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CONSTRAINTS ON STRESS COMPONENTS AT THE INTERNAL
SINGULAR POINT OF AN ELASTIC COMPOUND STRUCTURE
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The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity
of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability
of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because
the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this
vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical
point. These problems do not arise if the singular point is identified with the representative volume of material
of the structure studied. In authors’ opinion, this approach is consistent with the postulates of continuum
mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an
independent problem of mechanics for bodies with singularities. This method was used to explore constraints
at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown
that, in addition to the constraints given in the classical approach, there are also constraints depending on the
macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies
with an internal singular point into nonclassical ones. Combinations of material parameters determine the
number of additional constraints and the critical stress state at the singular point. Results of this research can
be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations
in composite structural elements.
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Introduction

At the present time, in investigating the stress-strain state (SSS) close to singular points (vertices of wedges, cones,
cracks, spatial ribs, etc.), the asymptotic approach proposed in [1, 2] prevails. A local solution is sought in the form of
expansion into series in terms of eigenforms with a power factor ¥, where r is the distance to the singular points and 4,
is an eigenvalue [3-8]. Also, expansions into series in terms of arbitrary complete system of functions with power-logarith-
mic factors of the type #*Inr [9, 10] and other representations of solution [11, 12] are used. The parameter 7 can be arbi-
trarily small. At a numerical construction of solution, for example, in studying the SSS in the vicinity of singular points by
the finite-element method (see, for example, [13-15]), the mesh can be arbitrarily fine. The possibility of unlimitedly ap-
proaching a singular point means that its model in the methods used is a mathematical point (with no linear dimensions).
The concept of SSS is not applicable to such a point, therefore, conditions which a solution have to satisfy are not given at
this point. According to the postulates of continuum mechanics, point is the representative volume of the material of which
the structural element investigated is made. Such a representative volume has a finite characteristic (linear) size and is the
smallest body particle for which the concept of SSS has a meaning. The methods admitting an unlimited approach to a
singular point allow one to construct a reliable solution only outside its small vicinity. Really, such a solution is not coor-
dinated with the constraints set for the representative volume (singular point), as they are neglected in the statement of the
problem. Besides, with approach to such a point at a distance commensurable with the characteristic size of the representa-
tive volume, the use of macroscopic physical equations becomes incorrect, because, at a lower structural level of a mate-
rial, its behavior obeys different physical laws. From solutions constructed at a singular point and in its vicinity, in view of
the constraints set at it [16, 17], it follows that the vicinity of the singular point outside which an asymptotic solution de-
scribes the SSS reliably has a radius of 5-10 characteristic sizes of the representative volume of the body.

The identification of a singular point with the representative volume of a body makes it possible to consider the
constraints set at it. The formulation of such constraints is an independent problem. They are given by algebraic equalities
whose number usually exceeds the number of conditions specified at an ordinary point. This makes the problem for a body
containing a singular point nonclassical. Studying the constraints assigned by a singular point enables one to adequately pose
a problem of the mechanics of deformable bodies with a singular point and to reveal the critical combinations of material
and geometrical parameters. In the present work, the approach developed in [18, 19] is applied to studying constraints on
the parameters of state at an internal singular point of plane and spatial compound structures. Internal singular points are
characteristic, in particular, of composite materials filled with elements having angular points and ribs. The investigations
of SSS at such points are topical, because, under certain conditions, an internal singular point can be a significant concen-
trator of stresses, which, in particular, is shown in [20], where tension of a compound strip is examined by the method of
photoelasticity . Behavior of the stress field in the plane problem near to an internal angular point by using classical methods
is examined, for example, in [12, 21-24].

1. Statement of a Plane Problem

Let us consider two plane isotropic wedges 1 and 2, with a common with the vertex 4, continuously connected
together along their generatrix (Fig. 1). The mechanical and thermal loads on the body with this singularity create a plane
stress state in the vicinity of the point A. The vertex angles of wedges are designated as 2o and 28 (with O<a <7m,
0<pB<m, a+p=mr), the external normals to the generatrix of wedge 1 — as n and m, and the unit vectors perpen-
dicular to them — as »' and m'. Along the bisector of the wedges, the axis x; of a Cartesian orthogonal system of coordi-

nates is directed. The axis x, is directed so that the system of coordinates Ax,x, is right-handed. The following designations
k)

