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PREDICTION OF THE ELASTIC MODULI OF COMPOSITES 

WITH ISOLATED INCLUSIONS BY THE METHOD 

OF EFFECTIVE VOLUMES OF AVERAGING

A. F. Fedotov*

Keywords: composite, isolated inclusions, porous material, elastic moduli, volume of averaging 

A method for calculating the macroscopic elastic moduli of isotropic composites with isolated inclusions is 
proposed. The distinctive feature of the method is calculation of the concentration factors of average strains 
and stresses by using the effective volumes of averaging of phases. The effective volumes are found by solving 
the boundary-value problem of elastic deformation of the representative cell of a two-phase composite. In this 
case, the limiting version of a conventionally porous composite with zero material constants of inclusions is 
taken into account. A good agreement between calculation results and experimental data is obtained for various 
combinations of the elastic moduli and volume fraction of inclusions. 

Introduction 

Different methods have been suggested for calculating the elastic moduli of composites (see, for example, [1-5]). At 
the same time, the questions on prediction of the effective properties of composites with arbitrary volume content and greatly 
differing elastic moduli of their components remain unresolved in many respects. The asymptotic averaging method [3] makes 
it possible to correctly describe the effective properties of composites at any distinction between the properties of its com-
ponents and any geometry of inclusions. However, a certain “payment for accuracy” is the complexity of the mathematical 
technique and constructions to be performed [3], as well as the fact that the method is accessible only to a small number of 
experts. The numerical method of finite elements allows one to create a three-dimensional representative cell reflecting the 
actual heterogeneous structure and accurately describing the mechanical properties of a composite. However, in creation of a 
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three-dimensional structural model and its discretization, a complex software has to be developed, or a commercial software, 
for example, ANSYS, should be used. In this connection, more simple and accessible methods of continuum mechanics of 
composite materials remain to be in demand. 

The problem of predicting the elastic properties is also important for porous materials, which are biphase composites 
with zero material constants of one of their phases. Porous materials have the highest possible distinction between phase char-
acteristics, and it is the pores that affect properties of the materials to the greatest extent. In this connection, of attention is the 
approach where, in constructing the model of elastic deformation of a composite, the case of zero material constants of one of 
its phases is taken into account beforehand. In [6], based on the model of elastic deformation of porous materials, a method for 
calculating the effective elastic moduli of granular composites is developed. A particular feature of this method is calculation 
of the concentration factors of average strains in terms of effective volumes of averaging of material phases. In approxima-
tion of a plane interface between phases, analytical relationships for calculating the macroscopic shear and bulk moduli are 
obtained. Calculation results agree well with experimental data. The variant of composites with rigid inclusions is opposite 
to that of porous materials. However, the model proposed in [6] does not allow one to describe the properties of composites 
with undeformable inclusions. In the present study, the method of effective volumes of averaging is generalized for the case 
of a curvilinear interface and an arbitrary combination of elastic moduli of the phases of composites with isolated inclusions. 

1. Method of Effective Volumes of Averaging of Strains and Stresses 

Following the technique described in [7], let us derive the basic relations for calculating the effective elastic moduli 
of a biphase composite. In this case, we will assume that each phase and the composite as a whole are homogeneous. 

The tensor of effective elastic moduli Cijmn is determined according to the generalized Hooke’s law [1, 7] 

 σ εij V ijmn ij V
C= ,  

where σ ij V
 and ε ij V

 are the macroscopic average stresses and strains calculated by averaging the microscopic stresses 
′σ ij  and strains ′ε ij  over the volume V of the representative cell of the composite: 

 σ σij V ij
VV

dV= ′∫
1 ,  ε εij V ij

VV
dV= ′∫

1 .   (1)

The tensor Cijmn of a biphase composite is determined through the concentration factors Kk
ijmnε  of the average strain 

of a kth phase [7] as

 C c C K c C Kijmn ijkl klmn ijkl klmn= +1
1 1

2
2 2

ε ε ,  

where  Cijmn
k is the tensor of elastic moduli of this phase. Hereinafter, the super- or subscript k indicates different phases (k = 

1, 2). The concentration factors Kk
ijmnε  are connected with the average strains ε ij Vk

 in the phases and the macroscopic strains 

ε ij V
 of the composite by the relation 

 ε εεij V
k
ijmn mn V

k
K= .  (2)

Similar to the tensor of elastic moduli Cijmn (3), the tensor of elastic compliances Sijmn of the composite is expressed as

 S c S K c S Kijmn ijkl klmn ijkl klmn= +1
1 1

2
2 2

σ σ .  

