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FINITE-LAYER METHOD: BENDING AND TWISTING
OF LAMINATED PLATES WITH DELAMINATIONS

A. M. Timonin”
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Based on the finite-layer method, considering the multilayered package as a set of jointly deforming layers,
a method to analyze laminated plates with delaminations, which enables one to determine all the functions
describing the stress-strain state of the plate, including interlayer stresses, is proposed. A refined deformation
model of an anisotropic plate-layer taking into account the transverse linear and shear deformations and ensuring
the exact fulfillment of boundary conditions on surfaces of the plate with consideration of all derivatives of
existing surface loads is presented. Calculation of the multilayer plate is reduced to the solution of a boundary-
value problem for a system of ordinary differential equations including the interlaminar shear stress. The order of
the system depends on the number of layers in the package. The system is stiff, and the boundary value problem
is solved by the stable Godunov—Grigorenko numerical method. As examples, the calculations of bending and
twisting of two-layered plates with a partial delamination are presented.

Introduction

In [1-3], an efficient approach, based on the finite-layer method (FLM), to analyzing the stress-strain state (SSS),
interlaminar stresses, large deflections, and stability of multilayered elements of structures made of composite materials is
suggested. In the same way as the finite-element method leads to a system of algebraic equations, the FLM yields a coupled
system of differential equations describing the SSS of each layer and containing interlaminar stresses of contact interaction
of the layers. An advantage of the method is the fact that the interlaminar stresses are resolving functions and are determined
directly during solution of the problem in a strict agreement with the deformation model of a particular layer. The procedure of
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Fig. 1. Anisotropic plate: stacking scheme (a), loads and stresses (b), forces and moments per unit
length (c), and displacements and rotation angles (b, c).

application of the FLM is described in detail in [1] for solving one-dimensional problems of cylindrical bending of structural
elements of the type of a layered beam-strip with layers of different length. The layered elements have local delaminations
and are in the conditions of plane stress or strain state.

In the present study, the method is extended to two-dimensional problems of transverse bending and torsion of ortho-
tropic multilayered plates by edge forces in the presence of delamination defects in them.

1. Equations of a Refined Theory of Anisotropic Plates

Let us present a brief description of basic relations of a refined theory of anisotropic plates, which further will be used
as a deformation model of a thin layer in the structure of a multilayered orthotropic package.

These relations have to obey the following principal requirements:

— the relations must maximum exactly describe the distribution of normal and tangential stresses on the surfaces of
plate-layer with account of all derivatives of these stresses with respect to spatial coordinates;

— the expressions for displacements at surface points of the plate have to contain the stresses existing on these sur-
faces and their derivatives.

These requirements being obeyed, the contact stresses on layer interfaces are expressed in terms of resolving functions
of the problem considered from the conditions of joint displacements, and additional differential equations in the interlaminar
tangential stresses are formed.

Let us consider an anisotropic plate in a Cartesian system of coordinates x, y, and z (Fig. 1a). The plate is formed by
stacking an orthotropic (unidirectional) material at an angle ¢ to the x axis. The coordinate plane x, y is the midplane dividing
the thickness / in halves. The upper and lower planes of the plate are subjected to normal p; (x,y) and tangential
q;(x.y),1;(x,y) stresses (i =1, 2, 3), respectively.

The full system of equations includes
the equilibrium equations
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the physical relations for an anisotropically elastic body in the orthotropy axes 1, 2, and 3 of the material
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the relations for elements of the S and C matrices in terms of elements of the S and C matrices and the stacking angle ¢
are given, for example, in [4].

The force variables — the forces and moments per unit length of the plate (Fig. 1¢) are determined by the expressions

" " " "
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Let us present the components of stress tensor operating in cross sections of the plate in the form
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2
oy, =ay+az, T, =by+bhz, 1, =cy+oz+cz",

2 2 3
o, =dy+dz, 1, =eyteztez", o, =fo+ fiz+ 27+ fiz7,

yz

where the coefficients a;,b;,d,,c 2€5 and f} (i =0,; j= @; k= @) depend on the coordinates x and y. Using equilib-
rium equations (1), expressions (4), and the boundary conditions in stresses on face planes
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we find the functions q;,5,,d;,c € and f; and the following expressions for stresses in the plate:
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and the differential equations of equilibrium for the forces and moments per unit length of the plate are
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Now, we pass to the expressions for kinematic variables, namely the displacements and rotation angles (Fig. 1b,c).
They can be derived by using geometric relations (2), physical relations (3), and expressions (4).

