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Numerical modeling of the casting process 

and impact loading of a steel-fiber-reinforced 

high-performance self-compacting concrete

J. Sliseris* and A. Korjakins
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With the rapid development of high-performance self-compacting fiber-reinforced concrete materials, advanced 
numerical modeling tools have become necessary to design optimum materials and structures. A simulation 
framework that includes numerical modeling of the flow of a high-performance self-compacting fiber-reinforced 
concrete mortar during the casting process, calculation of local fiber orientation based on the deformation 
gradient in the mortar, and impact modeling taking into account the local fiber orientation is proposed. A new 
method to calculate the probability of fiber orientation distribution by particle tracking and approximation 
of particle motion using the deformation gradient is proposed. A discrete lattice modeling technique, with a 
nonlinear strain-rate- and local-fiber-orientation-dependent constitutive law for a numerical impact modeling 
is proposed. Single- and three-point concrete casting techniques are numerically simulated, and results are 
compared with experimental measurements, showing a good agreement. The numerical models revealed that 
fiber orientation and the impact resistance of beams strongly depended on the casting technology of the self-
compacting concrete. The numerical model proposed can be used to design efficient concrete casting technologies 
ensuring the necessary fiber orientation in load-bearing structures..

1. Introduction

High-performance fiber-reinforced concrete (HPFRC) and ultrahigh-performance fiber-reinforced concrete (UHPFRC) 
are becoming more and more popular in the society of civil engineers. However, the influence of casting technology on 
the fiber orientation and fracture mechanics of HPFRC and UHPFRC have not been well understood yet, especially when 
a self-compacting fiber-reinforced concrete is used. Fiber orientation plays a great role due to the bridging effect of fibers 
in cracks of beams, frames, and plates.
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One possibility of orienting fibers is to take advantage of the fact that they tend to be aligned perpendicular to 
the flow of self-compacting concrete. This effect, with a special pouring technique, is used to manufacture HPFRCs with 
oriented fibers [1-3]. Another way to achieve the necessary fiber orientation is to use the gradient of flow speed and local 
effects near formwork surfaces [4-7].  Accurate numerical models could help one to better understand the influence of 
casting technology on the mechanical behavior of load-bearing structures.

The casting process of concrete can be modeled numerically using either continuum-based or discrete-element meth-
ods,  e.g., the Lagrangian smooth particle hydrodynamics (SPH) [8]. A continuum-based method that estimates the probability 
distribution function of fiber orientation is described in [9]. However, there is proposed only a 2D method, without a clear 
description of how to establish a link between it and solvers for structural mechanics. In SPH, the fluid is replaced by discrete 
particles without a direct link to the actual internal structure of mortar. Moreover, there are not enough information on the 
influence of smoothing parameters on simulation results. Most of the validated codes of computational fluid dynamics (CFD)  
use solvers based on Navier–Stokes equations,and this approach is also used in that research.

Virtual computer models of structural elements could help one to understand and design new materials and structures. 
Currently, numerical models for dynamically and statically loaded pure [10] and fiber-reinforced concrete [11-14] that are 
based on the continuum theory are available. But the micro- and mesostructures of the concrete are difficult to represent as a 
continuum because of the large number of different-size aggregates, voids, and other heterogeneities present in it [10,11,15]. 
Due to the heterogeneity of concrete, the load is transferred by discrete load paths. The discrete nature of concrete has promoted 
the development of discrete-element models (DEM) with triangular, tetrahedral, hexahedral, or another type of lattices [16-18].

Owing to the complex material behavior of self-compacting fiber-reinforced concrete, an accurate constitutive model 
is necessary to achieve a reasonable accuracy by numerical methods. A thermodynamically consistent cohesive model for the 
DEM of cement-based materials is presented in [19]. The propagation of cracks in concrete is studied in [19] using a cubic 
distinct lattice spring model [20]. A fracture analysis of reinforced concrete structures is performed in [21] employing a micro-
polar peridynamic analysis framework [21]. The mechanical behavior of ultrahigh-performance concrete (UHPC) is success-
fully approximated in [22] for projectile penetration impact loads by using a discrete lattice particle model [22]. The optimum 
material orientation as the key factor in designing composite structures is introduced in [23]. Later, this elastic-energy-based 
approach was extended to the analysis of 2D linear and nonlinear elastic materials [24-26] and 3D linear elastic materials 
[27-29]. However, the effect of local, nonuniform fiber orientation was not taken into account.