Here, Kk
ijmnσ  are the concentration factors of average stresses in phases:  

 σ σσij V
k
ijmn mn V

k
K= .  (3)
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The elastic properties of isotropic materials are characterized by two independent constants. As the base ones, we 
assume Young’s modulus E and the Poisson ratio. Accordingly, the uniaxial tension of the composite will be considered. 

The effective Young’s modulus E of an isotropic composite consisting of isotropic components is found in the form 

 E c E K c E K= +1 1 1 2 2 2ε ε ,   (4a)

 1 1 1

1

2 2

2E
c K
E

c K
E

= +σ σ ,   (4b)

where Е1 and Е2 are the Young’s moduli of phases; Kε1 and Kε2 (Kσ1 and Kσ2) are concentration factors of the average strains 
(stresses) of uniaxial tension ε11 (σ11) , which, according to Eqs. (2) and (3), are 

 K k
V

V

k
ε

ε

ε
=

11

11
,    K k

V

V

k
σ

σ

σ
=

11

11
.   (5)

Here, ε11 Vk
 and σ11 Vk

are the average tensile strains and stresses in the phase volumes Vk; ε11 V  and σ11 V  

are the average tensile strains and stresses in the composite volume V: 

 ε ε11 11
1

V k Vk
k

V
dV= ′∫ , ε ε11 11

1
V

VV
dV= ′∫ ,  σ σ11 11

1
V k Vk

k
V

dV= ′∫ ,  σ σ11 11
1

V
VV

dV= ′∫ .  (6)

The concentration factors satisfy the relations [7] 

 c K c K1 1 2 2 1ε ε+ = ,  c K c K1 1 2 2 1σ σ+ = .    (7)

The concentration factors of average tensile strains Kεk are found as follows. Each phase in the average strain of a 
composite has its own effective fraction and a corresponding effective volume. As follows from the condition of uniqueness 
of the total strain in phase volume, the total average tensile strain ε11 V  of the composite in terms of the effective volumes 
of averaging of phases, Vαk, will be equal to the sum of the average tensile strains ε11

k
k

 in the phase volumes Vk: 

 ε εα11 11V k
k

V kV V
k

= .   (8)

From relation (8), we have 

 ε ε
α

εα ε
11 11 11
k

V
k

k
V

k

k
V

k

V
V c

= = ,   (9)

where αε αk kV V= /  is the volume fraction of the effective volume of averaging of strains of a kth component. From com-
parison of relations (5) and (9), it follows that the concentration factors Kεk are 

 K
ck

k

k
ε

εα= .   (10)

From Eq. (9), with account of Eqs. (1) and (6), we obtain 

 α ε εε
α

k
k

V V

V
V

dV dV
k

= = ′ ′∫ ∫11 11 .   (11)

Thus, according to Eq. (11), the fractions of effective volumes of averaging of strains quantitatively present the ratio 
of total tensile strain in the volume of a respective component to that in the volume of a composite. 

Inserting Eq. (10) into Eq. (4а) yields 

 E E E= +α αε ε1 1 2 2 .   (12)
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With account of Eq. (10), the first relation of (7) takes the form 

 α αε ε1 2 1+ = .   (13)

In estimating the effective Young’s modulus using the concentration factors Kσk of average tensile stresses, the volume 
fractions aσk of effective volumes of averaging of the stresses are determined as follows: 

 α σ σσ k
V V

dV dV
k

= ′ ′∫ ∫11 11 .  

For the concentration factors of average tensile stresses Kσk, we have 

 K
ck

k

k
σ

σα= .   (14)

With account of Eq. (14), expression (4b) for the effective Young’s modulus can be written as

 1 1

1

2

2E E E
= +
α ασ σ ,   (15)

and the second relation of (7) takes the form
 α ασ σ1 2 1+ = .  

Relation (12), in its structure, corresponds to the known Voigt relation, while relations (15) — to the Reuss equation. 
Contrary to the Voigt and Reuss models, in the model suggested here, instead of the volume fractions of phases, the fractions 
of effective volumes of averaging are employed.  

