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NONLINEAR DEFORMATION OF A PIECEWISE 

HOMOGENEOUS CYLINDER UNDER 

THE ACTION OF ROTATION

V. M. Akhundov,* and M. M. Kostrovа
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Deformation of a piecewise cylinder under the action of rotation is investigated. The cylinder consists of an 
elastic matrix with circular fibers of square cross section made of a more rigid elastic material and arranged 
doubly periodically in the cylinder. Behavior of the cylinder under large displacements and deformations is 
examined using the equations of a nonlinear elasticity theory for cylinder constituents. The problem posed is 
solved by the finite-difference method using the method of continuation with respect to the rotational speed of 
the cylinder.

Introduction

The deformation of round cylinders of homogeneous materials rotating around their symmetry axis has been 
investigated in detail in the linear mechanics of deformation, and the corresponding bibliography adequately enough is 
presented in [1]. In [2], inertial energy stores (flywheels) made of rigid composite materials are considered. In [3], with 
the help of equations of the linear elasticity theory, the problem on stresses in a rotating cylindrical orthotropic  pipe is 
solved. Results are presented at free and rigid fits of the pipe for the cases of its axial and circular reinforcing. In [4], the 
redistribution of stresses in a disk with an elastomeric matrix in conditions of stress relaxation during creep of the matrix 
is considered. The problem is solved in a vectorially and physically linear statement. In [5, 6], plane strain and plane stress 
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states of a cylindrical flywheel with initial stresses caused by the circular winding of fibers and of matrix are investigated. 
The state of rotating elastoplastic disks is described in [7, 8]. In [8], a solution of the problem on the secondary creep of 
a rotating disk is also given. The problem on the elastoplastic behavior of a disk at a power-law hardening of its material 
is solved in [9]. In [10], a rotating disk is calculated according to experimental tensile diagrams of its material, without 
their simplifying schematization, by the method of variable elastic parameters.

Large inertia-caused deformations of rotating cylinders were found to be investigated only in [11-13]. In [11], 
problems in the plane statement for homogeneous cylinders and cylinders poorly reinforced with fibers in axial, circular, 
and radial directions were solved. The investigations were carried out using the applied theory of fibrous media [14] based 
on a material model where the macroscopic stresses are determined by additive contributions of matrix stresses and axial 
tension or constrained compression forces of fibers. In [12], employing the applied theory, the axisymmetric deformation 
of cylinders with fibers in circular and radial directions at different fits on the internal boundary surface were considered. 

In [13], on the basis of single-level applied and two-level carcass theories, problems cylinders with two- and three-
orthogonal reinforcement schemes were solved. The carcass theory [15] includes the macromechanical level, at which  
the macrovalue-boundary problem is solved for a body as a whole. At the a micromechanical level, for the central blocks 
of representation of the reinforced material of a body, microboundary-value problems were solved using the model of a 
piecewise homogeneous medium and conditions from the macromechanical level in the iterative procedure considering 
the interaction of the levels of analysis. 

The model of a piecewise homogeneous medium methodologicalally most precisely reflects the behavior of a 
body of fibrous structure. In the given approach, the a matrix and fibers are considered as contacting interacting bodies 
on the basis of equations of the mechanics of deformable solids (MDS) for the matrix and each of reinforcing fibers. But, 
because of the limitated computing resources, the model of a piecewise homogeneous medium in a “pure” form can be 
used only for a small number of bodies with a unidirectional reinforcement in particular loadings. As such an object, we 
investigated a rotating cylinder whose elastic matrix was reinforced with circular fibers of square section of a more rigid 
elastic material.

1. Statement of the problem

The problem on deformation of an elastic cylinder consisting of a matrix and circular fibers under the action inertia 
forces caused by rotation of the cylinder around its symmetry axis is solved. Fibers of square section are arranged in the matrix 
of the cylinder doubly periodically with identical periods in the axial and radial directions. The cylinder was modeled as an 
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Fig. 1. Axial section of the cylinder in its initial state: 1 — fiber of square cross section; 2 — annular 
element; 3 — half of disk layer to the right of the central section.



233

assembly of annular elements of square cross section made of the matrix material and containing fibers of square section as 
a reinforcement.

