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A simple finite element with five degrees 

of freedom bAsed on reddy’s third-order 

sheAr deformAtion theory

K. belkaid,1* A. tati,2 and r. boumaraf3

Keywords:  third-order shear deformation theory, laminated composite plate, finite element

A simple four-node isoparametric finite element with five degrees of freedom, based on Reddy’s third-order 
shear deformation theory, is elaborated and used in a model for analizing the bending of laminated plates. 
The results obtained are compared with solutions given by the three-dimensional elasticity and other theories. 

1. introduction

The use of composites materials is growing progressively compared with traditional materials, basically in the fields of 
application where powerful and lightweight structures are needed [1]. Laminated composite materials are extensively used in 
many fields, for example, in marine, civil, and mechanical engineering, and are characterized by a light weight, high strength, 
and high corrosion resistance. A review of recent applications and the development of composite structures for future naval 
ships and submarines is given in [2].

In the last decades, the finite-element method has become established as a powerful calculation tool and the most 
widely used method to analyze the complex behavior of composite structures [3].Review [4] reflects the recent development 
of the method for investigation of laminated composite plates.

Modeling of the stresses and strains of laminated composite plates is still considered as important subject of 
research, although many theories, such as, e.g., the classical laminated plate theory (CLPT) have been proposed for this 
purpose. In the early days, the CLPT was used for modeling thin laminated plates, but it neglects the transverse effect 
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of shear deformation [5, 6]. This effect is taken into account in the first-order shear deformation theory (FSDT) [7-11], 
but it is considered constant across the thickness of the plates. Higher-order theories can describe the nonlinear shear 
deformations in the thickness direction without any correction factor [12-15]. Reddy proposed a third-order shear 
deformation theory (TSDT) [16, 17] based on a single-layer approach. It considers a parabolic variation of the transverse 
shear stresses across the plate thickness and satisfies zero shear stress boundary conditions on the top and bottom of the 
plate, but requires the C1 continuity of the second-order derivative of transverse displacements. This theory encounters 
problems when the finite-element method is used, namely the requirement of C1 continuity of displacements for common 
edges between two elements [18] can be satisfied only in the case of thin plate elements [19].

Many authors encountered this problem and mentioned that C1-continuous elements are computionally inefficient and 
the accuracy of solution is questionable [20-24].

The objective of this paper is to employ Reddy’ third-order shear deformation theory to analyze the bending of a 
laminated plate by using a simple isoparametric four-node finite element with five degrees of freedom at each node. 

2. Kinematics

According to Reddy’s third-order shear deformation theory (TSDT) [17], the displacement field can be expressed as 
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where u v w x y, , , ,ψ ψand are five unknown midplane displacement functions of the plate, and h is its thickness (see Fig. 1).
The linear strains associated with the displacement field are
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Fig. 1. Geometry of a rectangular laminated composite plate.
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3. Constitutive equations

The constitutive equations for a single layer [11] can be written as
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where Qij  are material constants in the material axes of the layer:
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The stress–strain relations in the laminate coordinates x, y, and z of a kth layer [11] are given by the relations
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where the constants Qij  are expresses as
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 Q C C cs45 55 44= −( ) ,  

 Q C c C s55 55
2

44
2= + .  

Here, c s= =cos , sinθ θand , and θ  is the angle between the global and local axes of each layer.

4. equilibrium equation

The static equations of the theory can be derived using the principle of virtual work, and the variation of strain energy 
is calculated from the equation [17]
 δ δU K− = 0.  

In terms of stresses, strains, and external forces, this equatin can be expressed as
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Inserting Eqs. (1) into stress–strain relations (2), we have
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After integrating these stresses across the thickness of each layer and summation, the generalized force–strain rela-
tions are obtained in the form [17]
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Inserting Eqs.(4) into Eq. (3) gives
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5. finite-element formulation

For the present study, a four-node quadrilateral C0-continuous isoparametric finite element [25] with five degrees of 
freedom u v w x, , , ,ψ and ψ y  at each node is employed:
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The real element is determined from the reference space ( , )ξ η by a geometric transformation based on the positions 
of nodes in the real space ( , )x y . Our formulation requires the first- and second-order derivatives, therefore, the following 
processing operations (see Appendix) [26, 27] are used:
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Inserting strain matrix (14) into Eq (5), the elementary stiffness matrix is written as follows:
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The integrals in Eq. (7) are computed numerically. The stiffness integral is obtained by considering a simple four-node 
finite element, 2×2 Gauss points for the bending contribution, and a 1×1 point for the shear contribution [25].

