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A SIMPLE FINITE ELEMENT WITH FIVE DEGREES
OF FREEDOM BASED ON REDDY’S THIRD-ORDER

SHEAR DEFORMATION THEORY
K. Belkaid,"" A. Tati,”> and R. Boumaraf?

Keywords: third-order shear deformation theory, laminated composite plate, finite element

A simple four-node isoparametric finite element with five degrees of freedom, based on Reddy's third-order
shear deformation theory, is elaborated and used in a model for analizing the bending of laminated plates.
The results obtained are compared with solutions given by the three-dimensional elasticity and other theories.

1. Introduction

The use of composites materials is growing progressively compared with traditional materials, basically in the fields of
application where powerful and lightweight structures are needed [1]. Laminated composite materials are extensively used in
many fields, for example, in marine, civil, and mechanical engineering, and are characterized by a light weight, high strength,
and high corrosion resistance. A review of recent applications and the development of composite structures for future naval
ships and submarines is given in [2].

In the last decades, the finite-element method has become established as a powerful calculation tool and the most
widely used method to analyze the complex behavior of composite structures [3].Review [4] reflects the recent development
of the method for investigation of laminated composite plates.

Modeling of the stresses and strains of laminated composite plates is still considered as important subject of
research, although many theories, such as, e.g., the classical laminated plate theory (CLPT) have been proposed for this
purpose. In the early days, the CLPT was used for modeling thin laminated plates, but it neglects the transverse effect
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Fig. 1. Geometry of a rectangular laminated composite plate.

of shear deformation [5, 6]. This effect is taken into account in the first-order shear deformation theory (FSDT) [7-11],
but it is considered constant across the thickness of the plates. Higher-order theories can describe the nonlinear shear
deformations in the thickness direction without any correction factor [12-15]. Reddy proposed a third-order shear
deformation theory (TSDT) [16, 17] based on a single-layer approach. It considers a parabolic variation of the transverse
shear stresses across the plate thickness and satisfies zero shear stress boundary conditions on the top and bottom of the
plate, but requires the C, continuity of the second-order derivative of transverse displacements. This theory encounters
problems when the finite-element method is used, namely the requirement of C, continuity of displacements for common
edges between two elements [18] can be satisfied only in the case of thin plate elements [19].

Many authors encountered this problem and mentioned that C,-continuous elements are computionally inefficient and
the accuracy of solution is questionable [20-24].

The objective of this paper is to employ Reddy’ third-order shear deformation theory to analyze the bending of a
laminated plate by using a simple isoparametric four-node finite element with five degrees of freedom at each node.

2. Kinematics

According to Reddy’s third-order shear deformation theory (TSDT) [17], the displacement field can be expressed as
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where u,v,w,y ., and y , are five unknown midplane displacement functions of the plate, and 4 is its thickness (see Fig. 1).
The linear strains associated with the displacement field are
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3. Constitutive Equations

The constitutive equations for a single layer [11] can be written as

Oy O xx O On 0 |le,
Oy =10y (= Oy 0Opn O €
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{64}:{Gyz}:|:Q44 0 :||:8yz:|
Os Oy 0 Osslle,.
where O are material constants in the material axes of the layer:
O =E/(1-vipvy)), O =(iEy)/(1-vpvyy),
Op =E,[(1-viyva)), Qs =Gpay Css =Gy, Cyy =G
The stress—strain relations in the laminate coordinates x, y, and z of a kth layer [11] are given by the relations
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where the constants éi/‘ are expresses as
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Qys = (Cs5 = Cyy)cs,
Q55 = Cssc™ + Cpys”

Here, ¢ =cosf,and s =sinf, and 6 is the angle between the global and local axes of each layer.

4. Equilibrium Equation

The static equations of the theory can be derived using the principle of virtual work, and the variation of strain energy
is calculated from the equation [17]

oU -6K =0.
In terms of stresses, strains, and external forces, this equatin can be expressed as
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Inserting Eqgs. (1) into stress—strain relations (2), we have
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After integrating these stresses across the thickness of each layer and summation, the generalized force—strain rela-

tions are obtained in the form [17]
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Inserting Eqgs.(4) into Eq. (3) gives
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where ¢, =—4/3h* and c, =—4/n*.
5. Finite-Element Formulation

For the present study, a four-node quadrilateral C-continuous isoparametric finite element [25] with five degrees of
freedom wu,v,w,y ., and v, at each node is employed:
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The real element is determined from the reference space (§,17) by a geometric transformation based on the positions
of nodes in the real space (x,y). Our formulation requires the first- and second-order derivatives, therefore, the following
processing operations (see Appendix) [26, 27] are used:
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Inserting strain matrix (14) into Eq (5), the elementary stiffness matrix is written as follows:

K], _j j ([30} A][B£}+[B§JT[B][B£]+[B£JT[E][B,f}{B,?]T[B][Bf}
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Fig. 2. Representation of the function f proposed in terms of the ratio a/4 (#) and its interpolation.
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The integrals in Eq. (7) are computed numerically. The stiffness integral is obtained by considering a simple four-node
finite element, 2x2 Gauss points for the bending contribution, and a 1x1 point for the shear contribution [25].