On Fig. 1, the axial section of a nondeformed cylinder with a internal radius r a=  and external radius r b= is 
shown. The cylinder includes cylindrical layers of identical thickness h  reinforced with circular fibers of identical square 
cross section with sides δ . The cylinder was also considered as set of disk layers of thickness h  with one circular fiber 
in each layer (square packing). 

The axisymmetric deformation of the cylinder corresponding to the macroscopically plane strain state where the 
length of the cylinder remained constant was considered. In view of symmetry of the problem, the problem was solved 
for half of disc layer of thickness h / 2 . Such a layer is enclosed between two cross sections of the cylinder one of which 
passes through axial lines of fibers and another — through the matrix between fibers. The distance between the sections 
is equal to half of the period of reinforcing in the axial direction.

A Lagrangian system of cylindrical coordinates θ
1
, θ

2
, θ

3
 was used, where θ

1
, θ

2
, and θ

3
 are the axial, circu-

lar, and radial coordinates, respectively. In the reference configurations of the cylinder, the coordinates were designed as 
t, ,ϕ and r , respectively. The axial coordinate t  was measured from the central section, passing through the axial lines 
of fibers in a disk layer. Along with the radial coordinate r , the thickness coordinate z r a= −  measured from the internal 
surface of the cylinder was used. The physical components of vectors and tensors in the reference system of coordinates 
are labelled with coordinate indices in parentheses.

The quantities related to the matrix and fibers are marked by the subscript n n= 0 1 2, , ,..., max ; the value n = 0  cor-
responds to the matrix, but n n=1 2, ,..., max  specify nanofibers and the annular elements including fibers numbered in the 
direction from an internal surface of the cylinder to the external one; nmax  is the number of fibers and annular elements 
in the part of the cylinder for which the boundary-value problem is solved. The quantities without a subsript n  are re-
lated to the matrix and each fiber or to the cylinder as a whole. 

2. Equations of the problem

Let us start from the general equations of nonlinear mechanics determining tensor components of the Cauchy–Green 
measure of deformation [16]. For the components of axisymmetric deformations of the matrix and fibers in the cylinder, 
we have relations determining them as functions of the axial and radial coordinates, t and r:
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where λn1 , λn2 , and λn3  are stretch ratios in directions of the coordinate lines θ
1
, θ

2
, and θ

3
 ( t ,ϕ , r ), respectively; 

ωn13  is the coordinate angle between the θ
1

 and θ
3

 coordinate lines (the components of vectors and tensors equal to 
zero owing to symmetry of the problem considered are not presented).
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In the case of compressible materials of the matrix and fibers, components of their stress and strain tensors are con-
nected by the relations [17]
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where W W I gn n n n ij= [ ( ),( )1 I g I gn n ij nq n ij2 ( ),..., ( )]( ) ( )  is the elastic potential of the matrix ( n = 0 ) or fibers ( n n=1 2, ,..., max ) 
material, which depends on the invariants I I In n nq1 2, ,...,  of its strain tensor. 

Employing the general equilibrium equations of MDS at large deformations [18], the following equilibrium equations 
for the axisymmetrically deforming cylinder in the metric of reference configuration were obtained:
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Here, tn ij( )  are the physical components of the asymmetric Piola–Kirchhoff stress tensor of the matrix and fibers 
of the cylinder, of which different from zero are the following ones:
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(2.5)

The distinctive features of a rotating cylinder with elastic constituents is the action of centrifugal forces on its 
matrix and fibers and varying distances from their material points to the cylinder axis. In Eqs. (2.3), the radial component 
of density of the mass forces acting on components of the rotating cylinder is

	 F r un n( ) ( )( )3 3
2= + ω , n n= 0 1, ,..., max , 	

where ω π= 2 f  is the angular speed of rotation; f  is the number of revolutions per second.
Components of the symmetric Piola–Kirchhoff tensor J ijσ ( )  can be expressed in terms of the components pij  of 

stress vectors on the θ
i
-coordinate surfaces related to the normalized vector basis of coordinate system in the deformed con-

figuration of the cylinder [19]:

	 J pσ λ λ λ ω( ) sin11 1
1

2 3 23 11= − J pσ λ λ λ ω( ) sin22 2
1

1 3 13 22= − , 	

	 J pσ λ λ λ ω( ) sin33 3
1

1 2 12 33= − , J pσ λ ω( ) sin13 2 23 13= 	 (2.6)