The normal displacement w(x,y,z) can be found by integrating the expressions for ¢, with respect to z if
w(x,,0) = w, (x,y)is the displacement of midplane points.

Let us introduce the displacement averaged across the thickness of the plate

h/2
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Replacing wy (x,y) with w,, (x,»), we have
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Let us present the tangential displacements u(x,y,z),v(x,y,z) in the form
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where the displacements u, and v, of midplane points and the factors a;, B;, and y, (i =1, 2) depend on x and y.
The thickness-averaged displacements and rotation angles are
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Expressions for the tangential displacements take the form
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For determining the functions S, and y,, we use boundary conditions (5) for the tangential stresses on face planes,

—

expressed in terms of displacements:
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Further, considering Egs. (4), we come to the relations
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and equations relating the average tangential displacements and rotation angles to the forces and moments per unit length and
surface loads. These equations contain the third derivatives of the loads distributed over the face planes of the plate.
Let us introduce new variables — rotations 6, and 6, that differ from the average angles by a small value:
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Then, the equations for displacements and rotations will contain derivatives of surface loads only to the second order
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The complete system of equations of the refined theory of anisotropic plates presented here includes differential
equations (7) and (13) for the resolving functions N,,N,,, N,,0,.0,, M, .M, .M, ,u,, Vs W0, and 0 , formulas for
stresses (6), and expressions for displacements and rotations (8)-(12).

The boundary conditions at the edge x = const are given for five functions, one from each pair:
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At the edges, any noncontradictory combination of the above-mentioned functions can be given too.

at the edge y = const —
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Fig. 2. A two-layer plate: dimensions (a) and the load and interlaminar stresses (b).

2. Two-Layer Orthotropic Plate

Let us consider a plate with dimensions indicated in Fig. 2a, which consists of two layers whose orthotropy axes
coincide with the coordinate axes x, y, and z. The upper layer of the plate is loaded with a pressure p, (x, y) .

We divide the plate into layers (Fig. 2b) and introduce the stresses of interlaminar interaction, namely the normal
stress p, (x, y) and tangential stresses ¢ (x, ) and ¢ (x, y). In what follows, the superscript in parentheses indicates the number
of a layer.

The resolving system of equations for layer 1 has the form
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The conditions of equality of displacements on the contact plane of layers
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The resulting system of 29 differential equations (14)-(16) contains 26 basic resolving functions N, (7 ,N )(Cy),N ﬁi),
Q)(Ci),Qg),M 9, M )(C;),My),ugiv),vyv),wgv), 0( ) and 0 (i=1,2) and three additional resolving functions p,,q.,and ¢, .
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The coupled system of differential equations for a package consisting of # layers is derived in a similar way. Then,
the number of equations in the system is N =16n—3 ; the system contains 13n basic resolving functions, namely the forces
and moments per unit length and displacements, rotation angles, and 3 (n - 1) functions of contact stresses.

For the class of plates considered here, the coefficients of equations are constant, which makes it possible to solve
the problem by using the well-known methods, for example, expansion into double trigonometrical series [5]. In this case, for
each harmonic, we have a system of NV linear algebraic equations in terms of amplitude values of required functions.

Further on, with particular examples, we will show a way of solving the problem of a two-layer plate with a local
throught-the-width delamination.

3. Expansion into Simple Fourier Series. Formulation and Solution of the Boundary-Value Problem for a System of
Ordinary Differential Equations

Let us present the required functions, operating load, and boundary conditions in the form of expansions into trigo-
nometric series:

7(9) =37 (s 25|

g(x.y)= Zgn( )cos[ byJ (n=13.....NH is odd),

P av > av

f={N)(ci)aN)()i)vgj(ci)’M(i)ﬂM_gi)’u(i) W(i) é,\(:i)npc:qc’po}’ (17)

g = V0.0 18 ).00.1,
Such an expansion allows one to satisfy the conditions of hinge support at the edges y =0, at the additional restric-
tions that these edges do not move in the direction of contour line and do not bend in the plane of edge face of the plate.
Inserting series (17) into Egs. (14) and (15), for each number # of harmonic, we arrive at a system of 20 ordinary

differential equations of the first order in the amplitude values of resolving functions N}’ (0 N0 Q(i) M9 a0 00

x,n0 Y xy,noZx,n x,n° xy,n°>“av,n> Vav,n>
(l) ( ) ( ) 1 111
Way >0y > and 0 » and the corresponding boundary conditions.