2. Elastic Characteristics of Biphase Composites 

2.1. Effective volumes of averaging. The functional relationships for the effective volumes of averaging aεk and aσk 
as functions of the elastic moduli of phases and their content can be found from the solution of the boundary-value problem 
of elastic deformation of the representative cell of the biphase composite. The representative cell of an isotropic composite 
with isolated inclusions is taken in the form of a cube with a side b and a spherical inclusion of radius R. Due to symmetry, 
we consider only 1/8 of the cell (Fig. 1). 

On the upper face of the cell, a tensile strain ε εx = 11  is assigned. According to [1], we assume that the strain state on 
cell faces is homogeneous, but the stress-strain state (SSS) inside the cell is inhomogeneous. In the case of a homogeneous 
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Fig. 1. Calculated model of the representative cell of a composite with isolated inclusions.
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strain state, faces of the cell and its structural elements remain mutually parallel. Then, with the assumptions accepted, it is 
reasonable to use the hypothesis of plane sections. 

Under the condition of homogeneity, the total tensile macrostrain ε xΣ  in the representative cell of volume V = b3 is

 ε ε εx x
V

xdV bΣ = =∫ 3 .   (16)

Within the framework of the hypothesis of plane sections, the volume V01 of the matrix around an inclusion will deform 
homogeneously, and the tensile strain in this volume will be ε εx x1

0 = . The total tensile strain in the volume V01 is 

  ε ε ε
π

x x xV b R b1
0

01
3 2

4Σ = = −





.  (17)

Deformation of the central region of the cell, including the interface, is homogeneous. The summation of strains in 
the interface region is reduced to calculation of the integrals [6, 8] 

 I dx
a f x

=
+∫ ( )

,  I f x dx
a f x

=
+∫
( )

( )
,   (18)

where f x( )  is a function depending on the form of the interface. In the case of a plane interface, integrals (18) are calculated 
in quadratures [6]. If the interface is curvilinear, the relations for the strains are nonlinear, which makes it impossible to cal-
culate integrals (18). Therefore, instead of the integral sums, we will find arithmetic ones.

The central region of the representative cell with an interphase is divided into N parallel-connected cylindrical cells 
of thickness Δу. In turn, each cylindrical cell consists of serially connected biphase elements with a variable concentration of 
phases. Independently of each other, the cells are subjected to an assigned macroscopic tensile strain ε x . In view of the digi-
tization assumed, we come to the following dependences: 

— for the angle ϕn determining the position of an nth cell,

 ϕ
π

n
n
N

=
2

n N=1 2, ,..., ;  

— for the thickness of a cylindrical cell,

 ∆y R
N n=

π
ϕ

2
sin ;  

— for the concentration of phases in an nth cell,

 c
h
b

R
b

n
n

n1
1 1( )
( )

sin= = − ϕ , c h
b

R
b

n
n

n2
2( )
( )

sin= = ϕ ;   (19)

— for the volumes of phases in this cell,

 V
N

R bcn n
n1

2
2

18
2( ) ( ) sin=

π
ϕ V

N
R bcn n

n2

2
2

28
2( ) ( ) sin=

π
ϕ .  

The total strains in the biphase region of the representative cell for the matrix are

 ε ε
π

ε ϕx x
n n

n

N

x
n n

n

N

nV R b
N

c1 1 1
1

2 2

1 1
18

2Σ = =
= =
∑ ∑( ) ( ) ( ) ( ) sin  (20)

and for the inclusion —  

 ε ε
π

ε ϕx x
n n

n

N

x
n n

n

N

nV R b
N

c2 2 2
1

2 2

2 2
18

2Σ = =
= =
∑ ∑( ) ( ) ( ) ( ) sin .   (21)
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The fractions αεk  of the effective volumes of averaging of strains, determined by expression (11) with account of 
Eqs. (16), (17), (20), and (21), are given by

 α
ε
ε

π π
ε

εε1
1

2

2

2 2

2 1 1
1

1
4 8

2= = −








 +

=
∑Σ

Σx x
x
n n

n

NR
b N

R
b

c( ) ( ) sin ϕϕn ,   

(22)

 α
ε
ε

π
ε

ε ϕε 2
2

2 2

2 2 2
18

2= =
=
∑Σ

Σx x
x
n n

n

N

nN
R
b

c( ) ( ) sin .  