;

o, are coefficients of thermal expansion (i, j =1,2,k =1,2); AT is a homogeneous increment of temperature. The index &

are assumed: G;-k) and ¢’ are stresses and strains; E, are Young’s moduli; v, are Poisson ratios; G, are shear moduli;

hereinafter specifies a constituent wedge. According to the concept assumed, two singular points are considered in the vi-
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Fig. 1. Internal singular point in a plane problem.

cinity of the point 4 — the representative volume of body 1 containing the point 4 and the representative volume of body
2 containing the same point. These volumes are in a homogeneous SSS and interact along the demarcation line between
both bodies. This interaction is characterized by the following conditions:

— equality of normal stresses

oV =6@ &0 =5, (1.1
— equality of shear stresses
'L',(,l.) = rfl),, T,('}) = sz , (1.2)

— equality of relative lengthenings along the common generatrices

n=n@, 7l =02, (1.3)

— equality to zero of the sum of variations in vertex angles

p+y =0, (1.4)

where ¢ and w are variations in the angles 2a and 2f3 , respectively.
With designations

1 2 1 2
Gy =of) -ofP. &y =ef) ~ef? (19

Eqgs. (1.1) and (1.2) can be written as the system of four linear homogeneous equations

¢y sin @ +2¢, sinacosa +¢,, cos® o =0,

&,y sin o —2¢,, sina cosa + &5, cos> a =0, (1.6)
~¢y sina cosa + &, (sin a —cos® a) + ¢, sina cosa =0,
&y sinacosa + ¢, (sin? o —cos” @) — ¢, sina cos o =0,

and Egs. (1.3) and (1.4), provided that o # 7 /2, — as the system of three homogeneous equations
& cos® o — &, sin2a + &y, sin® a =0,

&, cos” a + &, sin 20 +&,, sin® o =0, 1.7
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& cos’a—&ysin®a =0. 1.7
In constructing the third of Egs. (1.7), we used the formula

q)siny=[28 (nk+n,)5 Jkrlp, (1.8)

Which determines the shift ¢ at an any point of the continuous medium between linear elements with directions
k and [ and the angle y between them. In formula (1 8), n, andmn, are the relative lengthenings at a point of the con-
tinuous medium in the directions of unit vectors k& and [ , respectively; &,, are components of the unit tensor. At a =7 /2,
the angles 2a and 2 become straight. At deformation of a continuous medlum, in a small vicinity of its point, straight
lines remain straight, and the shear deformation between the linear elements making a straight angle vs zero. Therefore,
condition (1.4) is obeyed automatically, and the necessity for the third equation of system (1.7) falls off.

The problem consists in investigating the properties of solutions of the system of equations (1.6) and (1.7) in rela-
tion to the material parameters of elements of the compound wedge.

2. Investigating the Properties of Solutions of the System of Equations (1.6) and (1.7)

The rank of the system of Egs. (1.6) at a # 7 /2 is equal to three. In this case, the only its solution is zero, and there-
fore the stress tensor at the wedge vertex is continuous:

@O _ -2 _ 1) (2) _ 1) (2)
o1 =011 =01, Opp —012 =0jp, 0Oy =03 =0, (2.1)

Under the same condition (& # 7 /2), the rank of the system of equations (1.7) is also equal to three, from which it
follows that
1 1 2
31(1) :81(1) =& 81(2) = 31(2) = €12, 552) :852) =é&x, (2.2)

i.e., stresses at the singular point are also continuous. We should note that the condition o = 7 /2 means that there are no
internal angular points.
Equality (2.2), with the use of physical equations, can be written in terms of stresses:

11 i _va _
(El E, ] Oy [E E, jgzz 0,
ViV, 1 1
|2 + _ 2.3
(El Ezjan [E Eszzz 0, (2.3)

1 o, =0,
G G,
where O = (w, —w,)AT.

First two equations of (2.3) form an independent system. Its determinant

1
E\E,

A=

[(Ez(l_‘ﬁ)_El (1=v))(E,(1+v) - E(1 "‘Vz))] (24)

becomes zero under the conditions
DE,(1-v))=E(1-v,),

2) E,(14+v)) = E,(1+v,), ie., G, =G, . (2.5)

110



Therefore, the following solutions of Egs. (2.3) are possible.
1. Conditions (2.5) are not satisfied. Equations (2.3) have the only solution

(@, —w,)AT E\E,
Ez(l_V1)_E1(1_V2)) ’

011 =0 = ( oy =0, (2.6)
and the stress state at the wedge vertex is completely determined.

