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FREE VIBRATIONS OF A THIN ELASTIC ORTHOTROPIC 

CYLINDRICAL PANEL WITH FREE ЕDGES

G. R. Ghulghazaryan,1 L. G. Ghulghazaryan,1,2* and I. I. Kudish3

Keywords: shell theory, free vibrations, dispersion equations, free edge

Using a system of equations corresponding to the classical theory of orthotropic cylindrical shells, the free 
vibrations of a thin elastic orthotropic cylindrical panel with free edges is investigated. To calculate its natural 
frequencies and to identify the respective vibration modes, the generalized Kantorovich–Vlasov method of 
reduction to ordinary differential equations is employed. To find the natural frequencies of possible types of 
vibrations, dispersion equations are derived. An asymptotic relation betwееn the dispersion equations of the 
problem in hand and of an analogous problem for a rectangular plate with free sides is established. Determined 
is also a relation between the dispersion equations of the problem and of the boundary-value problem for a 
semi-infinite orthotropic nonclosed circular cylindrical shell with three free edges. With the example of an 
orthotropic cylindrical panel, the values of dimensionless characteristics of its natural frequencies are derived.

Introduction.

It is known that, at the free edge of an orthotropic plate, independently of each other, planar and flexural vibrations 
can occur (see [1-5] and survey work [6]). For a curved plate, both the types of vibration are coupled, giving rise to two 
new types of vibrations localized at the free edge (predominantly planar and predominantly flexural ones). At the free edge 
of an elastic cylindrical panel, they are transformated one into another. In this case, depending on the of geometrical and 
mechanical parameters of a shell, a complex distribution picture of natural frequencies arises in finite and infinite cylindri-
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cal shells with a free edge [7]. With growing number of free edges of a cylindrical panel, this picture becomes increasingly 
complex [8-14]. Therefore, investigations into the edge resonance of plates and cylindrical panels with free edges are the 
most difficult problems in the theory of vibrations of plates and shells [8]. These difficulties are overcome by using a com-
bination of analytical and asymptotic theories, as well as by numerical methods.

In the present work, for the first time, investigated are free vibrations of an orthotropic cylindrical panel with free 
edges. Elements of such a type are important components of modern structures and constructions; therefore, the question 
of free vibrations of these elements is vital enough and demands attention. In this case, the orthotropy considered is such 
that, at each point of the panel, all three principal elasticity directions of the material coincide with directions of the cor-
responding coordinate lines, i.e., B B16 26 0= = . It is proved, that at the boundary conditions considered, the problem does 
not allow the separation of variables. As was shown previously by G. R. Ghulghazaryan, such problems for cylindrical shells 
of orthotropic materials (for isotropic ones, was shown by V. B. Lidskii) with simple boundary conditions are self-conjugate 
and nonnegative definite, and therefore the generalized Kantorovich–Vlasov method can be applied to them [12, 15-19]. 
As the basic functions, eigenfunctions of the problem
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where θm m, ,= +∞1 , are the positive zeros of the Wronskian of functions (3) at the point β = s.  Let us introduce the desig-
nation
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Notice that, in formulas (3) and (4), derivatives are taken with respect to θ βm  and ′ →βm 1 , ′′ →βm 1  at m → +∞ .
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1. Statement of the Problem and the Basic Equations.

We will assume that generatrices of the cylindrical panel are orthogonal to its end faces. On the median surface of the 
shell, curvilinear coordinates ( , )α β  are introduced, where α α( )0 ≤ ≤ l  and β β( )0 ≤ ≤ s  are the lengths of the generatrix 
and directing circumference, respectively; l  is length of the panel; s  is length of the directing circumference. 

As the initial equations describing vibrations of the panel, we will use the equations corresponding to the classical 
theory of orthotropic cylindrical shells written in the curvilinear coordinates α and β  chosen (Fig. 1):
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Here, u u1 2, ,  and u3  are projections of the displacement vector on the directions α  and β  and on normals to the 
median surface of the shell, respectively; R  is radius of the directing circumference of the median surface; µ4 2 12= h /  ( h  
is shell thickness); λ ω ρ= 2 , where ω  is angular frequency, ρ  is the density of material; Bij  are elasticity coefficients. The 
boundary conditions of free edges are [20] 
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Relations (1.2) and (1.3) are the conditions of free edges at α = 0, l  and β = 0, s , respectively. 