So far, there is no information on a numerical modeling technique that can explicitly capture the influence of casting 
technology on the impact properties of a self-compacting high-performance fiber-reinforced concrete. In our work, a new method 
for postprocessing the simulation results of two-phase flow of mortar and for calculating the probability of fiber orientation 
distribution that can be used directly in a constitutive model is proposed. Moreover, a constitutive model that can capture the 
effect of local fiber orientation and strain rate is also advanced.

2. Numerical Models

2.1. Fiber orientation analysis using CFD results

The casting process of an incompressible two-phase mortar was modeled using the CFD finite-volume solver. The 
momentum, continuity, and transport equations for the volume fraction of fluid are [30–32]
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where U  is the velocity field, ρ  is density, t  is time, g  is the acceleration of gravity, p  is pressure, Fs  is the surface tension 
force acting on free surfaces, γ  is the fraction of fluid (mortar) in the cell, and Ur  is the velocity field necessary to compress 
the interface between the mortar and air.

The density at any point in the computation domain was calculated as the weighted average of the volume fraction:

	 ρ γρ γ ρ= + −c a( )1 , 	

where ρc  is the density of mortar and ρa  is the density of air. When γ  = 1, the cell is filled with mortar, and at γ  = 0, it is 
filled with air. 

A non-Newtonian incompressible Bingham-type fluid model was used [8]. This model describes the relationship 
between the strain rate and stress. The model is defined by the yield stress and the plastic viscosity. 

The fiber orientation was analyzed by tracking particles in the mortar flow (see Fig. 1). The particle tracking was 
performed in the CFD postprocessing phase. The geometrical representation of particle tracking is shown in Fig. 1. The mo-
tion of a particle at a time step from t  to t t+D  was calculated using the velocity field U t( ) :

	 x x U t ti
t t

i
t+ = +D D( ) ,	

where xi
t  are center coordinate of an ith particle  at a time t , xi

t t+D  are its coordinates at the time t t+D , and Dt  is the 
time step.

It was assumed that the fiber orientation was mainly affected by the deformation gradient Ft , which partially has 
been proved by experimental measurements [7]. The deformation gradient was calculated using a set of particles around 
the central particle:
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Fig. 1. Particle tracking scheme and ellipsoids of fiber orientation probability: 1 — particle tracking, 
2 — particles, 3 — probability ellipsoid, and 4 — fibers.
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where N  is the number of particles in the surrounding, di k
t
,  is the distance between an ith central particle and a kth sur-

rounding particle at time  t , Dd d di k a
T

i k a
T

i k a
fin fin
, , , , , ,= − 0 , ( , , )a x y z= . In order to reduce the computation time without a signifi-

cant reduction in accuracy, only the diagonal terms of the deformation gradient were used to estimate the distribution of fiber 
orientation probability. In some cases, when the shear flow dominates, the off-diagonal members should also be considered. 
The length of a radius of the orientation ellipsoid is equal to the scaled diagonal term of deformation gradient and represents 
the probability of a fiber to be oriented in the direction of this radius. 

In the case of multiple casting points, the mortar flow is separated. Then, there can be situations where some neighbor-
ing points move in another direction than the central point. This problem was solved by placing an additional restriction on the 
maximum distance through which a neighbor point can be moved away from the central one. If this distance was exceeded, the 
with a high probability, the flow could split, and this point was excluded from further calculations of the deformation gradient.

The diagonal terms of deformation gradient ( Ft
diag ) were used as the lengths of central axes of the ellipsoid of fiber 

orientation probability. A random fiber generator used the diagonal terms Ft
diag  to calculate fiber orientation, which is defined 

by fiber projections on three orthogonal axes:
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where v f
∗  is the fiber orientation vector, v f  is the fiber orientation vector whose length is equal to the fiber length Lf , U a b( , )  

is a random number from the interval [ , ]a b , which is generated using a uniform random number generator, and Dx∗ , Dy∗ , 
and Dz∗  are projections of the fiber orientation vector on coordinate axes.

