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DEFORMATION FEATURES AND MODELS OF [±45]2s         

CROSS-PLY FIBER-REINFORCED PLASTICS IN TENSION

V. N. Paimushin,1,2* R. A. Kayumov,3 and S. A. Kholmogorov1

Keywords: carbon tape, composite, specimen, test, short- and long-term tension, residual strain, creep 
strain, secant elastic modulus, rheological models, identification

Series of experiments on [±45]2s cross-ply carbon-fiber-reinforced plastic specimens were carried out in tension 
with various loading programs. In analyzing stress–strains relations, the material was considered homogeneous. 
The total axial strain is presented as the sum of instantaneous residual (irreversible), nonlinear reversible, 
irreversible creep, and reversible creep strains. To separate the last two components, the hypothesis that their 
rates at different instants of time are different is used. Together with a generalized Kachanov hypothesis, this 
allowed us first to obtain equations for increments of only the viscoelastic strain. Further, equations in which only 
the viscoplastic strain is unknown are written, and only then the secant elastic modulus is determined. Questions 
of the choice of relations for describing strain components and the problem on identification of parameters of 
the relations are considered. Experimental data and results of their processing are presented, and they testify 
to the acceptability of the assumptions used and the efficiency of the approaches proposed.

Introduction

To problems connected with creep strains, much attention has been given by many researchers (see, in particular, 
[1-20]). A number of different theories for describing the rheological properties of materials (Voigt, Maxwell, and Kelvin 
models and theories of aging, flow, hardening, and linear and nonlinear heredity) have been proposed. To predict creep 
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strains over long enough intervals of time, various methods based on mathematical analogies (temperature−time, stress−
time, etc. ones, see, for example, [5]) have been developed.

An analysis of works devoted to experimental investigations into the deformation processes of fibrous composites 
shows that the creep in shear arises already at times measurable in minutes and even seconds. Specimens of reinforced 
fibrous composites made from carbon fiber tapes with the lay-up [±45]2s (2s is the number of monolayers), in tension and 
compression, obtain axial strains, which, in orthotropy axes, are mostly caused by shear strains. Therefore, it suffices to 
use exactly this type of testing for a qualitative shear analysis, instead of complex experiments on cross-shaped specimens.

To describe the creep strains of fibrous composites, the model of a viscoelastic (hereditary elastic) material is 
considered as the most adequate for experiments, which has been confirmed by experimental results. The weakly singular 
Abel creep kernel is often used to describe them. A peculiarity of the hereditary elastic model is that, after unloading, the 
creep strains disappear in the limit. However, our experiments showed that a part of the creep strains still remained. This 
part of creep strains has to be described not by relations of the hereditary elasticity theory, but by an incremental creep 
theory of the type of aging theory (i.e., in the differential form), according to which, after unloading, the accumulated 
creep strains are irreversible.

To determine the creep strains and parameters of its models, most convenient is an experiment carried out over 
a long period of time under a constant load. In this case, the time-dependent part of the total strain can be separated out. 
However, it is impossible to separate the hereditary elastic and irreversible creep parts of the strain.

Further, one of approaches to solving the problem of separation of these strains is proposed. The question how 
to determine the initial elastic modulus is considered, and the problem on isolation of the nonlinear reversible part of 
strains is discussed.

1. Experimental results

To clarify the structure of creep strains, in addition to the results of found in [21-24], two series of experiments 
in tension of test specimens made of cross-ply reinforced fibrous composites were carried out. Specimens with the 
lay-up [±45]2s ( 2 4s = ) were made from a unidirectional fibrous composite based on an ELUR-P carbon fiber tape and 
an HT-118 binder of cold curing. Their average thickness h = 0 56.  mm, width b = 24 6. mm, and length of the working 
part l =110 mm. In such specimens, in tension (compression), most pronounced are creep properties, and, therefore, they 
were subjected to testing in two loading programs.

The first program consisted of three stages: tension to a maximum stress smax  by a kinematic loading with a rate 
of 0.68 MPa/s, free unloading to σ = 0  or 1.5 MPa (in order to exclude the possible bending strains and occurrence of 
noise in tensodynameter readings), and subsequent holding for 24 h at σ =1 5.  MPa. The experiments were carried out 
on different specimens at σmax = 35, 45, and 55 MPa.