(the subscript n has been omitted here).
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3. Construction of a numerical solution of the problem

The geometrical (2.1), physical (2.2), and equilibrium (2.3) equations, together with Eqs. (2.4) and (2.5), were con-
sidered as resolving equations of the boundary-value problem for the piecewise homogeneous cylinder. The components un( )1  
and un( )3  of displacement vectors and tn( )11 , tn( ) ,13  tn( ) ,31  and tn( )33  of stress tensors in the matrix and fibers were assumed 
as the basic quantities. The strains gn( )11 , gn( )22 , and gn( )33  and stresses tn( )22  in the resolving equation were expressed in 
terms of the basic quantities with the help of Eqs. (2.1) and (2.5). 

For each cylinder constituent, the boundary conditions at which the boundary-value problem was solved express the 
absence of axial displacements and transverse strains in the surfaces t = 0  and t h= / 2 :

	 un t( ) |1 0 0= = ,  gn t( ) |13 0 0= = ,  un t h( ) /|1 2 0= = , 	

	 gn t h( ) /|13 2 0= = ,  n n= 0 1 2, , ,..., max .	  (3.1)

In the load-free internal and external surfaces of the cylinder, the components of the asymmetric Piola–Kirchhoff  
tensor were assumed equal to zero:
	 t tn j r a n j r b( ) ( )| , |3 0 3 00 0= = = == = , n = 0, j =1 3, . 	  (3.2)

The conditions of joint deformation were given proceeding from the equality of components of the vectors of 
displacements and stresses in the matrix and fiber interfaces. In these conditions, the quantities related to the  matrix are 
labeled with the subscript m: in the cylindrical interface of matrix and an nth fiber,

	 u t r u t rm n( ) ( )( , ) ( , )1 1= , u t r u t rm n( ) ( )( , ) ( , )3 3= , 	

	 t t r t t rm n( ) ( )( , ) ( , )31 31= , t t r t t rm n( ) ( )( , ) ( , )33 33= , 	 (3.3)
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	 m = 0 , n n=1 2, ,..., max . 	

In the transverse plane t = δ / 2  between an nth fiber and matrix

	 u t r u t rm n( ) ( )( , ) ( , )1 1= ,  u t r u t rm n( ) ( )( , ) ( , )3 3= , 	

	 t t r t t rm n( ) ( )( , ) ( , )11 11= ,  t t r t t rm n( ) ( )( , ) ( , )13 13= , 	  (3.4)

	 t = δ / 2 , nh h z nh h− + ≤ ≤ − −( ) / ( ) /δ δ2 2 ,  m = 0 , n n=1,..., max . 	

The derivatives of the first order of basic quantities with respect to the axial and radial coordinates t  and r  were 
approximated with the help of finite-difference relations of the second order of accuracy [20]. Together with boundary 
conditions (3.1) and (3.2) and conditions of joint deformation of the matrix and fibers (3.3) and (3.4), a system of the 
nonlinear equations in the basic quantities is formed at the central points of the two-dimensional area 0 2£ £t h / , a r b£ £ . 
This system of equations was solved using the discrete Newton’s method [21]. The uniqueness of solution of the bound-
ary-value problem was ensured by continuation of the solution relative to the angular rotation speed of the cylinder. As a 
result of solution of the  boundary-value problem at finite angular speeds ω , with the use of Eq. (2.6), the nodal values 
of displacements un i( ) , deformations λni  and ωnij  and stresses pnij  for the matrix ( n = 0 ) and fibers ( n n=1 2, ,..., max ) 
were found. 
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4. Numerical results 

The cylinder was considered as set of disk layers with 100 annular elements. The internal and external radii of the 
cylinder were a =100  and b = 200  mm, respectively. The side of cross section of quadratic fibers was δ = =0 6 0 6. .h  mm, 
and the fibers were packed at distances between the axial lines of adjacent fibers h = 1  mm, with a fiber filling factor 
k hf = =δ 2 2 0 36/ . . The properties of the matrix and fibers were specified by the three-constant Levinson–Burgess and two-
constant Bleitz potential [22], respectively. The elastic parameters of matrix were Em = 4  MPa, νm = 0 46. , and βm =1  and of 
fibers — E f = 68  MPa and ν f = 0 4. . The densities of matrix and fiber materials were identical — ρ ρm f= = ⋅1 1 103. kg/m3.