2. Derivation and an Analysis of Characteristic Equations.

In the first, second, and third equations of system (1.1), the spectral parameter λ  is formally replaced by λ1 , λ2 , and 
λ3  respectively. The solution of system (1.1) is sought in the form
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Here, w mm m( ), ,θ β = ∞1 , are determined from formula (2), and u vm m, , and χ  are indeterminate constants. In this 
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but from the third equation, with account of relations (2.2) and (2.3), we obtain the characteristic equation 
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Let χ j j, ,=1 4 , be pairwise different roots of the Eq. (2.4) with nonpositive real parts χ χ4 1 4+ = − =j j j, , . Let 
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Let us insert Eq. (2.6) into boundary conditions (1.2). Each equation found, except for the second one, is multipliedy 
by w m( )θ β  and the second one — by ′w m( )θ β  and is integrated between the limits from 0  to s . As a result, we obtain the 
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The superscript j  in parentheses means that the corresponding function is taken at χ χ= j . In order that system (2.7) 
had a nontrivial solution, it is necessary and enough that
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A numerical analysis shows that the left side of this equality becomes small when any two roots of Eq. (2.4) become 
close to each other. This highly complicates calculations and can lead to false solutions. It turns out that, from the left side 
of Eq. (2.9), it can be separated out a multiplier that tends to zero when two roots approach each other. For this purpose, 
we introduce the following designations:
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and performing elementary operations with columns of determinant (2.9), we obtain that
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Expressions for mij  are given in Appendix 1. Equation (2.9) is equivalent to the equation
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Taking into account the possible relations between λ λ1 2, , and λ3 , we conclude that Eq. (2.15) determines frequencies 
of the corresponding types of vibrations. At λ λ λ λ1 2 3= = = , the equation (2.4) is the characteristic equation of system (1.1), 
and Eq. (2.15) — the dispersion equation of problem (1.1)-(1.3).
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In Sect. 5, investigated is the asymptotics of dispersion equation (2.15) at ε θm mR= →1 0/ ( )  (transition to a plate or 
to vibrations localized at the free edges of the cylindrical panel) and at θml →∞  (transition to a semiinfinite cylindrical 
panel or to vibrations localized at the free edges of the cylindrical panel). To check the reliability of the asymptotic relations 
found in Sect. 5, we will investigate the free planar and flexural vibrations of a rectangular plate with free edges.

3. Planar Vibrations of an Orthotropic Rectangular Plate with the Free Sides.

Let an orthotropic rectangular plate of width s  and length l  be related to a three-orthogonal system of rectilinear 
coordinates ( , , )α β γ  with the origin in the end face plane in such a way, that the coordinate plane αβ  coincides with the 
median plane of the plate and the principal directions of elasticity of plate material coincide with coordinate lines (Fig. 2). 
Under the conditions of free vibrations, let us consider the question of existence of planar vibrations of a rectangular plate 
with free sides. As initial equations, we assume the equations of small planar vibrations corresponding to the classical 
theory of orthotropic plates [20]:
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Here, α α( )0 ≤ ≤ l  and β β( )0 < < s  are the orthogonal rectilinear coordinates of a point of the median plane; u1  and 
u2  are projections of the displacement vector on the directions α  and β ; B i kik , , , ,=1 2 6 , are the elasticity constants; 
λ ω ρ= 2 , where ω  is the angular frequency of free vibrations and ρ  is the density of plate material. For the given prob-
lem (1 0/ R = ), boundary conditions (1.2) and (1.3) take the form
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0
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∂β α ββ β
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=
= =, ,

,	 (3.3)

where relations (3.2) and (3.3) are the conditions of free edges at α = 0, l  and β = 0, s  respectively. Problem (3.1) - (3.3) 
does not allow the separation of variables. The differential operator corresponding to this problem is selfconjugate and non-
negative definite. Therefore, the generalized Kantorovich – Vlasov method of reduction to ordinary differential equations can 
be used to find vibration eigenfrequencies and eigenmodes [15-19]. The solution of system (3.1) is sought in the form

2h

l

s

O

�

�

�

Fig. 2. 
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	 ( , ) { ( ), ( )}exp( ), ,u u u w v w y mm m m m m m m1 2 1= ′ = +∞θ β θ β θ α .	 (3.4)

