosity of 3%.

Properties of the matrix material for calculations in the finite-element program were taken from [25-27] (as also 
for dolomite with a 3% porosity): Ed  = 90 GPa and ν  = 0.33. 

a b

Fig. 4. Photograph of a microsection of dolomite (а) and its modeling image (b) (the black color 
indicates pores and the white — the solid matrix).

Ed, GPa

10 15 20 25 30 35 40

50

40

30

20

10

0

n, %

Fig. 3. Experimental elastic modulus Ed  of dolomite vs. porosity n  and the linear trend line (---).
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Calculations were carried out in the finite-element program. Altogether, 18 dolomite models with a porosity 
from 7 to 35% were calculated. For isotropic samples (see Fig. 4), Young’s modulus, the Poisson ratio, and the pore pres-
sure transfer coefficient (Biot’s coefficient) were obtained. For anisotropic samples, Young’s modulus and pore pressure 
transfer coefficients in two perpendicular directions were determined.

Calculations showed that Young’s modulus of isotropic dolomite samples in plane strain and plane stress states 
differed (at the same porosity) by 2-3% for samples with a low porosity (7-15%) and by 7-10% — for highly porous 
(20-25%) samples. A sufficiently good agreement for Young’s modulus obtained using the two approaches described 
earlier is a necessary condition of the reliability of calculation results.

On Fig. 5, Young’s modulus as a function of porosity, constructed from the results of calculations by the averag-
ing method for isotropic samples, for experimental data ultrasonic raying, and from the experimental results for the elastic 
properties of pure dolomite with a very low porosity (0-2%) described in [27], is illustrated. It is seen that the calculated, 
experimental, and literature data agree well — all points lay on one curve. This confirms the reliability of the calculation 
technique considered. The point corresponding to the given properties of matrix material of dolomite model also lays on 
this curve. Thus, during experiments and calculations, it was possible to found the relation for the elastic modulus of pure 
dolomite as a function of porosity for a wide range of porosities (from 0 to 38%) (see Fig. 5). It turned out that this rela-

10 20 30 400
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40

20

Ed, GPa

n, %

Fig. 5. The elastic modulus Ed of pure dolomite vs. porosity n : ● -— experimental data; ▲ — data 
from [27]; ■ — calculations by the averaging method; ♦ — data for the matrix of model; (---) — 
polynomial trend line according to all available information.
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Fig. 6. Pore pressure transfer coefficient (Biot’s coefficient) a  of dolomite vs. porosity n ; (---) — 
polynomial trend line.
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tion was not linear, which was seen only from experimental data. The relation between Young’s modulus and porosity was 
almost linear at high porosities (> 15%), but its graph gradually steepened when the porosity decreased from 13-15 to 0%.

Let us consider Biot’s coefficient. On Fig. 6, the relation for the pore pressure transfer coefficient (Biot’s coefficient) 
a  for isotropic dolomite samples as a function of porosity is shown. The effective stress coefficient naturally grows with 
porosity. At low porosities, the graph is steeper, but with increase in porosity, it flattens out.

The calculated Poisson ratio also agreed with the experimental one. From the results of calculations and experi-
ments, it was revealed that the higher the porosity, the smaller the Poisson ratio, other things being equal. For example, an 
increase in porosity from 8.8 to 25%, in different dolomite samples, reduced the Poisson ratio from 0.31 to 0.23.

The use of calculation technique allows one to investigate the elastic modulus and Biot’s parameter in relation to 
the orientation extended pores. The dolomite sample on Fig. 7a contains a chain of pores extended in the horizontal direc-
tion, but in the dolomite sample on Fig. 7b, pores are oriented mainly vertically. Calculation results for the anisotropic 
materials are shown in Tab. 1, where the following designations are used: E1  is Young’s modulus, and a11  is the Biot’s 
coefficient in direction 1 (horizontally), and E2  and a22  are the corresponding quantities in direction 2 (vertically). As is 
seen from data of Table 1, Young’s modulus along the elongation direction of pores is higher, but the pore pressure transfer 
coefficient, on the contrary, is lower than across the pore orientation.

2.2. Analysis of the effective properties of hyaloclastites

Let us consider natural composites having an inhomogeneous matrix. As an example of such a material, the volcanic 
rocks — hyaloclastites from the southern and southwest areas of Iceland can serve, whose structure includes the volcanic 
glass of basalt structure — palagonite, smectite, pyroxenes, and plagioclases. The specificity of these materials is that, 
owing to the features of their origin, hyaloclastites can have pores of very different form — round and angular (Fig. 8). 
By the example of such geomaterials, it is possible to investigate the influence of pore form on their effective properties.

a b

Fig. 7. Modeling images of anisotropic dolomite samples with pores oriented horizontally (а) and 
mainly vertically (b). The black color indicates pores and the white — the solid matrix.

