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THEORETICAL-EXPERIMENTAL METHOD 

FOR DETERMINING THE PARAMETERS OF DAMPING 

BASED ON THE STUDY OF DAMPED FLEXURAL VIBRATIONS 

OF TEST SPECIMENS. 

3. IDENTIFICATION OF THE CHARACTERISTICS OF 

INTERNAL DAMPING
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The logarithmic decrement of damped vibrations of materials is determined using a theoretical-experimental 
method. The method is based on measuring the deflection amplitudes of flat cantilever test specimens during 
their damped vibrations according to the first resonance mode, on the description of internal viscous friction 
of materials by known models both in linear and nonlinear approximations, on theoretical determination of the 
aerodynamic constituent of damping, and on a theoretical investigation of damping vibrations of test specimens 
by employing equations of motion constructed with a corresponding degree of accuracy and pithiness. To 
determine the vibration decrement of a soft material in tension-compression, sandwich test specimens with 
a steel core and external layers made of the soft material were used, but in transverse shear — with a core 
made of the soft material and steel external layers. A considerable effect of external aerodynamic forces on the 
vibration decrement of the specimens is revealed. Two methods for identification of the parameters of internal 
damping are proposed on the basis of data of the experimental investigations performed. 
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1. Identification of the Parameters of Internal Damping of Materials in a Linear Approximation

1.1. Logarithmic decrement of vibrations of materials in tension-compression. The test specimens (considered 
in [1] and recommended in [2]) of single-layer structure  of thickness h0 , used as the base, and of a sandwich structure with 
layers made of a soft material (a rubber of thickness hr ), glued on both sides of the base, were cantilever plates of width b , 
length L , and thicknesses h h= 0  and h h hr= +0 2 , respectively. The vibrations of such plates according to flexural modes 
with small amplitudes, to a high degree of accuracy due to h h br, < , and b L<< , can be described by an equation of motion 
based on the classical Kirchhoff–Love model. Such an equation, constructed assuming the cylindrical form of bending, laid 
at the basis of analysis of the aerodynamic component of damping [3] of a plate and written for the deflection w  of its axial 
line, has the form ( ρ ρ0 and r  are densities of the base material and rubber)

	 D w hw H P h h hIV
r rΣ + = + = +( )∗ ∗ρ ρ ρ ρ , .0 0 2 	 (1.1)

Hereinafter, the rigidity factors are determined by the formulas ( E Er r0 0, , ,µ µ− −  are the elastic moduli and Poisson 
ratios of the base material and rubber, respectively) 
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the primes denote differentiation with respect to x  and dots — with respect to time t , while H  and P  stand for the forces 
of internal friction and the external aerodynamic resistance.

If the layer materials of test specimens are viscoelastic, the physical relations between the components of stress tensor σ ij , 
strain tensor ε ij , and strain rates ε εij ij t= ∂ ∂  can be presented in the form σ σ ε εij ij ij ij= ( ),  . In the case of a uniaxial stress-
strain state, the simplest of such dependences, most frequently used in practice, corresponds to the known Voigt model (see, 
for example, [4-7]):
	 σ ε αε= +E  ,	  (1.3)

where E  is the instantaneous elastic modulus; α  is the viscosity factor, which, in harmonic vibrations at a frequency w , 
when ε ε ω= 0 sin t  ( ε0  is the peak value of strain), is connected with the logarithmic decrement of vibrations d  used in the 
literature by the relation

	 δ
απω

=
E

. 	  (1.4)

Using the model (1.3), (1.4) described, Eq. (1.1) is presented in the form

	 D w D w D w hw PIV IV p IV
Σ + + + =∗

δ
πω

δ

πω
ρ0

0 1
2

   , 	 (1.5)

where d0  and d p  are the logarithmic decrements of vibrations of the base and rubber, respectively, which have to be deter-
mined.