2. Satisfied is only the first of Egs. (2.5). In this case the solution depends on the value of Q.

a) Q= 0. The first two equations of system (2.3) are incompatible. The wedge vertex is the point of singular behav-
ior of solution.

b) O =0 (either AT =0 or o, =w, ). From Egs. (2.3), it follows that

011 =022 oy =0.
3. Satisfied is only the second of Egs. (2.5). The first two of Egs. (2.3) are compatible, from which it follows that

QL E,

O t0y =M.

From the third equation, o, cannot be determined, because G; = G, in this case.

4. Both conditions (2.5) are satisfied. The rank of the matrix of the system of the first two equations of (2.3) is equal
to zero, because £, = E, and v, =v, . Equations (2.3) are compatible only at O = 0. If QO = 0, the singular point is the point
of singularity for stresses.

As is seen, depending on the combination of material parameters at the singular point, various constraints are im-
posed on stress components. These constraints follow not only from the conditions assumed in the classical statement of the
problem (the conditions of continuity for displacements and the normal and shear stresses on the connection lines of bodies
1 and 2). The dependence of constraints at a singular point on physical equations indicates that they need not be satisfied in
the classical solution of the problem. Therefore, in the cases where such constraints exist, the problem of the mechanics of
deformation of solids for a body with an internal singular point is not classical. The constraints caused by physical equations
have to be considered as independent.

3. Statement of a Spatial Problem

Let us consider two isotropic deformable bodies fastened along their surfaces in such a manner that an internal rib I"
(Fig. 2) is formed. At an arbitrary point 4 of the rib I, we construct its normal section and introduce an orthonormal basis
n,7y,13 whose unit vector 7 is directed along the bisector of the angle 2a at the vertex of body 1 toward body 2. In the
normal section of rib I, the unit vector 7; is perpendicular to 7; and 7 and is directed along the tangent to the rib I so that
the three vectors 7,7,,7; make the right-hand basis of an orthonormal system of coordinates Ax;,x,,x;. We assume that the
vectors of normals # andm to the surfaces of bodies 1 and 2 at the point 4 lay in the normal section of rib I'. The designations
accepted in Sect. 1 are retained, but i, j =1, 2, 3.

At the point 4 of the rib T, for the representative volumes containing the singular point of bodies 1 and 2, the follow-
ing conditions are satisfied:

— equality of normal stresses

oV =6 50 =52, 3.1
— equality of shear stresses
o _ @ o _ Q2 o .2 o .2
T =Ton-n> T = Tom—m' > Tn,rz - T—n,—rz ? 7’-m,rz - T—m,—rz > (32)

(the first subscript specifies the area element and the second one — the direction of action),
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Fig. 2. Normal section of the internal rib.

— equality of relative lengthenings and shear strains is the tangent planes to the surface of fastening of the bodies at

1 2 1 2 1 2
TI(|) _—T](y), n(y) _—Tl(q), T](2) _—n( ), (3.3)

o _ 5@ @O _ @2
nn',rz _nn',rz’ nm'y _nm',y’

(the parameters marked with one subscript are the relative lengthenings and those with two subscripts — the shear strains.)
— equality to zero of the sum of variations in the angles 2a and 23

o+y =0. (3.4

In a small vicinity of a point, during deformation, planes remain plane. This fact is also true at the point A — the
vertex of the compound wedge in the plane x; x;, therefore, the total angle with the center at the point A4 is also retained. With
designations (1.5), conditions (3.1) and (3.2) can be written in the form

¢y sin? @+ ¢y sin 20 + ¢y cos® o =0,

¢y sin =&y sin 20+ &5 cos? a0 =0,

3.5
=€ sinacosa — &5 cos 20 + 55 sina cosa =0,
&y sinacosa —§ 5 cos2a — sy sinacoser = 0.
$1psina + ¢y, coso =0,
(3.6)
C1psina =&y cosa =0,
and the kinematic relations (3.3) and (3.4) — in the form
& cos? o — &3 sin2a + &5y sin® a =0,
& cos® o+ &y sin 20+ &y sin o =0, 3.7

€ =0, =&y cosa+ &3 sina =0,

& cosa+&,sina =0, &, cos’ a —&ysin” a = 0.
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The last equality is valid at sin2a = 0 (@ = 7 /2) and have been found using Eq. (1.8).
The problem consists in investigating the properties of solutions of the system of equations (3.5)-(3.7) in relation to
the material parameters of elements of the compound wedge.