In this case, conditions (3.3) are satisfied automatically. Let us insert (3.4) into Eq. (3.2), scalarly multiply the result 
by the vector function w wm m m m( ), ( )θ β θ β′( ) , and integrate it between limits from 0  to s . As a result, we obtain the system 
of equations

	 ( ( )) ,y
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B
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B B

B
y vm m m m m
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11
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+ ′ =β η β 	
(3.5)
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+ − ′′ + =( ) ,β η 	

where η λ θm mB
2 2

66= ( )/ , and qm  and ′βm , ′′βm  are determined in Eq. (2) and (4) respectively. Equating the determinant of 
system (3.5) to zero, the following characteristic equation of the system of equations (3.1) is found:
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
 = 0 .	 (3.6)

Let y1  and y2  be various roots of the Eq. (3.6) with nonpositive real parts, y y jj j2 1 2+ = − =, , . As the solution of 
system (3.5) at y y jj= =, ,1 4 , we take
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The solution of problem (3.1) - (3.3) can be presented in the form

	 u u w y w u v w ym
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m m m j1 1
4

2= = ′
=∑ ( ) ( )( ) exp( ) , ( ) exp(θ β θ α θ β θ α )) .wjj=∑ 1

4 	 (3.8)

Let us insert Eq. (3.8) into boundary conditions (3.2). Each of the equations obtained, except for the second one, is 
multiplied by w m( , )θ β , and the second one — by ′w m( , )θ β , and is integrated between the limits from 0  to s . As a result, 
we arrive at the system of equations
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where
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Equating the determinant De of system (3.9) to zero and performing elementary operations with columns of the 
determinant, we obtain the dispersion equation

	 ∆e ij i j
z z y y l= − − − =exp( ) ( )

,1 2 2 1
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0det ,	 (3.11)
where
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	 l l z l z z l l l l l l l l24 22 2 21 1 2 31 13 23 14 33 11 34 12= − − = = = =exp [ ], , , , , 	 (3.12)

	 l l l l l l l l z z l z z zm41 23 42 24 43 21 44 22 1 2 2 1= = = = = −, , , , [ ] (exp exp ) / (θ 22 1− z ). 	
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Equation (3.11) is equivalent to the equation
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If y1  and y2  are roots of Eq. (3.6) with negative real parts, then, at θml →∞ , the roots of Eq. (3.13) are ap-
proximated by roots of the equation
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Equation (3.14) is an analogue of the Rayleigh equation for a long enough orthotropic a rectangular plate with free 
sides (compare with [11-14]). Thus, eigenfrequencies of problem (3.1) - (3.3) are found from Eqs. (3.13).

To find the corresponding eigenmodes, the coefficients w jj , ,=1 4  have to be determined from the system of equa-
tions (3.9) and inserted into Eqs. (3.8). As solutions of the system of equations (3.9) at a given dimensionless eigenfre-
quency characteristic ηm , it can be taken that
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 4. Flexural Vibrations of an Orthotropic Rectangular Plate with Free Sides

Consider an orthotropic rectangular plate (see Fig. 2). Under the condition of free vibrations, let us analyze the ques-
tion of existence of flexural vibrations of a rectangular plate with free sides. As the initial equation, we take the equation of 
small flexural vibrations corresponding to the classical theory of orthotropic plates [20], namely,
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where α α( )0 ≤ ≤ l  and β β( )0 ≤ ≤ s  are the orthogonal rectilinear coordinates of a point of the median plane of the plate; 
u3  is the normal component of the displacement vector of a point of the median plane; B i kik , , , ,=1 2 6  are elasticity coef-
ficients; µ4 2 12= h / ; λ ω ρ= 2 . For the given problem (1 0/ R = ), boundary conditions (1.2) and (1.3) take the form
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Relations (4.2) and (4.3) are the conditions of free edges at α = 0, l  and β = 0, s , respectively. Problem (4.1) - (4.3) does not 
allow the separation of variables. The differential operator corresponding to problem (4.1) - (4.3), is selfconjugate and non-
negative definite. Therefore, to find vibration eigenfrequencies and eigenmodes, the Eq. Kantorovich–Vlasov method of reduc-
tion to ordinary differential equations [15-19] can be employed. The solution of Eq. (4.1) is sought in the form

	 u w y mm m m3 1= = +∞( ) exp( ), ,θ β θ α ,	 (4.4)