The equatlons contain six functions determining the contact interaction of layers:

nw o,

ni "
pcnﬂqcn’tcnbpcn’ c,n qcn_ b zc,nﬂsc,n =%,n_ b tc,n'

are added
to the basic resolving functions, as a result of which the system for each harmonic is supplemented by two differential

Hereinafter, the prime designates differentiation with respect to x. Two of these functions, g, and r,

cn’

equations
dqc,n _ nw drc,n
dx N ] + b tc,n’ dx c,n*

The corresponding boundary conditions at the edges x =0,a are assigned for the interlaminar tangential stress g, .
In this case, the boundary conditions, namely data for distribution of the tangential stress 7, on the end faces of the plate have
to be further refined.

The remaining four functions p, ,,,Z. ,,p.,,ands,, canbe found from the conditions of equality of displacements
on the contact plane of layers. For this purpose, we have three conditions of equality of displacements (16). The missing fourth

65



condition is obtained by differentiating the last equality in (16) with respect to the x coordinate. As a result, we come to the
system of four linear algebraic equations

all,n 0 O 0 pc,n bl,n

a 1Ln a22,n 0 0 tc,n _ b2,n
\ = .

0 0 a33,n a34,n p c,n b3,n
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The matrix elements a;

the vector elements b, , depend on the resolving functions and the applied load, too.

i,j= 1,_4) depend on the physicomechanical characteristics and dimensions of layers, but

Thus, the solution is reduced to the boundary-value problem for a system of 22 linear ordinary differential equations
of the first order:
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The resolving functions and the right-hand sides of the equations include rapidly varying functions, namely the inter-
laminar stresses and their derivatives, which sharply change in the boundary region near the tip of the crack, therefore, the system
is “stiff.” Integration of such systems requires the application of special methods taking into account the exponential character
of damping of the required solution on a segment considerably smaller than the entire length of the interval of integration.

Here, the boundary-value problem for system (18) at each value of n is solved by the stable Godunov—Grigorenko
numerical method [6-8], which allows one to derive an accurate numerical solution of the problem. As a result, we have a full
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Fig. 3. Hinge-supported plate with delamination: dimensions (a) and deflections (b).

complex of parameters describing the SSS of the plate, including distributions of the stresses p,,q,.,and ¢, on the contact
planes of layers.

The expansion into trigonometric series of form (17) corresponds to solutions symmetric about the midline y =b/2.
To derive an antisymmetric solution, we use the expansion

NH

1(5)= S (o) "

m=1

(19)

NH
g(xy)=>g, (x)@n(mzyj (m=1,3,...,NH is odd),
m=1

where sets of the functions f'and g, as before, are determined by expressions (17). Such an expansion allows one to satisfy
the boundary conditions N,, = M,, =0, =0 on the edges y = 0,b at the additional restrictions that these edges do not move
in the plate plane and do not rotate around the contour line. In this case, all the relationships and the resolving system of equa-
tions necessary for solving the problem are obtained from the expressions given earlier if the subscript 7 in designations is
replaced by m and » in formulas is replaced by —m.