The second loading program consisted of four stages: tension to σmax =  45 MPa by a kinematic loading at a rate 
0.68 MPa/s, holding during th h, free unloading to σ =1 5.  MPa, and subsequent holding for three days. These tests were 
also carried out on four specimens, with th = 0, 2, 5, and 10 h.

The experimental results obtained in the first loading program were presented in the form of superimposed stress–
strain diagrams σ σ ε= ( )  (Fig. 1a). At all loading stages, the corresponding branches of the diagrams, for all three 
specimens, with a high degree of accuracy, turned out to lie on the same curve, but at the subsequent stages, after unload-
ing and holding up to the total disappearance of hereditary elastic strains, different values of residual strains were re-
corded (Table 1). From this fact, it can concluded that, in addition to the elastic and hereditary elastic components, irre-
versible, although small, residual strains ε r  had actually developed. They could consist of both irreversible creep and 
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instantaneous irreversible strains caused by various reasons (plasticity, microdamage, etc.). In cyclic loadings, as it was 
established earlier in [21-23], the residual strains, at each ith loading cycle, obtained increments tending to a constant 
value by the end of some Nth cycle (also see [25, 26]).

In Fig. 1b, schematically repeating Fig. 1a in changed scales, shown are the points A1, A2 ,  and A3  corresponding 
to the end of the first loading stages, the points B3  and ′B3  corresponding to the end of the second and third stages, and 
the segments A A A A1 1 2 2′ ′, ,  and A A3 3′  corresponding to the indicated smax  and found from the recorded experimental 
values of ε εi i

r
( ) ( )and  in accordance with the equalities A Ai i i

r′ = ( )ε , where i =1 2, , and 3 correspond to σmax
1 35( ) =  MPa, 

σmax
2 45( ) =  MPa, and σmax

3 55( ) =  MPa. Connecting the origin O of coordinates and the points ′ ′ ′A A A1 2 3, , and  by some ap-
proximation curve, an experimental deformation diagram for a specimen, without account of its residual strains, can be 
obtained. Let us describe it with the relation (the superscript “+” indicates the loading stage)

 ε ε σ+ += ( ), t . (1.1)

By virtue of the fact that, after unloading of the specimen to σ = 0  and holding it for a long time, a residual irre-
versible strain ε r  developed in it, which, according to the data of Table 1, could be approximated as

 ε ε σ εr r= ( , ) , (1.2)

the total strain ε  arising in the specimen at the loading stage could be represented as the sum

 ε ε σ
σ
σ ε

+ = ( ) + ( )
( )

r t
E , 

. (1.3)
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Fig. 1. Combined diagrams of loading σ σ ε= ( )  at three values of smax  (а) and a schematic for 
determining the residual strains (b).

TABLE. 1.

smax, МPa ε ( )i
r ⋅104

35 0.44
45 1.13
55 2.61
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Here, the function E σ ε, ( ) , having the meaning of secant elastic modulus, can be determined on the basis of 
experimental relation (1.1). It depends not only on the stress level, but also, as established in [21-23], on the strain 
rate ε .

Experiments showed (see [21-23] and Fig. 1b) that the relation σ σ ε+ + += ( )  inverse to (1.1) had the first de-
rivative that decreased with increasing ε + . Therefore, even without account of creep strains, the tangent modulus of 
elasticity (and hence the secant one), which can be determined from the diagram σ σ ε+ + += ( ) , decreased with increasing 
s . Such a decrease in the elastic modulus can be explained not only by the rearrangement of composite structure caused 
by binder cracking (such models are considered, for example, in [13, 14, 27-29]). It can also be caused by the strains ε nel  
of microrearrangement due to the realization and continuous changes of internal buckling modes [30, 31] with permanent 
variations in the parameters of wave formation at the loading stage. The diagram of such strains is nonlinear at the load-
ing stage, but the strains ε nel  disappear after unloading. The residual strains ε r  can contribute to the reduction in the 
secant modulus due to the break of bonds between the fibers and matrix (degradation at the weakest points of composite), 
which are not recovered at the unloading stage.