2.2. Modeling of an impact

The displacement of the discrete lattice model was obtained using the explicit central difference scheme for integra-
tion with respect to time [19, 33]:
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The fiber-reinforced concrete was represented as a nonlinear discrete lattice model where nonlinearity of the mate-
rial was taken into account. Each lattice member has a 1D constitutive equation, which makes the model simple, with few 
parameters and high computational efficiency. The cross-sectional areas of discrete lattice members were calculated using a 
homogenization technique where the energy equivalence criterion is used [5, 6, 18].

The nonlinear material behavior was related to the degradation of Young’s modulus when cracks were growing [5, 
18, 34]. A single damage variable was used:
	 E E D= −init ( )1 ,	

where Einit  is the initial Young’s modulus, and D  is a damage variable (equal to 0 for the undamaged material and 1 for the 
damaged one).

According to the recommendation for stress–strain curves given in [18, 35], the evolution of the damage variable was 
computed by the equation
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where q  is the angle between the lattice member and the average fiber orientation, ftens ( )q  is the strength of fiber-reinforced 

concrete, µ θ( )  is the shape parameter of the stress-strain curve, ε θ θεtens
tens

init
( ) ( )=

f
E

k  is the strains at the peak stress, and 
kε θ( )  is a strain multiplier. 

The damage variable in compression was calculated by an equation similar to Eq. (1) and was used at the next time 
step. The interaction between compression and tension damage variables was not taken into account, because not enough 
experimental data were available. However, the framework of continuum damage mechanics proposed can be slightly 
modified to take into account this interaction effect.

Material parameters were interpolated depending on the angle q : 

	 f f f f f f DIFn
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where ftens,90  and fcomp,90  are the tensile and compressive strengths perpendicularly to the fiber orientation, and ftens,0  
and fcomp,0  are the tensile and compressive strengths along the fiber orientation; n  is a parameter characterizing the 
accuracy of fiber alignment; fN  is the average number of the fibers crossing a particular cross section; f fN( )  is the 
ratio between the number of the fibers crossing a particular cross section in the oriented-fiber concrete and in the cur-
rent case; DIFtens  and DIFcomp  are dynamic increase factors; n n n nx y z= ( , , )  is the orientation vector of lattice member; 
F ii

t
∗  is the diagonal term of deformation gradient obtained by interpolation between the nearest points; e  is strain rate; 
ε sc =1 2. · 10–5 1/s and ε st =1 0. · 10–6 1/s. In this work, it was found that n = 2 for the cases analyzed [1].

2.3. Overall algorithm

The numerical modeling framework of a self-compacting high-performance fiber-reinforced concrete consisted of 
three main steps. At the first step, the two-phase incompressible fluid flow problem was solved. The velocity field U t( ) , 
fluid volume fraction γ ( )t , and pressure fields were found. At the second step, the CFD postprocessing was performed. It 
consisted of the particle tracking algorithm and calculation of the fiber orientation ellipsoid at each point. This ellipsoid was 
determined when particles were located in their final position and the flow velocity was zero and was used to generate a 
random fiber network to calculate the fiber orientation coefficient ηθ  and the number of fibers per unit area Fn  [36]:

	 η θ θ θθ
θ

θ

= ∫ p d( ) cos
min

max
2 , 	 (5)

	 F n An f= ,	 (6) 
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where p( )q  is the probability distribution function, cosq  is cosine between the fiber axis and the neutral axis of the beam; 
n f  is the average number of the fibers crossing the cross section of interest; qmin  and qmax  are the minimum and maximum 
values of fiber orientation angle; and A  is area of the cross section. 

At the third step, the impact modeling was performed. It was assumed that the fiber orientation did not change in 
the curing process. The discrete lattice model was created using a tetrahedron mesh generation routine. Into each edge of the 
tetrahedron, a lattice member was inserted. The impact was modeled using an explicit time integration algorithm. As a result, 
the load bearing capacity, which included the peak load and energy absorption measures, was estimated.

3. Results

The influence of casting technology on the impact properties of the fiber-reinforced concrete were studied by the 
numerical methods proposed. Two different casting technologies were considered. The first one, denoted as 1P, used a single 
pouring point, and the second one, denoted as 3P, used three pouring points. The first technology provided a better fiber 
orientation, but it took more casting time. 