Let us analyze solution results of the problem on the basis of the grid of nodal points of a finite-difference scheme 
with seven equidistant nodal points on sections of 0 0 3£ £t .  mm and 0.3 £ £t 0 5.  mm, two of which coincide on inter-
faces. On intervals along the coordinate r in fibers and between them, also were seven nodal points (the coordinate lines cor-
responding to the given grid of nodal points are shown on Fig. 3). 

Figure 2 shows contour lines of the cylinder in its initial state and at the angular speed ω π= ⋅2 80 s–1 and the 
graph of change on the radial displacements u( )3  in cross sections of the cylinder in relation to the radial coordinate r. 
The generatrices of internal and external boundary surfaces of the deformed cylinder, within the limits of error of the 
image, are straight lines parallel to its axis. The radial displacements  of the central section t = 0  changes from u( ) .3 66 1=  mm 
at r a= =100mm to u( ) .3 45 6=  mm at r b= = 200 mm. The internal and external radii in the deformed state become 
a a u t r a
*

( ) ,|= + == =3 0 166.1 mm and b b u t r b
*

( ) ,|= + == =3 0 245.6 mm, respectively. The cylinder thickness at the central 
section thus is H b at

* * *| = = − =0 79.5 mm, instead of the former H b a= − =100mm.
On Fig. 3, the configurations of axial sections for four half-units of the annular elements located in the cylinder to 

the right of the central section are shown. Each of them includes three concentrically located annular elements. The first 
unit is separated from the nondeformed cylinder; the configuration of its axial section does not depend on its location in 
the cylinder and  is given for comparison with the deformed unit. Other units are separated from the deformed cylinder at 
ω π= ⋅2 80  s–1. The second assembly includes the 1th, 2nd, and 3rd annular elements adjacent to the internal surface of the 
cylinder and is bounded by the surfaces z = 0  and z h= 3 . The third unit is formed from the external half of the 49th ele-
ment, 50th and 51st elements and from the internal half of the 52nd element and is located between the surfaces z h= 48 5.  
and z h= 51 5. . The fourth unit includes the adjacent to the external surface of cylinder 98th, 99th, and 100th elements and 
is located between the surfaces z h= 97  and z h=100 .
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Fig. 2. Contour of axial section of the cylinder in the initial state (––––) and in rotation with 
the speed  ω π= ⋅2 80  s–1 (– – –) and the distribution of radial strains u( )3  in cross sections of the 
cylinder.
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The configurations of axial sections of ring elements in the units are presented by grids of the coordinate lines t ti=  
and z zi=  passing through the central points ( t zi i, ) of the finite-difference diagram used to solve the problem. They show 
how much more intensively deformed are the annular elements located closer to the internal surface of the cylinder.

Most strongly changes the configuration of the 1st element, whose internal surface is part of the boundary surface of 
the cylinder. The matrix near to the internal surface significantly moves inward the matrix layer δ / /2 2£ £t h  between fibers 
of the cylinder from the disk layer considered and the adjacent to it another disk layer. The bending deflection of internal 
surface of the cylinder was f = 0 12.  mm (12% of the height h = 1  mm of cross section of the element in the nondeformed 
state). This effect is less expressed near the external surface of the cylinder, which also flexes inside the area occupied by the 
matrix, with a bending deflection f = 0 05.  mm. 

The deformed configurations of axial sections of the 1st and 2nd annular elements differ considerably between 
themselves. For the 2nd and 3rd elements, the distinction between their configurations is expressed less. As to the 3rd and 4th 
and subsequent pairs of adjacent elements, their configurations are close between themselves within the limits of representa-
tion error of the graphic material. This persists up to the pair of 98th and 99th elements inclusive. Only the configuration of 
the 99th element appreciablly differs from that of the 100th element. Thus, we come to the conclusion that the near-surface 
effect close to the internal surface of the cylinder penetrates at the depth of one or two periods of reinforcement by circular 
fibers, depending on the criterion used (this question will not be considered here), and close to its external surface, at the 
depth of one period of reinforcement. 