The test results obtained in the second loading program are presented in Fig. 2a in the form of stress–strain 
diagrams σ σ ε= ( ) , and values of the residual strains ε T

r
( )  are given in Table 2 for th = 0 , 2, 5, and 10 h. The values 
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Fig. 2 Deformation diagrams σ σ ε= ( )  (a) and ε ε= ( )t  (b) obtained in the second loading program 
at  th = 0 (▲), 2 (●), 5 (♦), and 10 h (■). Explanations in the text.

TABLE. 2.

ε T
r
( )

th, h
0 2 5 10

ε ( )10
310r ⋅ 0.11 0.53 1.46 1.71

ε ( )24
310r ⋅ 0.11 0.50 1.34 1.53

ε ( )48
310r ⋅ 0.11 0.47 1.30 1.39

ε ( )72
310r ⋅ 0.11 0.46 1.25 1.35

εmax ⋅10
3 4.56 5.64 8.15 9.46
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of ε T
r
( )  were recorded for each specimen at t = 10, 24, 48, and 72 h after their unloading in the conditions of holding 

at σ =1 5.  MPa.
The characteristic relation ε ε= ( )t , with various holding times th  (in hours) under the stress σ = 45  MPa, is 

shown in Fig. 2b, where the sections OA, АВ, ВС, and СD of the curve correspond to the loading stage, holding at the 
second stage, free unloading to the stress σ =1 5.  MPa at the third stage, and holding more than a day after unloading, 
respectively. Values of the strains developed at the end of the second loading stage (corresponding to the point B in Fig. 2b) 
are shown in the last line of Table 2. These results also indicate the presence of irreversible creep strains of the composite.

An analysis of the results obtained shows that the values of residual strains satisfy the inequalities 
ε ε ε εr

t
r
t

r
t

r
th h h h= = = =

< < <
0 2 5 10

 for all values of holding time at the second loading stage (the value ε 1
30 11 10( )

−= ⋅r .  

corresponding to th = 0 h was found by the method described in [21-23]). Consequently, the quantity ε r , in contrast 
to the assumption accepted and representation (1.2), in the loading program considered, was a function not only of 
the stress level s  and strain rate ε , but also of time t, i.e.,

 ε ε σ εr r t= ( ), , . (1.4)

Let us assume that this type of function ε r  is caused not only by degradation of the material due to the break of 
bonds between the fibers and matrix at the weakest points in the first loading stage, but also by the formation of irrevers-
ible creep strains of matrix material of the composite. Such assumptions allow us to represent relation (1.6) as

 ε ε σ ε σr R r t= ( ) + ( )∂ , . (1.5)

Here, ε σR ( )  is the irreversible instantaneous strain and ε∂
r  is the irreversible creep strain.

2. Identification of the parameters of rheological models at long-term loading

In the general case, the governing relations (written, for example, in the form of relations between the components 
of strain and stress tensors) will contain, as arguments, three invariants of the stress tensor even in the case of plane stress 
state. Their construction requires a large number of different experiments on specimens with different layer stacking angles 
and special methods for their processing. There are works in which various hypotheses are used to reduce the number of 
arguments, or, for example, their simplification on the basis of an analysis using the features of material properties. For 
example, this was done in [12, 32, 33], where a review of studies in this direction is also given. Some other variants of 
such relations can be found, for example, in [13-15, 34-38]. In this case, for determining the parameters of deformation 
models from experiments, it is sometimes necessary to use various methods of regularization of the identification problem 
(see, for example, [15, 39, 40]).

Further, we will consider only some features of the problem on constructing physical relations and only for the 
simplest, one-dimensional case, namely, the problem on constructing relations connecting the axial stress and the total 
longitudinal strain ε  (relative elongation of specimen) with the following components: the hereditary elastic (viscoelas-
tic) reversible ε v , irreversible creep ε∂

r , nonlinear reversible ε nel , and instantly irreversible ε R  strains. To solve this 
problem, we introduce a generalization of Kachanov hypothesis [41], according to which the creep, viscoelastic, in-
stantly reversible, and irreversible parts of strain develop independently of each other and depend only on the level of 
stresses, i.e.,