The mortar was made from a type-1 Portland cement and silica fume. Silica sand with a grain size less than 0.5 mm 
was included as a fine aggregate, and silica flour (with 2-μm grains) was used as a filler. Straight steel fibers of length 
13 mm and diameter 0.2 mm, with a tensile strength of 2500 MPa, were added to the mortar in amount of 2 vol.%. In order 
to obtain an adequate flowability and viscosity sufficient to prevent fiber segregation, a high-performance water-reducing 
agent, polycarboxylate superplasticizer with a density of 1.06 g/cm3, to the extent of 2 wt.% of cement, was also included.

A special mixing sequence was adopted. First, all of the dry materials were premixed for approximately 10 min 
to achieve a good dispersion. Next, water mixed with the superplasticizer was added to the dry materials and mixed for 
additional 10 min. When the mixture obtained a sufficient fluidity, fibers were carefully dispersed and mixed for 5 min. 
More details on the materials and their preparation technology can be found in [36]. The mixing process was not modeled 
numerically, assuming that the fiber orientation after mixing was isotropic.

3.1. Analysis of fiber orientation

A schematic of the CFD model is shown in Fig. 2. On its walls, the zero gradient boundary condition of γ , no-slip 
condition of velocity U , and zero pressure flux condition were prescribed. The atmospheric boundary conditions were ap-
proximated using the zero velocity condition, zero total pressure, and zero value of γ . The initial location of γ  is shown in 
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Fig. 2 as a hatched area. In the case of a single pouring point, opening dimensions were 20 × 100 mm, which could provide 
a flow speed of about 3l/min. In the case of three pouring points, the opening had the same dimensions. All three openings 
were opened and closed at the same time.

In the present study, the yield stress of the self-compacting high-strength fiber-reinforced concrete was 100 Pa and 
its plastic viscosity was 50 Pa · s [8]. Air was described as a Newtonian material with a kinematic viscosity of 1.48 · 10–5 N/s. 
The surface tension forces were computed using a surface tension coefficient s = 0.07 N/m and curvature of the interface [32].

The velocity field and γ  of mortar flow are shown in Fig. 3. The arrows indicate the principal directions of velocity. 
It can be seen that, after 10 s, the 3P sample was filled more than 1P. However, the velocity field was more nonuniform for the 
3P sample. The velocity gradient and wall effects in 1P samples aligned fibers more closely to the neutral axis of the beam. 

In the case of 1P technology, the bottom layer of sample had a relatively good fiber orientation, — most of the orienta-
tion ellipsoids were stretched in the direction of beam axis. In the opposite side of pouring point, fibers were inclined at angles 
from 0 to 45° to the beam axis. This effect has also been observed experimentally [7]. In the 3P technology, ellipsoids were 
stretched only partly in the direction of beam axis, and their average orientation was not so good as in the 1P case.

The CFD postprocessing results of fiber orientation were compared with experimental measurements. It is a common 
approach to measuring fiber orientations in a particular cross section using the image analysis method [36]. In three-point 
bending, this cross section is in the middle of beam, where the tensile stress is maximum. A random fiber generator was used 
to produce fibers in the middle part (of dimensions 100 × 100 × 50 mm) of the beam (see Fig. 4). The number of the fibers 
crossing the middle cross section and their orientation angles were calculated using a virtually generated structure. As a result, 
the fiber orientation factor (see Eq. (5)) and the number of the fibers crossing a unit area (see Eq. (6)) were found. Since random 

1

2

a b c

d e f

1

1 1

2

1

2

1

2

1

1

2

2

1

2

1

2

1

1

2

2 2

Fig. 3. Concrete flow in the case of single (a, c, e) and three pouring points (b, d, f) in 1 (a, b) and 
10 s (c, d) and at the final time (e, f): filled with air (1) and mortar ( γ  =1) (2).



36

fiber generation is a stochastic process, the average values and the standard deviation were calculated using five independent 
runs. The numerically estimated and experimentally measured results for the middle cross section are shown in Table 1, and 
a rather good agreement with experimental results, is seen to axist.

The probability density function (PDF) of the fiber orientation angle q  in the middle cross section of the beam is 
shown in Fig. 5. As is seen, the average orientation angle in the 1P casting technology is smaller than in the 3P one, but the 
PDF function in the 1P technology is shifted to the left more than in the 3P one, indicating a better fiber orientation with respect 
to the neutral axis of the beam. The experimentally measured PDE functions are in good agreement with numerical results.

Fig. 4. Random fiber network for an analysis of the middle cross section.