where u vm m, , and χ  are unknown constants, and w mm m( ), ,θ β = ∞1 , are determined in (2). In this case, conditions (4.3) 
are fulfilled automatically. Inserting Eq. (4.4) into Eq. (4.1), multiplying the result by wm m( )θ β , and integrating it between 
the limits from 0  to s , we arrive at the characteristic equation
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where qm , ′βm  and ′′βm are determined in Eq. (2) and (4) respectively. Let y3  and y4  be various roots of Eq. (4.5) with non-
positive real parts, y y jj j2 3 4+ = − =, , . The solution of problem (4.1)-(4.3) is sought in the form

	 u w y wm m m j jj3 3
6=
=∑ ( ) exp( )θ β θ α .	 (4.7)

Inserting Eq. (4.7) into boundary conditions (4.2), multiplying the resulting equations by wm m( )θ β , and integrating 
them between the limits from 0  to s , we obtain the system of equations
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Equating the determinant Db of system (4.8) to zero and performing elementary operations with columns of the de-
terminant, we arrive at the dispersion equation
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Equation (4.10) is equivalent to the equation
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If y3  and y4  are roots of Eq. (4.5) with negative real parts, then, at θml →∞ , the roots of Eq. (4.12) are approxi-
mated by roots of the equation
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Equation (4.13) is an analogue of the Konenkov equation for a long enough orthotropic a rectangular plate with free 
sides (compare with [11-14]). 

Thus, eigenfrequencies of problem (4.1)-(4.3) are found from Eqs. (4.12).
To find the corresponding eigenmodes, the coefficients w jj , ,= 3 6 , have to be determined from the system of Eqs. 

(4.8) and inserted into Eq. (4.7). As solutions of the system of Eqs. (4.8) at a given dimensionless eigenvalue characteristic 
ηm , it can be assumed that
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5. Asymptotics of Dispersion Equation (2.15)

5.1. Asymptotics of dispersion equation (2.15) at εm → 0

Using the previous formulas, suppose that η η η η1 2 3m m m m= = = . Then, at εm → 0 , Eq. (2.4) will be transformed 
to the set of equations
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The limiting process εm → 0  here is understood in the sense that, at fixation of the radius R  and distances b  
between boundary generatrices of the cylindrical panel, transition to a cylindrical panel of radius ′ =R nR  and to the limit 
′ = = →ε θ εm m mn R n1 0/ ( ) /  at n →∞  is performed.

Equations (5.1) and (5.2) are characteristic equations for the equations of planar and flexural, respectively, vibrations 
of orthotropic plates whose all sides are free. The roots of Eqs. (5.1) and (5.2) with nonpositive real parts, as in Sects. 3 and 
4, are designated by y y1 2,  and y y3 4, , respectively. In the same way as in [21], it is proved that at
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	  εm i jy y i j<< ≠ ≠1, , , 	 (5.3)

and the roots χ 2  of Eq. (2.4) can be presented as
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Under condition (5.3), considering relations (2.8), (2.13) and (5.4) and the equalities
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Eq. (2.15) can be put into the form
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where det lij i j, =1

4
 and det bij i j, =1

4
 are determined by formulas (3.13) and (4.12), respectively, and
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From Eq. (5.6), it follows that, at εm → 0 , Eq. (2.15) breaks down into the equations 
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The first and second equations are the dispersion equations of planar and flexural vibrations, as in the similar problems 
for an orthotropic rectangular plate. The roots of the third equation correspond to planar vibrations of the cylindrical panel. The 
third equation appears as the result of using the equation of the corresponding classical theory of orthotropic cylindrical shells.

If y y1 2,  and y y3 4,  are the roots of Eqs. (5.1) and (5.2), respectively, with negative real parts, then, at θml →∞ , 
Eqs. (2.15) and (5.6) will be transformed into the equation
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From Eq. (5.9), it follows that, at εm → 0  and θml →∞, the roots of dispersion equation (2.15) are approximated by 
roots of the equations 

	 K K Km m m m m m1
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2
2

3
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The first two equations of (5.10) are the dispersion equations of flexural and planar vibrations of long enough ortho-
tropic rectangular plate with free sides (see Eqs. (4.13) and (3.14)). Hence, at small εm  and great qml , the approximate values 
of roots of Eq. (2.15) are the roots of Eq. (5.8) and (5.10) (compare the data in Tabs. 1, 2 and 3).
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5.2. Asymptotics of dispersion equation (2.15) at θml →∞ .