This formulation gave good results for the transverse shear stresses, but not for the normal stress and the deflection 
displacement w, for which an optimization procedure using a function f of the ratio a h  was performed. 

Optimization of the normal stress and deflection displacement at different thicknesses required specific values of the 
function f a h( ) . These values were plotted and interpolated to obtain a proper function f a h( )  (Fig. 2). The strain matrices
Bκ

2
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  were multiplied by this function to improve results.

6. numerical examples

The material constants used in examples were as follows: E E1 2/ = 25, G G E12 13 20 5= = . ,  G E23 20 2= . ,  and 
ν = 0 25. .

6.1. example 1

Deflections of a three layer (0/90/0) square laminate simply supported at all edges and subjected to a uniformly dis-
tributed load were analyzed at different mesh divisions and thickness ratios a h . The nondimensional deflections w  calcu-
lated at the centre of the plate were compared with those found in [17] and [22]. They are given in Table.1. Calculation results 
converged and the error decreased with increasing number of elements with different thickness ratios a h . The deflection w  
was calculated by the formula
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Fig. 2. Representation of the function f  proposed in terms of the ratio a h  (♦) and its interpolation.
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6.2. example 2

A three-layer (0/90/0) square laminate simply supported at all edges and subjected to a sinusoidally distributed load 
was considered at different thickness ratio a h , and its nondimensional deflection w  and stresses σ σ σ σxx yy xy xz, , , , and 
σ yz  were calculated (Table 2). It is seen that the results for the deflection and stresses are closer to those given by the 
exact 3D elasticity solution [28] than predictions of the HSDT and FSDT [22]. However, in the cases of a h = 4 and 10, the 
normal stress σ xx  is comparable to that calculated by the FSDT. The normalized deflection and stresses were calculated by 
the formulas

 w w a b h E q a a b h h q axx xx= 





( ) = 






(2 2

0 10
2 2 2

3
2 0

4 2 2
0

2, , , , ,σ σ )) ,  (8)

TABLE 1. Nondimensional Deflection at the Center of Simply Supported [0/90/0] Square Laminates under a Uniform Load 

Reference a h
4 10 100

Present, 8×8 mesh 3.1289 1.1264 0.69285
Present, 12×12 mesh 3.0965 1.1215 0.69478
Present, 16×16 mesh 3.0857 1.120 0.69549
Present, 20×20 mesh 3.0807 1.1193 0.69582

 [22], 32×32 mesh 2.9093 1.0910 0.6708
[17] 2.9091 1.0900 0.6705

TABLE 2. Nondimensional Deflection and Stresses of a Simply Supported [0/90/0] Square Laminate under a Sinusoidally 
Distributed Transverse Load 

Reference a h w σ xx σ yy σ xy σ xz σ yz

FSDT (16×16) [22] 4 1.777 0.4430 0.4843 0.0371 0.1440 0.1569
HSDT (16×16) [22] 4 1.923 0.7500 0.5080 0.0499 0.2023 0.1831

[29] 4 2.0557 0.8435 0.5610 0.0522 0.2569 0.2205
3D elasticity [28] 4 2.006 0.8010 0.5340 0.0505 0.2560 0.2172
Present  (16×16) 4 2. 0491 0.42012 0.55051 0.05516 0.22878 0.24014

FSDT (16×16) [22] 10 0.6700 0.5219 0.2582 0.025 0.1623 0.0918
HSDT (16×16) [22] 10 0.7140 0.5806 0.2722 0.0279 0.2437 0.1015

[29] 10 0.7624 0.6331 0.2851 0.0291 0.3540 0.1257
3D elasticity [28] 10 0.7405 0.5900 0.2850 0.0289 0.3570 0.1228
Present  (16×16) 10 0.73143 0.51394 0.27546 0.02793 0.28369 0.11146

[29] 20 0.5194 0.5826 0.2041 0.0234 0.3771 0.0944
3D elasticity [28] 20 0.5142 0.552 0.210 0.0234 0.3850 0.0938
Present  (16×16) 20 0.52544 0.53324 0.21215 0.02356 0.29789 0.1130

FSDT (16×16) [22] 100 0.4350 0.5490 0.1825 0.0202 0.1568 0.0709
HSDT (16×16) [22] 100 0.4350 0.5496 0.1828 0.0215 0.2401 0.0709