This formulation gave good results for the transverse shear stresses, but not for the normal stress and the deflection
displacement w, for which an optimization procedure using a function f of the ratio a/h was performed.

Optimization of the normal stress and deflection displacement at different thicknesses required specific values of the
function f(a/h). These values were plotted and interpolated to obtain a proper function f(a/h) (Fig. 2). The strain matrices
[B,g} and [BS J were multiplied by this function to improve results.

K

6. Numerical Examples

The material constants used in examples were as follows: E,/E,= 25, G|, =Gj; =0.5E,, G,; =0.2E,, and
v=025.

6.1. Example 1

Deflections of a three layer (0/90/0) square laminate simply supported at all edges and subjected to a uniformly dis-
tributed load were analyzed at different mesh divisions and thickness ratios a/% . The nondimensional deflections w calcu-
lated at the centre of the plate were compared with those found in [17] and [22]. They are given in Table.1. Calculation results
converged and the error decreased with increasing number of elements with different thickness ratios a/4 . The deflection w
was calculated by the formula

_ b
W= w(g, 5 OJ(hSEz/q0a4 )102.
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TABLE 1. Nondimensional Deflection at the Center of Simply Supported [0/90/0] Square Laminates under a Uniform Load

Reference alh

4 | 10 | 100
Present, 8x8 mesh 3.1289 1.1264 0.69285
Present, 12x12 mesh 3.0965 1.1215 0.69478
Present, 16x16 mesh 3.0857 1.120 0.69549
Present, 20%x20 mesh 3.0807 1.1193 0.69582
[22], 32%32 mesh 2.9093 1.0910 0.6708
[17] 2.9091 1.0900 0.6705

TABLE 2. Nondimensional Deflection and Stresses of a Simply Supported [0/90/0] Square Laminate under a Sinusoidally
Distributed Transverse Load

Reference | afh | w O G Gy G, G,
FSDT (16x16) [22] 4 1.777 0.4430 0.4843 0.0371 0.1440 0.1569
HSDT (16x16) [22] 4 1.923 0.7500 0.5080 0.0499 0.2023 0.1831

[29] 4 2.0557 0.8435 0.5610 0.0522 0.2569 0.2205

3D elasticity [28] 4 2.006 0.8010 0.5340 0.0505 0.2560 0.2172

Present (16x16) 4 2. 0491 0.42012 0.55051 0.05516 0.22878 0.24014

FSDT (16x16) [22] 10 0.6700 0.5219 0.2582 0.025 0.1623 0.0918

HSDT (16x16) [22] 10 0.7140 0.5806 0.2722 0.0279 0.2437 0.1015

[29] 10 0.7624 0.6331 0.2851 0.0291 0.3540 0.1257

3D elasticity [28] 10 0.7405 0.5900 0.2850 0.0289 0.3570 0.1228

Present (16x16) 10 0.73143 0.51394 0.27546 0.02793 0.28369 0.11146

[29] 20 0.5194 0.5826 0.2041 0.0234 0.3771 0.0944

3D elasticity [28] 20 0.5142 0.552 0.210 0.0234 0.3850 0.0938

Present (16x16) 20 0.52544 0.53324 0.21215 0.02356 0.29789 0.1130

FSDT (16x16) [22] 100 0.4350 0.5490 0.1825 0.0202 0.1568 0.0709

HSDT (16x16) [22] 100 0.4350 0.5496 0.1828 0.0215 0.2401 0.0709
[29] 100 0.4351 0.5521 0.1743 0.0213 0.3723 —

3D elasticity [28] 100 0.4368 0.5390 0.1810 0.0213 0.3950 0.0828

Present (16x16) 100 0.44734 0.53808 0.18591 0.02152 0.30384 0.07221

6.2. Example 2

A three-layer (0/90/0) square laminate simply supported at all edges and subjected to a sinusoidally distributed load

was considered at different thickness ratio a/#, and its nondimensional deflection w and stresses &, G ys Oy
G, were calculated (Table 2). It is seen that the results for the deflection and stresses are closer to those given by the
exact 3D elasticity solution [28] than predictions of the HSDT and FSDT [22]. However, in the cases of a/h= 4 and 10, the

normal stress &, is comparable to that calculated by the FSDT. The normalized deflection and stresses were calculated by

o..,and

Xz

the formulas

_ b _ b h
e R e e ®
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TABLE 3. Nondimensional Deflection and Stresses of a Simply Supported [0/90/90/0] Square Laminate under
a Sinusoidally Distributed Transverse Load