 ε ε σ∂ ∂=r r t( , ) , ε ε σv v= ( , )t , ε ε σnel nel= ( ) , ε ε σR R= ( ) . 
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Based on this hypothesis and on an analysis of the above-mentioned experimental results, it can be assumed that, 
in tension according to the second loading program, the total axial strain includes the sum of the components

 ε
σ

ε σ ε σ ε σ ε σ= + + + +∂E
t tr nel R

0
( , ) ( , ) ( ) ( )v , (2.1)

 ε σ σ τ τv = −∫ f H t d
t

( ) ( , )
0

, (2.2)

 d dt Fr rε σ ε∂ ∂=/ ( , ) , (2.3)

where H is the creep kernel and E0  is the initial elastic modulus.
Thus, within the framework of representation (2.1), it can be assumed that, after complete unloading (at σ = 0 ), 

the accumulated creep strains ε σ∂
r t( , )  remain unchanged, while the hereditary elastic strains ε ε σv v= ( , )t  decrease and 

disappear in the limit after an unlimited period of time.
Let us now turn to the identification of parameters of the models of hereditary deformation and irreversible creep. 

Further reasonings will be based on an analysis of results of the experiments carried out according to the second loading 
program (see Fig. 3).

First, in time t1 , specimens are loaded up to the stress σ σ= max  (in Fig. 3, this corresponds to the point A1), and 
then it is held under this stress during the time ∆t t tm m= − 1 .

Let us denote the experimental values of the strains ε ε ε1 2 3, , ,...  at the points A A A1 2 3, , ,...  obtained at the instants 
of time t t t1 2 3, , ,...  under the stress σ σ= max . Then, at t tm= , specimens are unloaded to σ σ= min  during the time 
∆t t tn m n m= −+ +1 .

Formally, relations in which only the strains of hereditary elasticity ε v  remain can be obtained. For this purpose, 
the specimen has to be completely unloaded to σmin = 0  (see Fig. 3b) and expressions for strain increments have to be 
written. Since, after complete unloading at zero stresses, the strains ε nel , ε σR ( ) , and ε σ∂

r t( , )  remain constant in time, 
we have

 ∆i j i j i jt t i j mε ε ε ε ε= − = − >v v( , ) ( , ), ,0 0 . (2.4)

In the experiment, know usually is the law of stress variation in the specimen,

 σ ς= ( )t . (2.5)
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Then, expressions for ε i
v  can be presented as

 ε ς τ ς τ τ τi

t

if H t d
i

v = −∫ ( ( )) ( ( ), )
0

. (2.6)

Knowing the values of strains measured at σmin = 0  at the instants of time t t ti j m, ≥ , we obtain relations contain-
ing only the creep kernel, namely,

 

∆i j i j i j

t

if H t d f
i

ε ε ε ε ε

ς τ ς τ τ τ ς

exp exp exp

( ( )) ( ( ), ) ( (

= − = −

= − −∫

v v

0

ττ ς τ τ τ)) ( ( ), ) , , .
0

t

j i j m

j

H t d t t t∫ − ≥
 

(2.7)

Further, some assumptions about the form of governing relations (2.2) have to be accepted. Many studies have 
shown that, at moderate operating stresses and their small variations, the linear theory of hereditary elasticity can be used 
(in particular, from milliseconds to thousands of hours by using the Abel kernel [42]). Then

 f H t H t( ) , ( , ) ( )σ σ σ τ τ= − = − . (2.8)

We approximate H t( )−τ  by some system of functions Hk :

 H t H tk k
k

K
( ) ( , )− = −

=
∑τ α τ

1
. (2.9)

Let the number K be not greater than the number of different equations (2.7). Then, to determine the mechanical 
characteristics αk , an overdetermined system of algebraic equations follows from Eq. (2.7) in the general case. For-
mally, the constants αk  can be found minimizing the quadratic residual of this system of equations, i.e., the creep kernel 
H can be determined.