The ratio of characteristic dimensions R/b of the cell can be found by using the model of elastic deformation of po-
rous materials [9]. Let us assume that the inclusion is a pore. Then, Young’s modulus E2 = 0, and we have from Eq. (12) that 

 E E=α0 0 ,   (23)

where a0 is the fraction of the effective volume of averaging of the solid phase with Young’s modulus E0. If the inclusion is a 
pore, then, in the case of series connection of cylindrical cells, the strain of matrix in the central region is equal to zero (ε x

n
1 0( ) = ), 

and the effective volume of averaging αε1  of the matrix will be equal to that of the solid phase, a01, of a conditionally porous 
composite:

 α α
π

ε1 01

2

21
4

= = −
R
b

.   (24)

Using Eq. (24), from Eqs. (22), we obtain expressions for the effective volumes of averaging of strains of composite 
phases: 

 α α ε ϕε1 01 1 1
1

2= +
=
∑A cx

n n
n

n

N
( ) ( ) sin , α ε ϕε 2 2 2

1
2=

=
∑A cx

n n
n

n

N
( ) ( ) sin ,   

where A
NE

=
−π α
ε

( )1
2

01  is a coefficient depending on the number N of cylindrical cells accepted. 

The ratio of characteristic dimensions R/b in relations (22) for phase concentration in an nth cell can be expressed in 
terms of the volume fraction of inclusions с2. The volume of the body is proportional to the cube of its linear dimension, and 
we have for с2 

 c V
V

R
b2

2
3

= 





~ .  

Now, the ratio R/b takes the form 

 R
b

k c= 2
3 ,   (25)

where k is a constant depending on the type of packing of spherical inclusions.  
The structural model of the matrix composite considered is correct if inclusions are isolated and do not make contact 

with each other. The limit volume fraction of isolated inclusions c2
∗  corresponds to the rise of contacts and the formation of 

a bonded packing. Upon contact of spheres, the ratio of inclusion radius R to the side b of the cubic cell becomes equal to 
unity: R/b = 1. Then, the volume fraction of inclusions с2 is equal to the limit one, c c2 2= ∗ , and, from Eq. (25), we find the 
constant k 
 k c= ∗1 2/ .   (26)

With account of this equality, we have

 R
b

c
c

=
∗
2

2
3 .  

The limit volume fraction of inclusions c2
∗  depends on the character of packing of spheres. Ordered and disordered 

(statistical) packings are distinguished [10]. If composites are manufactured by mixing their components, the formation of 



783

statistically loose packings is most probable. Preliminary calculations have also shown that the best agreement with experiment 
gives the model of statistically loose packings. In this case, the limit volume fraction of inclusions c2

∗  = 0.601 [10]. For the 
structure of a granular composite assumed here, we come to the following relations for calculating the concentration of com-
ponents in an nth cell: 
 c cn

n1 2
31 1 66( ) . sin= − ϕ ,  c cn

n2 2
3 1 66( ) . sin= ϕ .  

The effective volumes ασ k  of averaging of tensile stresses in phases are expressed as ratios of the sum of tensile 
stresses σ xkΣ  in the volume of a kth phase to the sum of tensile stresses σ xΣ  in the volume of the representative cell of the 
composite: 

 α
σ
σσ k
xk

x
= Σ

Σ
.  

Upon determination of the stresses σ εxk
n

k xk
nE( ) ( )=  in the corresponding volumes, we find for the effective volumes 

of averaging of stresses  

 α
α σ ϕ

α σ ϕ
σ1

01 1 1
1

01 1
1

2

2
=

+

+

=

=

∑

∑

E A c

E A

E
n n

n
n

N

E
n

n
n

N

( ) ( )

( )

sin

sin
,  α ασ σ2 11= − .   (27)

Relationships (27) were deduced using the condition of equality of stresses in phases for an nth extended cell 

 σ σ σx
n

x
n

x
n

1 2
( ) ( ) ( )= = .   (28)

The effective Poisson ratio is equal to the ratio between the average transverse strain ε y V
 and the average longitu-

dinal strain ε x V  of the composite 

 ν
ε

ε
= −

y V

x V

.  