[29] 100 0.4351 0.5521 0.1743 0.0213 0.3723 —
3D elasticity [28] 100 0.4368 0.5390 0.1810 0.0213 0.3950 0.0828
Present  (16×16) 100 0.44734 0.53808 0.18591 0.02152 0.30384 0.07221
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6.3. example 3

A four-layer (0/90/90/0) square laminate simply supported at all edges and subjected to a sinusoidally distributed load 
was considered at different thickness ratios a h .  Table 3 shows that the calculated nondimensional transverse displacement 
w  and stresses σ σ σ σxx yy xy xz, , , , and σ yz are much closer to those given by the 3D elasticity solution [30] than predictions 
of the HSDT and FSDT [17]. It is also seen that the normal stress σ xx  at a h = 4 and 10 is comparable to that given by the 
FSDT. The normalized deflection and stresses were calculated by the formulas
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TABLE 3. Nondimensional Deflection and Stresses of a Simply Supported [0/90/90/0] Square Laminate under 
a Sinusoidally Distributed Transverse Load 

Reference a h w σ xx σ yy σ xy σ xz σ yz

FSDT[17] 4 1.7100 0.4059 0.5765 0.0308 0.1398 0.1963
HSDT [17] 4 1.8937 0.6651 0.6322 0.0440 0.2064 0.2389

3D elasticity [30] 4 1.9540 0.7200 0.666 0.0467 0.219 0.2920
Present (16×16) 4 1.9689 0.3811 0.6509 0.0482 0.2168 0.3002

FSDT [17] 10 0.6628 0.4989 0.3615 0.0241 0.1667 0.1292
HSDT [17] 10 0.7147 0.5456 0.3888 0.0268 0.2640 0.1531

3D elasticity [30] 10 0.7430 0.5590 0.4010 0.0275 0.3010 0.1960
Present (16×16) 10 0.74602 0.49776 0.3890 0.0262 0.2967 0.1997

FSDT [17] 20 0.4912 0.5273 0.2957 0.0221 0.1749 0.1087
HSDT [17] 20 0.5060 0.5393 0.3043 0.0228 0.2825 0.1234

3D elasticity [30] 20 0.5170 0.543 0.308 0.0230 0.3280 0.156
Present (16×16) 20 0.52468 0.52902 0.3058 0.0233 0.3231 0.1621

FSDT [17] 100 0.4337 0.5382 0.2705 0.0213 0.178 0.1390
HSDT [17] 100 0.4343 0.5387 0.2708 0.0213 0.2897 0.1390

3D elasticity [30] 100 0.4347 0.5390 0.2710 0.0214 0.3390 0.1410
Present (16×16) 100 0.4455 0.5373 0.2771 0.0214 0.3346 0.1302
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In Fig. 3, the nondimensional transverse shear stresses σ xz and σ yz  at their maximum points are indicated. It is 
seen that the stresses are discontinuous, vary parabolically across the plate thickness, and satisfy zero boundary conditions  
on the top and bottom surfaces of the plate. In the midplane z h = 0 at a h = 10, the present formulation gives value of the 
transverse shear stress σ xz very close to that predicted by the 3D elasticity solution. Also, it gives a good result for the 
transverse shear stress σ yz  at a h = 10. The transverse shear stress σ xz  in the present formulation at a h  = 4 in the mid-
plane z h = 0 is the closest to the value of 0.219 given by the 3D elasticity theory. The same is true for the transverse shear 
stress σ yz at a h  = 4 in the midplane z h  = 0. 

7. Conclusion 

A simple finite element with four nodes and five degrees of freedom u v w x, , , ,ψ and ψ y  at each node, based on the 
theory of third-order shear deformation theory which requires the second-order derivative of C1-continuous transverse dis-
placements, was used in a model to analyze the bending of laminated plates. The results obtained for the transverse shear 
stresses are compared with the 3D elasticity solution, where they have a parabolic distribution across the thickness of the plates 
and satisfy zero boundary conditions on their top and bottom surfaces. This approach gave good results for the transverse shear 
stresses, but was not efficient for the normal stress and the transverse displacement, therefore, an optimization procedure for 
them was performed, which led to results close to the 3D elasticity solution.
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Fig. 3. Distribution of transverse shear stresses across the thickness of (0/90/90/0) plates with thick-
ness raties a h  = 4 and 10 under the action of a sinusoidal load: ■ — present, ● — [17], ▲ — [30], 
▼ — FSDT, ○ — [170, constitutive, and Δ — [17], equilibrum.
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Appendix

The matrix of the first-order derivative can be presented as
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To obtain the second-order derivatives, the chain rule is successively applied to these relations, resulting in
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