However, experiments have shown that, performing complete unloading, it is not possible to obtain sufficiently 
accurate values of strains on the section Am+1 , Am+2 , owing to the presence of various “noises” (backlash of equipment, 
residual bending strains of specimens owing to the misalignment of grips). At the same time, the values of ε v  after com-
plete unloading can formally be obtained by extrapolation (i.e., by finding the strain at the point A00  in Fig. 3a). How-
ever, this would require repeated testing of the same specimen many times in the second program at different exposure times 
∆t t tm m= − 1 , which can lead to a considerable scatter in experimental data. Therefore, the next challenge in identifying 
the rheological characteristics of the material studied is how to separate the viscoelastic ε v  and creep ε σ∂

r t( , )  strains in 
one experiment at σ σ= max . To do this, let us accept the experimentally confirmed hypothesis that the attenuation rate of 
irreversible creep strain increments are much higher than that of the hereditary elastic ones. This means that, at a constant 
stress σ σ= max , the increment of strains after a long period of time consists only of the increment of hereditary elastic 
strains, ∆ε v . Therefore, at σ σ= max , with a small error, a relation coinciding with Eq. (2.7) can be used, but only at 
t t t tm i j> ,  1 , namely,

 ∆i j i j i jε ε ε ε εexp exp exp= − = −v v ,  t t ti j m, <  (2.10)

We should emphasize that here, in contrast to Eq. (2.7), the integration times t ti jand  correspond to holding the 
specimen under the maximum stress, which makes it possible to determine, with a sufficient accuracy, the left side of 
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relations (2.10). Writing them for different times t ti jand , we obtain a system of equations. Minimizing its quadratic re-
sidual, the constants αk  of approximating expressions (2.9) for the creep kernel H can be found.

In the analysis of our experiments, the Abel kernel 

 H t B
t

B( )
( )

, ,− =
−

< < >τ
τ

αα 0 1 0 , (2.11)

was used in the governing relations (2.2).
The parameters of relation (2.11) were identified using test results at σ σ= max  = 45 MPa. In Eqs. (2.11), it was 

assumed that t tj = =const 0  and t ti > 0 .
Different selection variants of t0  in Eqs (2.10) were considered. Identification results for the parameters B andα

are shown in Fig. 4. It follows from them that, indeed, at long holding times, the behavior of the material studied can be 
described by the model of a hereditary elastic material (2.11) alone, because the parameters B andα of the creep kernel 
are stabilized.

As already mentioned above, irreversible strains, comparable with the hereditary elastic ones, were revealed in 
long-term experiments. We will describe them by relations (2.3), taking into account that, as it follows from an analysis 
of the results shown in Fig. 4, their growth attenuated after t t= 0 ~ 1000 s. A number of different functions F r( , )σ ε∂  were 
analyzed. However, it was not an easy task to obtain a model that would give an attenuation rate of the strain ε0

r  much 
greater than that of ε v . Since the variant with only one value of smax  for the holding stress was considered, the aging 
theory in the simplest version with respect to stresses was chosen, namely,

 d dtr rε σ ψ ε∂ ∂=/ ( ) . (2.12)

Further, numerical experiments were carried out using various kinds of functions ψ ε( )∂
r , one of which was 

adopted in the form

 d dtr r mε χ σ χ ε∂ ∂= +/ / ( ( ) )0 11 . (2.13)

Here, m, χ0 , and χ1  are the sought-for constants. Since the strains ε εnel Rand  are constant at the points 
A A A1 2 3, , ,... , relations similar to (2.7), but taking into account the irreversible creep strains, can be used, namely,

 ∆i j i
r

i j
r

jt t t tε ε σ ε σ ε σ ε σ= + − +∂ ∂[ ( , ) ( , )] [ ( , ) ( , )]max max max max
v v . (2.14)

Fig. 4. Values of the parameters В (а) and α  (b) identified on the interval of time [t0, tmax] at 
σmax = 45  MPa ( tmax = 18,000 s = 5 h).
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Here, the strains ε σv ( , )max t j  can be calculated by relations (2.2) and (2.11).
Minimizing the quadratic residual between the experimental values of ∆i jε

exp  and ∆i jε  calculated by Eqs. (2.14) 
for all holding times ti  of specimen at the stress smax , the parameters m, χ χ0 1,and  appearing in relations (2.13) for the 
irreversible creep strains can be determined.

Processing results for experiments at σ σ= max  = 45 MPa on the segment A1–Am (see Fig. 5) confirmed the ac-
ceptability of the assumptions used and the efficiency of the approach proposed for determining the mechanical charac-
teristics of the composite studied.