After averaging, the longitudinal ε x V  and transverse ε y V
 strains are distributed homogeneously in the volume 

of the composite. By definition, strains in the effective volumes of averaging of strains are equal to the corresponding average 
strains of the composite,
 ε ε εx x x V1 2= = ε ε εy y y V1 2= = .   (29)

Taking into account Eqs. (29) and (13), the average strains can be expressed in terms of fractions of the effective 
volumes of averaging:
 ε ε α ε αε εx V x x= +1 1 2 2 ε ε α ε αε εy V y y y y= +1 1 2 2 ,  
and, for the Poisson ratio, we have 

 ν
ε α ε α

ε α ε α
ε ε

ε ε
= −

+

+
y y y y

x x

1 1 2 2

1 1 2 2
,   (30)

where αε y1  and αε y2  are fractions of the effective volumes of averaging of transverse strains. In Eq. (30), the transverse strain 
εky is related to the longitudinal strain εkх of a kth phase by the Poisson law: ε ν εky k kx= − . Expressing the quantity εkх in terms 
of εky and performing some transformations with account of Eqs. (13) and (29), we come to the relationship for calculating the 
Poisson ratio of the composite with isolated inclusions 

 ν
ν ν

ν α ν αε ε
=

+
1 2

1 2 12
.  

The strains of phases ε xk
n( )  can be found from the solution of the elastic problem of uniaxial tension for each cylindri-

cal cell at a given tensile strain ε x . From the condition of equal stresses in components of an extended nth cell, σ σx
n

x
n

1 2
( ) ( )= , 

and from the equation of relation between phase strains 
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 ε ε εx x
n n

x
n nc c= +1 1 2 2

( ) ( ) ( ) ( ) , 

we find the required strains  ε xk
n( )

 ε
ε

x
n x

n n
E

c E c E1
2

1 2 2 1

( )
( ) ( )=

+
,  ε ε

x
n x

n n
E

c E c E2
1

1 2 2 1

( )
( ) ( )=

+
.  

After calculation of the effective volumes of averaging of strains aεk or stresses aσk by using Eq. (12) or (15), the ef-
fective Young’s modulus E of the composite is found. The accuracy of calculation according to the method suggested depends 
on the number of elementary cells N adopted. Investigations of convergence of the numerical solution showed that an increase 
in the discretization parameter N by a factor exceeding 100 practically did not affect the calculation results, therefore, we can 
assume that N = 100. 

2.2. Effective volumes of averaging of porous materials. In the scientific literature, various relationships for cal-
culating the elastic moduli of porous materials are presented. The shear μ and bulk K moduli are determined most frequently. 
By analogy with relation (23), for the shear modulus of a porous material, we have

 µ α µ= s0 0 ,  

where µ0
−  is the shear modulus of the solid phase, and as0 is the effective volume of averaging of the solid phase in shear. To 

a high accuracy, the elastic properties of powders and sintered porous materials are described by the modified Bal’shin relation [9] 

 α ρ
ρ ρ

ρs
n

0
0

01
=

−
−

, n =
− −
−

2
1

0

0

ρ ρ
ρ

,   (31)

where ρ is the relative density and ρ0 is the initial (bulk) relative density of the powder. 
Let us express the fraction of the effective volume of averaging in tension a0 in terms of that in shear as0. For this 

purpose, we use the relationship for the macroscopic bulk modulus K of a porous material [9]  

 K =
+

− + + −
4
3

1
2 1 2 1 10

0

0 0
µ

ν α
ν ν α
( )

( ) ( )( )
 

and the relation among Young’s, shear, and bulk moduli 

 E
K
K0

0 0

0 0

9
3

=
+
µ
µ

, E K
K

=
+

9
3

µ
µ

.  

After simple transformations, we have 

 α
α
ν α0

0

0 0

6
6 1 1

=
+ + −

s

s( )( )
,  

where n0 is the Poisson ratio of the solid phase of the porous body. For a composite, the role of the solid phase is played by 
the matrix. 

In calculating the effective volumes of averaging aεk and aσk, the function a01 was obtained by replacing the relative 
density r in Eq. (31) with the volume fraction с1 of composite matrix. For a composite with isolated inclusions, we should 
take that  с10 = 0 and write (31) in the form 

 αs
cc0 1

3 1= − .   (32)

A good agreement with experimental data for the shear viscosity h of suspensions of spherical particles is shown by 
the semi-phenomenological Dougherty–Krieger formula [11] 

 η η= −








∗

− ∗

0
2

2

2 5

1
2c

c

c.