Table 1. Comparison of Fiber Orientation Parameters Obtained Experimentally and by Simulation

Sample Parameter Experiment Simulation Difference, %

1P hq 0.66 0.69±0.004 4.54
Fn, fibers/cm2 47.02 45.03±1.17 –4.42

3P hq 0.64 0.65±0.003 1.56
Fn, fibers/cm2 36.76 40.97±0.96 11.45
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Fig. 5. Distribution of probability P of the fiber orientation angle q : 1P — experiment (1) and 
simulation (3); 3P —  experiment (2) and simulation (4).
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3.2. Impact modeling in three-point bending

The impact response of a 100 × 100 × 400 mm beam in three-point bending was tested virtually and compared with 
experimental results. Details on the numerically tested specimen are shown in Fig. 6. The impact force was applied by a steel 
weight of dimensions 350 × 300 × 100 mm, whose speed was 5.2 m/s at the instant of contact with the beam. The contact 
area was 100 × 30 mm. The average density of concrete was 2500 kg/m2 and of steel 7800 kg/m2.

The values of material parameters are shown in Table 2. It was assumed, and has also been prooved by experi-
ments [37], that the compressive strength is not significantly affected by fiber orientation [37]. The average compressive 
strength was 210 MPa. However, fiber orientation had a significant effect on the tensile properties. In the case where the 
average fiber orientation was perpendicular to the neutral axis of the beam, the tensile strength was 12 MPa, but it reached 
18 Pa when the orientation was parallel to the neutral axis. At other fiber orientation angles, a the nonlinear interpolation 
according to Eqs. (2)-(4) was performed.

The potential damage zones were described by using the damage variable D . In Fig. 7, the potential cracked 
(damaged) zones found numerically and observed experimentally in three-point bending are shown. In the numerical 
model, the spheres show the damaged zones with D  > 0.99. It can be seen that, in the numerical model, the main crack 
has developed in the central cross section of the beam, which agrees with experimental observations (see Fig. 7). How-
ever, a shear crack, starting from the support and propagating to the impact point, can also appear, which has been observed 
in some experimental specimens [37]. 

Similar deformed schemes of samples made by using the 1P and 3P technologies were obtained. As is seen, the 
most part of displacements had developed due to the damaged area in the central cross section of the beam. A similar 
deformed scheme has also been observed experimentally [36, 37].
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Fig. 6. Schematic and dimensions (mm) of the sample: 1 — steel and 2 — concrete.

Table 2. Material Parameters* in Impact Loading

Tension Compression
In the fiber direction Perpendicular to fibers

ftens,0 = 18 МPa ftens,90 = 12 МPa fcomp = 211 МPa
mtens,0 = 1.4 mtens,90 = 1.6 mcomp = 1.4
ke,tens,0 = 5 ke,tens,90 =5 ke,comp = 1

E = 46.7 GPa

*obtained by fitting the experimental results presented in [36, 37].
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Relationships between the flexural stress and the normalized deflection (the ratio between the deflection and 
beam span) are shown in Fig. 8. The peak flexural stress for the beam made by the 1P technology was about 105 MPa 
and about 70 MPa for  the 3P sample. The numerical models were able to estimate the peak load with a good agreement 
(difference less than 5%) with experiments. We should also mention that the energy absorbed by the 1P samples was by 
35% higher than that absorbed by the 3P ones. 

4. Conclusions

A numerical framework modeling technique for the casting process and virtual testing of the structure of an impact-
loaded self-compacting high-performance fiber-reinforced concrete is proposed. A two-phase flow of mortar is modeled as 
an incompressible continuum fluid model, where the velocity field is used to estimate the local fiber orientation employing 
the deformation gradient. A nonlinear strain rate- and local-fiber-orientation-dependent constitutive law for the discrete 
lattice model is also proposed. The numerically modeled single-point pouring technique was found to provide a beam with 

a b

c

Fig. 7. Potential location of cracks according to simulation results for 1P (a) and 3P (b) casting and 
experimental observations [37]. Explanation in the text.
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a better fiber orientation and better impact properties then the three-point pouring one. Similar results for the local fiber 
orientation in the central cross section of the beam and the impact strength and energy absorbing properties have also been 
observed in experiments. 

Further investigations and optimization of the casting technology a needed for more complex structures. 
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