On Fig. 4, the distributions of axial, circular, and radial stretch ratios λ λ1 2, , and λ3  and of the angular deformation 
ω13  along the generatrix of internal surface of the cylinder (of the first element) are illustrated. A characteristic feature is the 
axial lengthening on the section under fibers and shortening in the matrix layer. The curve of radial deformation λ3  reflects a 
greater radial shortening under the fiber, where λ3 1 0 44− = − . , and smaller in the matrix layer, at whose center t = 0 5.  
λ3 1 0 28− = − . . The circular deformation λ2  is practically constant, varying from λ2 1 661= .  at t = 0  to λ2 1 662= .  at t = 0 5. ; 
for the angular deformation, π ω/ 2 013− =  at the free internal surface of the cylinder.
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Fig. 3. Configurations of axial sections of units of ring elements of the cylinder: a — unit of three 
elements of the motionless cylinder; b, c, and d — units at rotation with ω π= ⋅2 80  s–1, including 
the 1st, 2nd, and 3rd elements, half of the 49th, 50th, 51st, half of the 52nd element, and 98th, 99th, 
and 100th elements, respectively accordingly.
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The distributions of deformation parameters along the generatrix of the cylindrical surface z h= −( ) /δ 2 , in which the 
“internal” interface between the first fiber with the matrix is located, are shown on Fig. 5. At the angular point [ / , ( ) / ]δ δ2 2h − , 
the deformation parameters, except λ2 , are discontinuous. These discontinuities grow with degree of digitization of the 
problem, and the results diverge. The results for the angular point on the basis of the grid of nodal points used are formal to 
some extent by virtue of its singular character, as belonging to the line where the smoothness of contact surface of various 
materials is violated [23]. 

The gap of ω13  in the matrix material is ω ω13 0 3 13 0 3| |. .z z=→ = ←− = 0.99 (56.7°); in passing from the fiber to matrix, 
the gap is small (0.3°). The axial deformation λ1  along the interface passes from shortenings near the central section to 
lengthenings near the matrix area and in the most matrix area of 0.3 £ £t 0 5. mm. 

In going from the matrix to fiber, the radial λ3  and angular ω13  deformations undergo a jump along all the interface. 
In the radial deformation, this jump arises owing to compression of the softer matrix by the more rigid fiber at their interaction.

The changes in deformation parameters along the generatrix of the median surface z = 0 5.  mm of the first ring ele-
ment are shown on Fig. 6. In going from the fiber to matrix, the functions λ1  and ω13 undergo jumps: λ1 1<  within the limits 
of fiber and λ1 1>  in the matrix layer. The deformation λ1  changes in the interval 0 84 1 341. .≤ <λ  jumpvise from the value 
λ1 0 3 0 90| ..→ =  on the left to λ1 0 3 1 04| .. ←=  on the right. The angular deformation changes jumpvise from ω13 0 3| .→ = 86.7° to 
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Fig. 5. The same in the internal surface z h= 0 2.  of matrix and fiber in the 1st annular element of 
the cylinder. At a jump of a quantity in passing through the interface of constituents, the curves for 
the matrix and fibers are marked by numbers with one and two primes, respectively.
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Fig. 4. Distributions of stretch ratios λ1  (1), λ2  (2), and λ3  (3) and the coordinate angle ω13  (4) in 
the internal surface z = 0  of the 1st annular element of cylinder.
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ω13 0 3| . ←= 69.1°. The λ3  curve undergoes a break in passing between cylinder components. The circular deformation λ2  
remains practically the same as at z = 0  everywhere in the element because of its small cross section h h× = ×1 1 mm.

On Fig. 7, distributions of deformation in the surface z h=  separating the 1st and 2nd ring elements are illus-
trated. The axial deformation λ1  decreases monotonically, changing from stretching ( λ1 1> ) in the zone between fibers to 
compression ( λ1 1< ) in the matrix layer 0.3 £ £t 0 5. mm. In fact, the displacement of binder from the region between 
adjacent fibers in the area of matrix layer (see also the configurations of units of annular elements on Fig. 3) is reflected 
here. The function λ3  grows monotonically at the greatest values (in modulus) of shortening λ3 1 0 5− ≅ − . at the center 
between fibers. The curve λ2  is constant within the limits of error of its image. At the greatest shear deformation π ω/ 2 13−  
near the place of passing to the matrix layer, the ω13  curve not much deviates from p /2.