4. Investigating the Properties of the Systems of Equations (3.5)-(3.7)

If a =r/2,1i.e.,in the absence of an angular point, the ranks of the systems of equations (3.5) and (3.6) are equal to

three and two, respectively. Hence, they have only zero solutions, and the stresses oiy‘) at the singular point are continuous:

of! =of? (i,j=1,2,3). (4.1)

The system of equations (3.7) at a = /2 has also only a zero solution, hence

e’ =el? (,j=1,2,3), 4.2)

i

which means that continuous are all strains at the internal singular point.
With the use of physical equations, Egs. (4.2) can be written in terms of stresses:

1 1 ViV, ViV,
——— o | == |opn—-| ———= 033 =0,
(El Ez} 11 (El Ezj 2 [El E, =0

ViV, 1 1 ViV,
| —=——-—|oyt| ———|opn—| ————|o3=0, 43
(El Ezj 11 (El Ezj 2 [El Ezj 3 =0 (4.3)

(L—Ljau =0, (L—LJGB =0, (L—Ljan =0.
G G G G G G

The first three of Eqs. (4.3) form an independent system in the stresses o},,0,,, and o35 . The determinant of this

system

A =ﬁ[E2(l+v1)—El(l+v2)]2 [E,(1-2v)) - E(1-2v,)]
12

becomes zero under the conditions
E,(1+v)-E/(1+v,) =0 (G =Gy), 4.4)
E,(1-2v))—E(1-2v,)=0. 4.5)

Therefore the following solutions of Egs. (4.3) are possible.
1) None of conditions (4.4) and (4.5) is satisfied. The system of Egs. (4.3) has the only solution
QE E,

Ey(1-2v)) = E (1-2v,)’

011 =0 =033 =

Oy =013 =03 =0.

The SSS at rib points is completely determined.
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2) Satisfied is only condition (4.4). The ranks of the system of the first three Egs. (4.3) and of its expanded matrix are
equal to unity. The equations are compatible and give the relation

_OEE
0-11+O-22 +G33—E E .
2~k

Equations (4.3) do not impose any restrictions on the stresses o (i = j).
3) Satisfied is only condition (4.5). The solution of Egs. (4.3) depends on the value of Q.
a) O =0. The first three equations of system (4.3) are compatible. Valid are the equalities

011 =02 =033-
From the three last equations of (4.3), it follows that
01, =0, 03=0, 0,3=0.

b) O = 0. The system of Egs. (4.3) is incompatible. The combination of material parameters (4.5) is critical, because
stresses at the singular point are infinite.

4) Satisfied are both conditions (4.4) and (4.5). In this case, E, = E, and v, =v, . The rank of the system of Egs.
(4.3) is equal to zero. If O =0, the equations are compatible, but no restrictions on stresses follow. If O =0, Egs. (4.3) are
incompatible. The singular point is the point of singular behavior of stresses.

The data presented indicate that restrictions at an internal singular point following from physical equations (de-
pending on material parameters) are absent only if the fastened bodies have identical material characteristics. Otherwise, at
the singular point, restrictions are formulated which make the problem of investigation of SSS in its vicinity nonclassical,
because the number of constraints in this case exceeds that at border points in the classical problem.

Conclusion

An approach to constructing constraints on the parameters of state at an internal singular point of a flat compound
wedge and a compound spatial rib is offered. The approach is based on identification of the singular point of a deformable
body with its representative volume, which agrees with the postulates of continuum mechanics. It is shown, that, at an an-
gular internal point, stresses and strains are continuous both in the plane and spatial cases. It is revealed, that in addition to
the constraints considered in the classical approach, at an internal special point, there are restrictions dependent on physical
equations (in the elastic case — on material constants). These additional constraints make the problem of mechanics of a
deformable body with a singular point nonclassical. To each set of constraints there correspond its own statements of the
problem. Combinations of material parameters of fastened bodies determine the number of additional constraints and the
critical SSS at the singular point. The dependence of the number of constraints on material parameters of connected bod-
ies makes the statement of the problem of continuum mechanics for bodies with singular points ambiguous. The approach
suggested can be extended to the research of constraints in internal singular points of compound bodies with other physical
properties. Results of the investigation can be used in the mechanics of composite materials for studying the SSS near the
vertices and ribs of reinforcing elements and in fracture mechanics for studying stress concentrations in structures made
by welding or gluing.
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