After identification of the rheological characteristics of the material, the secant elastic modulus E σ ε, ( )  can be 
found from the condition of closeness of experimental and calculated values of total strains.

For the material considered, identification of the rheological characteristics and the secant elastic modulus for 
models (2.11)-(2.13) by the above-described method gave the following results:

 B = ⋅ −6 0878 10 7.  s α−1 /MPa, α = 0 6151. , E σ εmax , ,( ) =10 700  MPa, 

 χ0
71 2485 10= ⋅ −.  (s · MPa) −1 , χ1

41 8764 10= ⋅. , m = 21 1. . (2.15)

For the purposes of illustration, the values of ∆i1ε
exp  obtained in the experiment (indicated by markers) and their 

calculated values ∆i i1 1ε ε ε= −  are presented in Fig. 5a, but the values of total strains are shown in Fig. 5b.
To determine the initial elastic modulus E0, it is necessary first to find the law of variation in the instantaneous 

irreversible strain ε σR ( ) . To do this, the strain ε00  at the point A00  at the instant of complete unloading has to be found 
at various levels of the maximum stress. This can be done by extrapolating the curve Am – Am+1  (see Fig. 3). Then, the 
irreversible creep strains ε∂

r t( , )0 00  and the hereditary elastic ε v  ( , )0 00t , which can be calculated at any instant of time 
by relations (2.2), (2.11), and (2.13), have to be subtracted from it. This difference is equal to ε σR ( ) ,

 ε σ ε ε εR r t t( ) ( , ) ( , )= − −∂00 00 000 0v . (2.16)

The results of an analysis of experimental data by relation (2.16) showed that, for the material studied, the values 
of ε σR ( )  were by two orders of magnitude smaller than the total strains at the beginning of holding specimens under the 
maximum stress. They were comparable with the accuracy of strains measurements, which led to their wide scatter, even 
to negative values. From this fact, we can conclude that the instantaneous irreversible strains ε σR ( )  in relation (2.1) can 
be neglected.
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Therefore, the elastic modulus E0 can be determined from the increments of stresses and of the elastic part of strains 
on a small initial interval of time. To determine the latter ones, the viscoelastic ε σv ( , )t  and irreversible creep ε σ∂

r t( , )  strains 
were subtracted from the total strains. They were calculated by relations (2.2), (2.3), (2.6), (2.11), (2.13), and (2.15), which 
were found from an analysis of the results obtained at long holding of specimens under the maximum stress.

We should note the following fact observed in numerical experiments performed using parameters (2.15) of the creep 
kernel. For viscoelastic bodies described by models with weakly singular creep kernels, the increment ∆ε v  of viscoelastic 
strain, even at rather high loading rates, can make several tens of percent of the total strain increment ∆ε . Therefore, deter-
mination of the elastic modulus E0 from the relation (in accordance with known standards, for example, GOST 25.601, 25.603, 
9550, 23805)

 E0 =
∆
∆
σ
ε

 (2.17)

gives underestimated values. In particular, it turned out that, after 2s in a full-scale experiment, (the loading rate was 
0.68 MPa/s), a growth in the stress by only 1 MPa increased the viscous component by ∆ε v , which made 18% of the 
total strain increment ∆ε .

In addition, the value of ∆µr∂  could also be considerable. Therefore, it is advisable to carry out experiments so 
that to obtain first the mechanical characteristics of relations (2.2) and (2.3). For viscoelastic bodies, such approaches 
to determining relations (2.2) are described, for example, in [4].

Further, it was assumed that, at low stresses, the elasticity relations are close to linear ones, i.e., the strain 
ε σnel ( )  can be neglected, and the initial elastic modulus was obtained from relation (2.17):

 E r
0 0= − −∆ ∆ ∆ ∆σ ε ε ε/ ( )v  = 12,410 MPa. (2.18)

Let us consider the problem on constructing a relation for the reversible strains ε nel  as functions of stresses. The 
strains ε nel  can be caused, for example, by the occurrence of one or another buckling mode of phases of a fiber compos-
ite [30, 31] or by the initiation of microcracks [27, 28, 29]. In both cases, significant strains can arise only when stresses 
exceed a certain critical value. An analysis of experimental data confirms this assumption.