,   (33)

where h0 is viscosity of the fluid. The shear viscosity of a porous liquid, by analogy with Eq. (23), will be h = as0h0. 
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Replacing the volume fraction of particles с2 in Eq. (33) with the porosity θ = 1 – ρ, we arrive at the relation for the fraction 
of effective volume of averaging in shear of a porous body 

 α
ρ ρ

ρ

ρ

s0
0

0

2 5 1

1

0

=
−
−











−. ( )

.   (34)

For a composite with isolated inclusions, in view of the relations ρ = с1 and ρ0 = с10 = 0, we have 

 αs c0 1
2 5= . .   (35)

3. Experimental Verification

The verification of adequacy of the method suggested was carried out according to experimental data on the elastic 
properties of biphase composites, porous materials, and suspensions with undeformable inclusions. The compositions of biphase 
composites and the elastic properties of their components are presented in Table 1. The first component of the composition 
serves as a matrix and the second one as an inclusion. The elastic properties of the components are taken from [12]. 

The calculated Young’s moduli of the composites reduced to that of the matrix, Er = Е2/E1, are shown in Fig. 2. The 
results obtained by the method suggested agree well with experimental data for all the composites considered. In this case, the 
calculation of the effective volume of averaging a01 by Eqs. (32) or (35) yielded practically identical results. 

TABLE 1. Elastic Properties of Components 

Composite Component Young’s modulus, GPa Poisson ratio 
NiAl–Al2O3 NiAl 

Al2O3 
Е1 = 186 
Е2 = 401 

ν1 = 0.31 
ν2 = 0.24 

Al–SiC Al 
SiC 

Е1 = 70 
Е2 = 450 

ν1 = 0.34 
ν2 = 0.22

Со–WC Co 
WC 

Е1 = 207  
Е2 = 700 

ν1 = 0.31 
ν2 = 0.19

W–glass W 
Glass 

Е1 = 355 
Е2 = 81 

ν1 = 0.2 
ν2 = 0.24 

0.2 0.4 0.6 0.8 1.00

4

3

2

1

Er

c2

Fig. 2. Reduced Young’s modulus of composites as a function of volume fraction of inclusions: 
(––––) — calculation by Eq. (32) and (– – –) — calculation by Eq. (35); experimental points: 
○ — NiAl–Al2O3 [12], ● — Al–SiC [12], Δ — Co–WC [12], and ▲ — W–glass [12].
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At a content of inclusions exceeding the limit volume fraction, c c2 2> ∗ , the properties of composites should be de-
scribed within the framework of the model with interpenetrating components. 

The macroscopic Young’s moduli of a composite can be determined in terms of the effective volumes of averaging 
of either strains aεk from Eq. (12) or stresses aσk from Eq. (15). Calculations showed that both variants give similar results. 
Since in uniaxial tension of cylindrical cells, along with the phase strains ε xk

n( ) , the phase stresses σ xk
n( ) are also determined, 

the use of the effective volumes aεk or aσk is equivalent from the viewpoint of the algorithm and time of solution of the prob-
lem. However, it is preferable to use the effective volumes of averaging of strains, because in this case, the calculation relations 
are slightly simpler than in the case of stresses. 

Figure 3 shows calculation and experimental data for the Poisson ratio of WC–Co and NiAl–Al2O3 composites at a dif-
ferent volume content of cobalt and alumina inclusions. As seen, the calculation results agree rather well with experimental data. 

Thus, despite the approximate method of solution of the problem of elastic deformation of the representative cell, the 
calculation relations obtained make it possible to quite accurately describe the elastic properties of composites with isolated 
inclusions at different combinations of elastic moduli and arbitrary content of phases. 

The maximum distinction between the elastic moduli of phases is realized in the case of porous materials, where one 
of phases (pores) has zero material constants. The Young’s modulus of a porous material is determined by the elastic modulus 
Е0 of the solid phase and by the effective volume of averaging a0 of the phase according to Eq. (23). Figure 4 presents cal-
culation and experimental relations between the relative Young’s modulus E/Е0 and the porosity θ ρ= −1  for a pressed 
copper powder. The relative bulk density r0 of the powdered copper  r0 = 0.3 [15]. The best agreement with experimental data 
was found in the case of calculation of the effective volume as0 by using Eq. (31). The calculation of as0 by relation (34) only 
slightly overestimated the value of Young’s modulus. 