TABLE 1. The Elastic Modulus E  and Biot’s Parameter a  vs. the Orientation of Extended Pores

Sample (Fig. 7) Orientation of extended pores
E1 E2 a11 a22GPa

a Horizontal 43.6 21.9 0.63 0.79
b Vertical 22.9 41.9 0.77 0.67
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According to the degree of palagonization, hyaloclastite samples were divided into two types: 1) slightly modified 
(with a contact and film-type cement) (see Fig. 8) and 2) greatly modified (with a film-pore type of cement) (Fig. 9) ones. 
For hyaloclastite samples of both types, the effective elastic properties and pore pressure transfer tensor (Biot’s parameter) 
were calculated by the averaging method in the finite-element program. The properties of the minerals and rocks compos-
ing hyaloclastites used in calculations were specified according to data given in [28, 29], and they are given in Tab. 2. As 
an example, the calculation results for the samples illustrated on Figs. 8 and 9 are given in Tab. 3.

a b

Fig. 8. Photographs of microsections and modelling images of the 1-st type hyaloclastite with angu-
lar (а) and round (b) pores. The white color indicates pores.

Fig. 9. Photograph of a microsection and the modeling image of a sample of 2-nd type hyaloclastite. 
The white color indicates pores.

TABLE 2. The Elastic Properties of the Minerals and Rocks Composing Hyaloclastites and Used in Calculations 
(Fig. 8 and 9)

Mineral or rock Color in models E, GPa v

Volcanic glass Black 20 0.35
Palagonite Light grey 17 0.35
Plagioclase Dark grey 80 0.28

TABLE 3. The Effective Properties of Hyaloclastites Calculated by the Averaging Method

Number of a sample Type n, % E, GPa v a

1 (see Fig. 8b) 1 33 9 0.28 0.67
2 (see Fig. 8a) 1 15 10.1 0.25 0.67
3 (see Fig. 9) 2 6 13.65 0.27 0.33
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On Fig. 8, the photographs of cuts of hyaloclastite samples with pores of different form — extended angular 
(Fig. 8a) and round (Fig. 8b), are presented. By the example of these samples, let us analyze the pore form-dependence 
of Biot’s parameter. In works [3-5], it is shown, that, at the same porosity, the effective stress coefficient in samples with 
round pores is much smaller than in the case with angular extended ones. This is explained by fact that the contact 
area of pores and the solid phase for round pores is smaller than for extended ones. As is seen from Tab. 3, for hya-
loclastite samples with round (see Fig. 8b) and angular (see Fig. 8a) pores, the pore pressure transfer coefficients are 
equal (a  = 0.67), though the porosity of the first sample is 33%, but only 15% for the second one. It is known [3-5] that 
the pore pressure transfer coefficient is the greater the higher the porosity. But in this case, the influence of porosity on 
a  is compensated by the influence of pore form. 

The investigation of the effective elastic properties of 10 hyaloclastite samples of the 1st type by calculation 
showed that, at the same porosity, Young’s modulus of samples with round pores was by about 12-17% higher than with 
angular pores (in the 10-40% range of porosity).

As is seen from the data in Tab. 3, the smallest pore pressure transfer coefficient and the highest Young’s 
modulus showed sample 3 (see Fig. 9), having a low porosity because pores were filled with palagonite to a great 
degree. Samples 1 and 2 (see Fig. 8b, a) had close values of elastic modulus, though their porosity differed more than 
two times. Here, the influence of pore form on Young’s modulus had shown up: for samples with a higher porosity, 
the pores were round.

Conclusions

The averaging method gives the general way for calculating Biot’s tensor parameter of porous composites, in-
cluding the case of general anisotropy, when the matrix is nonuniform. Knowing the true pore pressure transfer tensor is 
necessary to correctly determine the effective stresses. 

As objects of application, two types of materials — dolomite and hyaloclastites — were chosen in this work. It 
is shown that the effective stress coefficient strongly varies depending on the porosity and the structure of pore space.

Calculation results for the elastic moduli of dolomite agreed with experimental data, which confirmed the possibil-
ity of using averaging method to determine the effective elastic properties of soils by using digitalized two-dimensional 
photographs of microsections. Young’s modulus of dolomite calculated in the cases of plane strain and plane stress states 
turned out to be close (at identical values of porosities), which also pointed to the reliability of calculation results.

Besides, it is shown that the calculation technique used allows one to rather easily study the influence of porosity 
and pore form and orientation on the elastic modulus and Biot’s parameter. With increase in porosity, the elastic modulus 
decreased, but Biot’s parameter increased. At the same porosity, for samples with round pores, Young’s modulus was 
higher, but the pore pressure transfer coefficient was smaller than that in the case of angular pores with a complex branched 
form. For anisotropic samples, Biot’s parameter in the pore extension direction was smaller than across this direction 
(contrary the elastic modulus).
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