When using the previous formulas, we will assume that the roots χ χ χ1 2 3, , , and χ4  of Eq. (2.4)) have negative real 
parts. Then, Eq. (2.15) can be put into the form
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whence it follows that, at θml →∞ , the roots of Eq. (2.15) are approximated by roots of the equation
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At m N∈ , Eq. (5.12) determines all possible localized free vibrations at the free end faces of an orthotropic cylindri-
cal panel with free edges. At εm → 0 ,
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Hence, taking into account formulas (5.11) and (5.13), we conclude that the dispersion equation (2.15) becomes (5.9).

6. Numerical Investigations

In Tab. 1, the values of some ηm roots of the first two equations of (5.8) are given for a rectangular boron plastic 
plate with parameters ρ = ⋅2 103  kg/m 3 , E1

112 646 10= ⋅.  N/m 2 , E2
101 323 10= ⋅.  N/m 2 , G = ⋅9 604 109.  N/m 2 , v1 =0.2 

and v2 =0.01. In Tab. 2, some dimensionless characteristics of eigenvalues ηm  for predominantly flexural and predomi-
nantly planar vibrations of an orthotropic cylindrical boron plastic panel with the same mechanical characteristics and the 
geometrical parameters R = 40 , s =  4.00167, and l = 5  are given. The results presented in Tab. 3 correspond to a cylindri-
cal boron plastic panel with the same geometrical parameters as in Tab. 2.

TABLE 1. Characteristics of Eigenfrequencies of a Rectangular Plate with s = 4  and l = 5

m qm det bij i j, =
=

1

4
0 det lij i j, =

=
1

4
0 m qm det bij i j, =

=
1

4
0 det lij i j, =

=
1

4
0

1 1.95473 0.01090
0.01312

0.77652
0.92512

9 9.43718 0.06401
0.06594

0.95557
0.97863

5 2.74891 0.01917
0.02070

0.89934
0.99608

10 10.5474 0.07206
0.07566

0.95771
0.97417

3 3.52957 0.02441
0.02566

0.92803
1.01599

11 11.6577 0.07907
0.08274

0.95931
0.97117

4 4.27693 0.02859
0.02961

0.91974
0.99309

12 12.7680 0.08702
0.08991

0.96053
0.96914

5 5.04581 0.03432
0.03822

0.93579
1.00079

13 13.8782 0.09413
0.09444

0.96145
0.96770

6 6.09849 0.04133
0.04448

0.94287
1.00002

14 14.9887 0.10166
0.10195

0.96209
0.96670

7 7.21629 0.04896
0.05155

0.94870
0.99622

15 16.0962 0.10917
0.11027

0.96268
0.96604

8 8.32693 0.05718
0.05869

0.95266
0.98545

16 17.1935 0.11662
0.11686

0.96301
0.96554
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In Tabs. 2 and 3, after the characteristics of eigenfrequencies, the type of vibrations is indicated: b  — predomi-
nantly flexural, e  — predominantly planar. At 1 ≤ m ≤ 16, the third equation of (5.8) has no roots.

The elasticity moduli E1  and E2  correspond to the directions of generatrix and directrix, respectively. In Tabs. 2 
and 3, the case with η η η η1 2 3= = =  corresponds to problem (1.1)-(1.3).

The case with η η1 2 0= =  and η η3 = corresponds to problem (1.1)-(1.3), where are no tangential components of 
inertia force, i.e., we have predominantly flexural type of vibrations. The case with η η η η1 2 3 0= = =,  corresponds to 
predominantly planar type of vibrations.