Along with porous materials, the maximum distinction between the elastic moduli of components is typical of granular 
composites with undeformable rigid inclusions, for example, suspensions. Let component 2 be a rigid inclusion. Then, E2 = ∞, and 
the macroscopic Young’s modulus of the composite is calculated by using relation (15) and the effective volumes of averaging 
of stresses aσk. At Е2 = ∞, the Young’s modulus of the composite with rigid inclusions is

 E E= m ασ 0 ,  

where Еm is the Young’s modulus of matrix and aσ0 is the effective volume of averaging of stresses in the matrix of the composite. 
In a porous material, the pore is deformed ( ′ ≠ε11 0 ), but does not resist the strain ( ′ =σ11 0 ), and the effective volume 

of averaging of stresses of the pore is ασ 0 0= . Since the elastic modulus of the pore Е2 = 0, the field of microstrains in the 
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Fig. 3. Poisson ratio n of composites as a function of volume fraction of inclusions c2: (––––) — cal-
culation by Eq. (32) and (– – –) — by Eq. (35); ○  — WC–Co [13] and ● — NiAl–Al2O3 [14].
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Eq. (32), (– – –) — calculation by Eq. (35), and ○ — experiment [15].
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pore is not determined, and the macroscopic properties of the porous material are calculated by using the effective volume of 
averaging of deformations as0 of the solid phase. A composite with rigid inclusions is deformed in a different way. The rigid 
inclusion is loaded ( ′ ≠σ11 0 ), but not deformed ( ′ =ε11 0 ), and the effective volume of averaging of strains of the inclusion is 
αs0 0= . Since the elastic modulus of inclusion Е2 = ∞, the field of microscopic stresses in the inclusion is not determined, 
and the macroscopic properties of the composite are found by using the effective volume of averaging of matrix stresses aσ0. 
Let us assume that the effective volume of averaging of stresses of a composite with rigid inclusions aσ0 is equal to that of 
strains of a porous material as0. Then, relations (31) and (34) for the volume as0 with reference to the volume aσ0 in shear can 
be written in terms of the volume fraction of inclusions с2 

 ασ 0 2
2 2

2
1= −

−∗

∗
( )c c c

c
n , n c c

c
=

+ ∗

∗
2 2

2
,   (36)

 ασ 0
2

2

2 5

1
2

= −








∗

∗

c
c

c.

.   (37)

Within the framework of the principle of elastic-viscous analogy, the solution of elastic problems can be applied to 
a linearly viscous fluid by replacing strains with strain rates and the shear modulus — with viscosity [2]. Therefore, for the 
viscosity h of a suspension, we have 
 η η ασ= 0 0 ,  

where h0 is the viscosity of the liquid phase of the suspension. 
For suspensions, the limiting volume concentration of inclusions at which the suspension loses its fluidity is 

c2 0 61 0 02∗ = ±. .  [11]. Figure 5 shows calculated relations between the relative viscosity of suspension η η ηr = / 0  and the 
volume fraction of particles at c2 0 61∗ = . . The best agreement with experimental data is found in the case of the effective 
volume aσ0 calculated according to Eq. (37). The calculation of aσ0 by using Eq. (36) gave overestimated values of viscosity. 

Thus, in predicting the elastic properties of porous materials with absolutely compliant inclusions, most accurate is the 
calculation with the modified Bal’shin relation. The Dougherty–Krieger relationship more accurately describes the viscosity of 
suspensions with undeformable rigid inclusions. For other variants of deformational properties of inclusions, the relationships 
of the effective volumes of averaging of conventionally porous composites considered here give practically identical results. 
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Fig. 5. Relative viscosity of suspensions loghr  as a function of volume fraction of inclusions с2: 
(––––) — calculation by Eq. (36) and (– – –) — calculation by Eq. (37); ○ and ● — experiment [11].
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Conclusions

Invoking the model of elastic deformation of porous materials, a method for calculating the effective Young’s modulus 
and Poisson ratio of granular composites with isolated inclusions has been developed. A particular feature of the method consists 
in calculating the concentration factors of average strains and stresses by using the effective volumes of averaging of phases. 
The effective volumes of averaging are calculated upon solution of the boundary-value problem of elastic deformation of the 
representative cell of biphase composites with the use of a simple scheme of digitization and a computational algorithm. The 
calculated effective elastic Young’s moduli, Poisson ratio, and viscosity of suspensions are found to be in good agreement with 
experimental data at different combinations of material constants and arbitrary volume concentrations of isolated inclusions. 
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