Reference | alh | w O o Wy o_-xy O, o yz
FSDT[17] 4 1.7100 0.4059 0.5765 0.0308 0.1398 0.1963
HSDT [17] 4 1.8937 0.6651 0.6322 0.0440 0.2064 0.2389
3D elasticity [30] 4 1.9540 0.7200 0.666 0.0467 0.219 0.2920
Present (16x16) 4 1.9689 0.3811 0.6509 0.0482 0.2168 0.3002
FSDT [17] 10 0.6628 0.4989 0.3615 0.0241 0.1667 0.1292
HSDT [17] 10 0.7147 0.5456 0.3888 0.0268 0.2640 0.1531
3D elasticity [30] 10 0.7430 0.5590 0.4010 0.0275 0.3010 0.1960
Present (16x16) 10 0.74602 0.49776 0.3890 0.0262 0.2967 0.1997
FSDT [17] 20 0.4912 0.5273 0.2957 0.0221 0.1749 0.1087
HSDT [17] 20 0.5060 0.5393 0.3043 0.0228 0.2825 0.1234
3D elasticity [30] 20 0.5170 0.543 0.308 0.0230 0.3280 0.156
Present (16x16) 20 0.52468 0.52902 0.3058 0.0233 0.3231 0.1621
FSDT [17] 100 0.4337 0.5382 0.2705 0.0213 0.178 0.1390
HSDT [17] 100 0.4343 0.5387 0.2708 0.0213 0.2897 0.1390
3D elasticity [30] 100 0.4347 0.5390 0.2710 0.0214 0.3390 0.1410
Present (16x16) 100 0.4455 0.5373 0.2771 0.0214 0.3346 0.1302
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6.3. Example 3

A four-layer (0/90/90/0) square laminate simply supported at all edges and subjected to a sinusoidally distributed load
was considered at different thickness ratios a//4. Table 3 shows that the calculated nondimensional transverse displacement
c

Xz

w and stresses G,,,0,,,0,,, and &, are much closer to those given by the 3D elasticity solution [30] than predictions
of the HSDT and FSDT [17]. It is also seen that the normal stress &,, at a/h=4 and 10 is comparable to that given by the
FSDT. The normalized deflection and stresses were calculated by the formulas

vT):w[%,%,0j<h3E2/qoa4)102, 5xx:6xx[ %,gj(hz/qoaz),

a
2’

Q

S R e (v e

O_-xz =0y, (Oa ga Oj(h/%a), O_-yz = O-yz (%7 0, 0 (h/qoa)
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Fig. 3. Distribution of transverse shear stresses across the thickness of (0/90/90/0) plates with thick-
ness raties a/h =4 and 10 under the action of a sinusoidal load: m — present, ® — [17], o — [30],
v — FSDT, o — [170, constitutive, and A— [17], equilibrum.

In Fig. 3, the nondimensional transverse shear stresses o,. and &,
seen that the stresses are discontinuous, vary parabolically across the plate thickness, and satisfy zero boundary conditions

at their maximum points are indicated. It is

on the top and bottom surfaces of the plate. In the midplane z/h =0 at a/h= 10, the present formulation gives value of the
transverse shear stress &,, very close to that predicted by the 3D elasticity solution. Also, it gives a good result for the

in the present formulation at a/A =4 in the mid-

transverse shear stress 7, at a/h=10. The transverse shear stress &,

plane z/h = 0 is the closest to the value of 0.219 given by the 3D elasticity theory. The same is true for the transverse shear
stress G, at a/h =4 in the midplane z/h = 0.

7. Conclusion

A simple finite element with four nodes and five degrees of freedom u, v, w,y ., and v , at each node, based on the
theory of third-order shear deformation theory which requires the second-order derivative of C1-continuous transverse dis-
placements, was used in a model to analyze the bending of laminated plates. The results obtained for the transverse shear
stresses are compared with the 3D elasticity solution, where they have a parabolic distribution across the thickness of the plates
and satisfy zero boundary conditions on their top and bottom surfaces. This approach gave good results for the transverse shear
stresses, but was not efficient for the normal stress and the transverse displacement, therefore, an optimization procedure for
them was performed, which led to results close to the 3D elasticity solution.
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Appendix

The matrix of the first-order derivative can be presented as
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To obtain the second-order derivatives, the chain rule is successively applied to these relations, resulting in
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