Calculations show that the first eigenfrequencies localized at the free edges of the cylindrical panel where the normal 
component of inertia force operates are frequencies of the predominantly flexural type. Alongside with the first frequencies of 

TABLE 2. Characteristics Eigenfrequencies of Predominantly Flexural and Predominantly Planar Vibrations of a 
Cylindrical Panel with s =  4.00167 and l = 5

m qm
η η
η η
1 2

3

0m m

m m

= =

=

, η η η
η
1 2

3 0
m m m

m

= =

=

,
m qm

η η
η η
1 2

3

0m m

m m

= =

=

, η η η
η
1 2

3 0
m m m

m

= =

=

,

1 1.95391 0.01011 b
0.01981 b

0.56767 e
0.92511 e

9 9.43718 0.06401 b
0.06446 b

0.95545 e
0.97845 e

2 2.74776 0.02081 b
0.02099 b

0.88432 e
0.99610 e

10 10.5474 0.07154 b
0.07194 b

0.95762 e
0.97406 e

3 3.52810 0.02437 b
0.02559 b

0.91834 e
1.01584 e

11 11.6577 0.07907 b
0.07943 b

0.95924 e
0.97111 e

4 4.27542 0.02858 b
0.02960 b

0.91632 e
0.99310 e

12 12.7679 0.08660 b
0.08693 b

0.96046 e
0.96910 e

5 5.04492 0.03432 b
0.03518 b

0.93445 e
1.00046 e

13 13.8785 0.09413 b
0.09444 b

0.96138 e
0.96770 e

6 6.09841 0.04134 b
0.04204 b

0.94214 e
1.00010 e

14 14.9864 0.10165 b
0.10193 b

0.96207 e
0.96672 e

7 7.21629 0.04897 b
0.04956 b

0.94851 e
0.99562 e

15 16.1102 0.10927 b
0.10953 b

0.96261 e
0.96601 e

8 8.32693 0.05793 b
0.05869 b

0.95247 e
0.98509 e

16 17.2065 0.11671 b
0.11695 b

0.96300 e
0.96552 e

TABLE 3. Characteristics of Eigenfrequencies of a Cylindrical Panel with s =  4.00167 and l = 5

m qm
η η η η1 2 3m m m m= = = m qm

η η η η1 2 3m m m m= = =

1 1.95391 0.01218  b    0.55831 e
0.01987  b    0.92511 e

9 9.43718 0.06401 b     0.95556 e
0.06514 b     0.97864 e

2 2.74776 0.01937  b    0.89931 e
0.02088  b    0.99608 e

10 10.5474 0.07153 b     0.95770 e
0.07566 b     0.97417 e

3 3.52810 0.02438  b    0.92801 e
0.02559  b    1.01581 e

11 11.6577 0.07907  b    0.95929 e
0.07943 b     0.97118 e

4 4.27542 0.02858  b    0.91972 e
0.02960  b    0.99309 e

12 12.7679 0.08660 b     0.96049 e
0.08693 b     0.96914 e

5 5.04492 0.03243  b    0.93570 e
0.03823  b    1.00044 e

13 13.8785 0.09413 b     0.96141 e
0.09444 b     0.96773 e

6 6.09841 0.04133  b    0.94286 e
0.04429  b    1.00002 e

14 14.9864 0.10165 b     0.96209 e
0.10193 b     0.96674 e

7 7.21629 0.04896  b    0.94884 e
0.05156  b    0.99633 e

15 16.1102 0.10927 b     0.96262 e
0.10953 b     0.96603 e

8 8.32693 0.05793  b    0.95265 e
0.05869  b    0.98544 e

16 17.2065 0.11671 b     0.96301 e
0.11695 b     0.96553 e
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vibrations of quasi-transverse type, there are frequencies of vibrations quasi-tangential type. With increase in m , all these 
vibrations become vibrations of Rayleigh type. At εm → 0 , the free vibrations in problem (1.1)-(1.3) decompose into quasi-
transverse and quasi-tangential ones, and frequencies in this problem tend to the frequencies in the similar problem for a 
rectangular plate. Numerical results show that asymptotic formulas (5.6) and (5.9) of dispersion equation (2.15) are a good 
reference point for finding the eigenfrequencies of problem (1.1)-(1.3). The first eigenfrequencies depend on the chosen 
basic functions satisfying the same boundary conditions. At θm →∞ , the frequencies of vibrations at free end faces become 
independent of basic functions and of boundary conditions on generatrices [11, 23].

Conclusion

Using a system of equations of dynamic equilibrium for orthotropic cylindrical shells corresponding to the classical 
theory, for the first time, dispersion equations (2.15) for determining the eigenfrequencies of possible edge vibrations for 
finite and semiinfinite cylindrical panels with free edges are obtained. An asymptotic relation is established between the 
dispersion equation of the problem considered and the dispersion equations (5.6) of similar problems for planar and flex-
ural vibrations of a rectangular plate. Established is also an asymptotic relation between dispersion equation (2.15) and the 
dispersion equation of the problem on eigenvalues (5.11) of a semiinfinite cylindrical panel with free edges. A mechanism 
allowing one to decompose the possible types of vibrations is presented. 