To establish the relation ε σnel ( ) , the experiments results obtained at stresses of 35, 45, and 55 MPa were used, 
and the strains ε nel  were found from the relation

 ε σ ε
σ

ε σ ε σnel r

E
t t( ) ( , ) ( , )= − + +









∂

0

v . 

Calculation results are presented in Table 3.
Various types of approximations ε ε σnel nel= ( )  were tested. An analysis of the results of numerical calculations 

led to the conclusion that a piecewise-continuous function, similar to that in the elastic-plastic deformation, can be em-
ployed. Namely, up to a certain value σ σ= kr , these strains are absent, but then they develop as functions of stresses.

TABLE. 3.

smax, МPa ε nel ⋅104

35 2.356
45 6.883
55 10.105
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Of all the functions considered, the most successful was a hyperbolic one (which is shown by the bold line in 
Fig. 6). Approximation by a second-order polynomial gave a function that began to decrease after s  ≈ 70 MPa (the thin 
line with a negative curvature in Fig. 6). A similar situation arose in approximation by a third-order polynomial. Linear 
and exponential functions gave much larger errors than the hyperbolic one (the upper thin lines in Fig. 6), which was 
found in the form 

 ε σ σnel a c b= + +/ ( )1 ,   a c b kr= − = = ≈− −0 006315 0 0006433 0 06964 311 1. , . , . , MPa  MPa  MPaσ . 

Conclusions

An analysis of experimental data corresponding to a long-term holding of specimens after unloading showed they 
had obtained irreversible residual strains. It was assumed that they had been caused not only by viscoelastic strains, but 
also, as the experiments showed, by irreversible creep strains. In constructing relations connecting various components 
of the total axial strain (stretch ratio) to the axial stress, a generalized Kachanov hypothesis was used, according to which 
the creep, viscoelastic, and instantaneous reversible parts of the total strain develop independently of each other. When 
developing a method for determining the rheological characteristics of a material, only test results for the specimens held 
under a constant load for a long time were used. In this case, only the differences of total strains were analyzed, which 
enabled us to exclude all other components of the strain.

To separate the hereditary elastic reversible strains from the irreversible creep strains, it was assumed that the 
rate of the latter ones decreased faster with time. Therefore, identifying the parameters of creep kernel of the viscoelastic 
model was reduced to analyzing test results after a sufficiently long time of holding specimens under a constant load. 
This assumption was confirmed by processing results of experimental data. The mechanical characteristics of irrevers-
ible creep strains were then determined by analyzing test results immediately after the beginning of holding specimens 
under a constant load. Thereafter, it was possible to find the secant elastic modulus.

A further analysis of experimental results, with regard to the relations obtained for the rheological components, 
allowed us to believe that the instantaneous irreversible strain was negligible. Therefore, at the next stage, the initial 
elastic modulus was determined from experimental data found at the initial stage of loading at low stresses. It was found 
that, even at low stresses and small their increments, it was necessary to subtract the creep and viscoelastic strains from 
the total ones, because changes in the viscoelastic strains can make several of tens of percent of the increment of total 
strains even at rather high loading rates if singular creep kernels are used.

25 35 45 55 65

2.0

1.5

1.0

0.5

0

�
nel.10�3

�, МPa

Fig. 6. Combined plots of different approximations ε ε σnel nel= ( ) . Explanations in the text.
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At the last stage, after determination of the rheological characteristics and the initial elastic modulu, the non-
linear reversible part of the total strain, whicht can be caused by microrearrangements in the composite structure, for 
example, owing to the loss of stability of its phases, cracking of binder, etc, can be separated out. Based on an analysis 
of experimental data, the well-known conclusion that this part of the total strain arises only after reaching a certain 
critical stress was confirmed. Various forms of approximating functions for this component were considered, and the 
optimum one was chosen.

If test results for specimens with other layer stacking angles are known, the methods for identifying the me-
chanical characteristics can be used to determine relations between the parameters of stress strain state of a layer in 
orthotropy axes. The problem of constructing such governing relations is a separate problem. We should note that the 
results obtained in this work can also be used directly in calculating composite members (for example, thin-walled tubes 
of truss systems, in particular, spacecraft structures) manufactured by winding at the angles +45°/–45°.
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