4. Two-Layer Plate with a Delamination

Bending. Let us consider a two-layer plate with dimensions a = 750 mm, b = 500 mm, and ¢ = 3a/4, hinge-supported
on the contour and having a partial delamination on the midplane (the dark zone in Fig. 3a).
The plate is loaded by a uniform pressure p, =—0.01 MPa, which is presented in the series form

& 4pg
= sin n=13,...,NH is odd).
p(0)= 2 i 22 )
The upper layer 1: h =5 mm, E') =20 GPa, £ =30 GPa, E{" = 7 GPa, W) = w{) =0.07, W) =0.24,
Gl(é) =10 GPa, G](;) =4 GPa, and G%) =3 GPa; the lower layer 2 represents the upper layer 1 rotated through 90°.
In the zone 0<x<cand0<y<b, where the layers are fastened together, displacements on the contact plane

are equal; in the delamination zone ¢ < x <aand 0 < y < b, we assume that the normal displacements of layers are equal
and the layers slide without friction: p, <0Oand g, =¢, =0.
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Fig. 4. Normal stress p, (a) and tangential stresses ¢, (b) and ¢, (c).

The boundary conditions for the basic resolving functions are

x=0,a: N =0, M) =0,01) =0, wl) :o,é(ilzo(e(’;)vzo) (i=12).

We assume that, on the left support, the tangential stresses across the thickness of the plate are distributed parabolically.
Then, the boundary conditions for the interlaminar tangential stress in the middle of plate thickness have the form

3(0l) +0l2))

TP

; x=a:q.,=0.

On the contact line x =c¢ between the zones, all basic resolving functions are equal, except for the functions éx and

éy , which are discontinuous. From the conditions of equality of the average rotation angles 6, ,, and 6, ,,, upon transition

y.av?
from the fastened section to the section with delamination, we find the jumps of the quantities 6, , and 0, ,

1= Vi) , h'se

1+v§2)h2( jz 600E\)”
b

60
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The solution was obtained with the use of expansions (17) with 20 harmonics (NH = 39) retained in the series.

Figure 3b shows the average transverse displacements of layer 1 of the plate. Figure 4 depicts the three-dimensional
distributions of the stresses p,,q,.,and ¢, on the contact planes of layers.

Figure 5 demonstrates distributions of these stresses along the lines of their maximum values. As seen from the data of
Figs. 4a and 5a, the assumption that p, <0 in the delamination zone is fulfilled, and the layers deform without formation of a gap.

All other required functions can be presented in the same way. As an example, distributions of the running force N )((1)

and moment M)(Cl) are shown for layer 1 in Fig. 6.
Torsion. The above-mentioned plate is twisted by transverse forces (Fig. 7a) linearly distributed in each layer at the
edges x=0,a:

; 2 b i LS 8
0005) =22 5-2). 00(5)= Yoo 22 ), 0=~
m=1
(m=13,...,NH — is odd).
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Fig. 6. The force N (a) and moment M (b) per unit length.

In the fastened zone 0 <x <cand0< y <b, the relations u(l) = u(z), v(l) = v(z), and w(l) = w(z) are valid on the

contact plane; in the delamination zone ¢ <x <aand 0 < y <b, the layers slide without friction, g, =7, = 0 ; we assume that

=0. Calculations showed that, under such loading conditions, the maximum normal stress p,. .., was by an order of

magmtude smaller than the tangential stress g,. ,,,, and by two orders of magnitude smaller than the stress 7., -
The boundary conditions are

The kinematic conditions given here at the edges x =0,a are similar to those at the edges y = 0,b resulting from
expansions (19).
The jumps of the functions 6, and 6, on the line x=c caused by the discontinuities of contact stresses and their

derivatives are determined from the conditions of equality of the average rotation angles 0, ,, and 0, ,, on this line.
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Fig. 7. Torsion of a plate with a delamination: load (a) and deflections (b).

Fig. 8. Tangential stresses ¢, (a) and ¢, (b).

The solution is obtained with retention of 20 harmonics in expansions (19). Figure 7b shows the deflections of
layer 1. Figure 8 illustrates the three-dimensional distributions of the stresses ¢, and 7. on contact planes of the layers.

Conclusions

The particular cases of boundary conditions considered on two opposite edges of the plate stem from the use of trigo-
nometrical Fourier series for reducing the two-dimensional boundary-value problem to a one-dimensional one. Another way
to decrease the dimensionality of the problem, based on the application of spline approximation and allowing one to satisfy a
wider class of boundary conditions, is discussed in review [9].

The approach to solution of the problem developed here can be extended to plates with multiple delaminations and
to the cases where the delamination is local and does not occupy the entire width of the plate or the plate has a local cut in

one or all its layers.
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