Numerical results show that the asymptotic formulas (5.6) and (5.11) of dispersion equation (2.15) and the mecha-
nism presented are a good reference point for finding the eigenfrequencies of problem (1.1)-(1.3).

Asymptotic formula (5.9) and numerical results show that the vibrations eigenfrequencies at free end faces of a 
finite cylindrical panel (at great values of qm ) practically do not depend on the basic functions and the boundary conditions 
on generatrices.

Appendix

Here, the analytical expressions for mij are presented:

	 m H d d m Hf d f m Hf d m Hf11 1
4

1 1
2

2 12 3 1 1 13 2 1 14= + + = + = + =χ χ , , , , 	

	 m T d d m Tf d f d m Tf d f m Tf d21 1
5

3 1
3

4 1 22 4 3 2 4 23 3 3 1 24 2= + + = + + = + = +χ χ χ , , , 33 , 	

	 m d d d m f d f d fm m31 1
6

5 1
4

6 1
2

7 32 5 5 3 6 1= + + + = + +δ χ χ χ δ, , 	

	 m f d f d m f d fm m33 4 5 2 6 34 3 5 1= + + = +δ δ, , 	

	 m d d d m f d f d f dm m41 1
7

8 1
5

9 1
3

10 1 42 6 8 4 9 2 10= + + + = + + +δ χ χ χ χ δ, , 	

	 m f d f d f m f d f d am m m m43 5 8 3 9 1 44 4 8 2 9
2 21 4= + + = + + = +δ δ δ ε, , , 	

	 m m z m m z m z zi
i

i i
i

i i5
1

1 1 6
1

2 2 1 1 21 1= − = − ++ +( ) exp , ( ) ( exp [ ]), 	

	 m m z m z z m z z zi
i

i i i7
1

3 3 2 2 3 1 1 2 31= − + ++( ) ( exp [ ] [ ]), 	

	 m m z m z z m z z z m z z z zi
i

i i i i8
1

4 4 3 3 4 2 2 3 4 1 1 2 3 41= − + + ++( ) ( exp [ ] [ ] [ ]), ii =1 4, , 	
where

	 H a
B B

B
T B

B
a am m m m m= −

+ ′ = − ′ = +2 12 66

11

12

66

2 2 24
1 4β δ β δ ε, , , 	
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	 d B B B
B

B B
B

a
B B
Bm m m m1

11 22 12
2

11
2

12 66

11
2 1

2 2 2 12 66

11
24=

− ′ − + ′ −β η ε β( ηη1
2
m ) 	

	 + ′ ′′ −
+ ′ −( )











a B
B

B B B
Bm m m m

2 22

11

12 12 66

11
2 1

24
β β β η

( )
, 	

	 d B
B

B B a Bm m m m m m m2
12

11
2 1

2
66 2

2
22

2
22= − ′ − + ′ − ′′ + ′′ ′ −( )( ( ) (β η η β β β β εεm

2 )), 	

	 d B B B
B B

a B B
B

B
Bm m m m m3

11 22 12
2

11 66

2
2
2

2
12

11

12

11
4 3 2=

− ′ + ′ − − ′ −δ β β η β ηη1
2
m









 + ′ −









4 4 2 12

11
1
2a B

Bm m mε β η( ) , 	

	 d B
B

B
Bm m m4

22

11
1
2 12

11
2
2= +









 ′η η β + ′ + ′ ′′ − ′′ − ′a

B B B
B B

B
B

B
Bm m m m m

2 22 12 66

11 66

22

11

66

11
2
24

3 4β β β β η β
( )
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
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


η1

2 	

	 − ′
′′ + ′

−






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B
B B

B
B B
B Bm m

m
m

2 2 22

11

12 66

66
1
2 12 22

11 6

4
4ε β

β β
η

( )

66
′ ′ − ′′β β βm m m( ), 	

	 d
B
B

B B B B B
B Bm m

m m m
5

66

11
1
2

2
2 11 22 12

2
12 66

11 66
= + −

′′ − ′ − ′
η η

β β β 	

	 −
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B B B
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