On Fig. 8, distributions of the circular stress p22  in the central section t = 0 are depicted. They are shown on the 
intervals 0 3£ £z h , 48 5 51 5. .h z h£ £ , and 97 100h z h£ £  in the three units of ring elements illustrated on Figs. 3b, c, d. 
This stress undergoes jumps on interfaces between the matrix and fibers. In passing from one ring element to another lo-
cated above it, this stress in the matrix and fibers decreases. In the matrix, the stress decreases from p22 =3.1 МPa in the 
internal surface z = 0  to p22 = 1.2 МPa in external surface z =100 mm. In the median surface z h= 0 5.  of the 1st fiber, 
p22 = 47.1 МPa, and in the median surface z h= 99 5.  of the 100th fiber, p22 = 15.8 МPa. In passing from the matrix to 

fiber, this stress in the 1st element increases 22 and 17 times at the internal and external cylindrical interfaces 25 and 17 
times, respectively, in the 100th element. In the elements near the median surface of the cylinder, in passing from the ma-
trix to fiber, the stress increases 14 times in both the interfaces.
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Fig. 6. Distributions of stretch ratios λ1  (1), λ2  (2), and λ3  (3) and coordinate angle ω13  (4) in the 
median surface z h= 0 5.  of the 1st annular element of cylinder.
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On Fig. 9, the rotation speed ω π/ 2  of cylinder as a function of fibers filling factor k f is shown. The different curves 
correspond to rotations speeds at which the radial displacements u( )3  in the external surface of the cylinder at the central sec-
tion, and practically everywhere in this surface, are equal to 10, 20, and 60 mm. They are constructed using relations between 
the radial displacements in the external surfaces of cylinders with k f = 0, 0.09, 0.16, 0.25, 0.36, and 0.49 and their rotation 
speeds. These filling factors correspond to square fibers with cross-sectional sides δ  = 0, 0.3, 0.4, 0.5, 0.6, and 0.7 mm, re-
spectively. The other parameters of cylinders and their reinforcement schemes were taken the same as at k f = 0.36. The ho-
mogeneous cylinder was modeled using the general calculation algorithm and setting for fibers the same material properties 
as for the matrix. At the rotation speed ω π= ⋅2 33.5 s–1 of the homogeneous cylinder and ω π= ⋅2 97.5 s–1 of the cylinder 
with k f = 0.49, their external radius was a a∗ = + 60mm. The thickness of cylinder wall changed from H ∗ =79 mm in the 
absence of fibers to H ∗ =75.5 mm at k f = 0.49. In transition from the homogeneous cylinder to the cylinder with the specified 
fiber filling factor, the thickness of cylinder wall increased by one order of magnitude.

Conclusions

Based on the model of a piecewise homogeneous medium, investigated were the properties of an elastic cylinder 
reinforced periodically with circular fibers of square cross section in its macroscopically plane deformation during rotation 
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Fig. 9. Rotation speed  ω π/ 2  as a function of fiber filling factor k f , at displacements in the outer 
surface of cylinder u( )3  = 10 (1), 20 (2), and 60 mm (3) and k f  = 0, 0.09, 0.16, 0.25, 0.36, and 0,49.

Fig. 8. Distributions of circular stresses p22  in the central section t = 0  on the intervals 0 3£ £z h  (1), 
48 5 51 5. .h z h£ £  (2), and 97 100h z h£ £  (3) of three units of annular elements of cylinder.
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around its axial line. The pattern of deformations and stresses in the matrix and fibers of the cylinder at its rotation causing 
strong changes in its configuration was revealed. Established was the fact of displacement of matrix material from the areas 
between fibers in cylindrical layers in the field of disk layers occupied by the matrix. The near-surface effect was expressed 
in a considerably nonperiodic deformation of the ring elements of the cylinder adjacent to its internal and external surfaces. 
At a prescribed development of configuration of the cylinder, its rotation speed and stock of kinetic energy can be adjusted 
effectively by reinforcing it with circular fibers. The results obtained using the most detailed approach in MDS can help one 
to study the possibilities of axiomatic approaches in the mechanics of fibrous media as in [14, 15].
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