The experimental logarithmic decrement of vibrations dexp is calculated from the amplitude values of deflections A1  
and A2  on two neighboring periods of vibrations: 
	 δexp = ( )ln A A1 2 . 	  (1.6)

The similar parameter of internal damping of a sandwich test specimen with a flexural rigidity DΣ , corresponding to 
its damping vibrations in vacuum, is denoted by δ∗ . Upon vibration of the test specimen in a fluid (air), the parameters dexp 
and δ∗  are related by the dependence
	 δ δ δexp = +∗ a , 	  (1.7)
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where da  is the aerodynamic component of damping, which, according to the results reported earlier [3],  can be calculated 
from the formulas
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(1.8)

where A  is the deflection amplitude of a test specimen in vibration according to the first mode; f  is the frequency of flex-
ural vibrations (Hz), and ν = ⋅ −1 5 10 5. km/s2 is the kinematic viscosity of air of density ρ f =1 29.  kg/m3.

If the aerodynamic component da  is subtracted from the parameter dexp, found experimentally in [1], thereby deter-
mining the parameter δ∗ , the damped vibrations of a test specimen in vacuum can be described by the equation

	 D w D w hwIV IV
Σ Σ+ + =∗

∗
δ
πω

ρ  0 , 	  (1.9)

stemming from Eq. (1.5) at P = 0  if the condition 

	 δ δ δ∗ = +D D DrΣ 0 12  	  (1.10)
is satisfied. 

Let the parameters d0  and d*  be found by synthesis of the theory and experiment. Then, based on condition (1.10), 
the parameter dr is calculated from the formula

	 δ δ δ δ
κr
r

E
E

= + −( )∗ ∗ 0
0 , 	  (1.11)
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The frequency of the first flexural mode of free vibrations of cantilever test specimens in vacuum can be found from 
the known relations
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written for the base and a sandwich bar with external layers made of a rubber, respectively. As is known (see, for ex-
ample, [4-7]), vibration frequencies w  weakly depend on the parameters of internal and external (aerodynamic) damping, 
which was also completely confirmed by the experimental investigations performed in [1]. Therefore, assuming in formulas 
(1.12) and (1.13) that the frequencies w  are equal to those found experimentally (w 0exp  for the base and wexp for the sandwich 
specimen), to determine the elastic moduli of base material E0  and rubber Er , we come to the relations

	  E L h0 0
2

0
4 4

0
212 1 875= ( ) ( )ω ρexp . , 	 (1.14)
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01 2 1ω ω ρ κexp exp ,

 	 (1.15)

where ρ ρ ρ= r 0  is the relative density of materials of the layers of a sandwich test specimen.
We should note that formulas (1.11), (1.14), and (1.15) differ from those given in the Standard [2] only by the absence 

of the parameter d0  from formula (1.11), which is valid at δ δ0 << ∗ . Hence, the Standard [2] is also based on the model (1.3), 
(1.4), but, in determining the parameters d0  and dr , the aerodynamic damping of specimens upon their vibration in air is not 
taken into account, thus identifying the experimentally found values of dexp with the parameter d0  in testing the base and with 
the parameter δ∗  in testing specimens of sandwich structure. 
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1.2. Results of experiments and identification of parameters. Figure 1 shows investigation results for test specimens 
of length L = 200mm, width b =10 mm, and thickness h h= =0 1mm for the base and h h hr= + =0 2 3 4.  mm for the sandwich 
structure. In the latter case, the outer layers are made of a soft rubber used in the structure of torsion bar of the main rotor of 
a helicopter [1, 8] and having a density ρr =1600  kg/m3; the density of the steel base ρ0 7800=  kg/m3.

The frequencies of the first tone of flexural damped vibrations of specimens, which were practically independent of 
vibration amplitude A , were ω 0 116 8exp .=  rad/s for the base and ω exp .= 96 1rad/s for the sandwich structure. Inserting them 
into Eqs. (1.14) and (1.15) for the dynamic elastic moduli of the base material (St 37 steel) and the rubber tested, we obtain 
that E0

111 64 10= ⋅. Pa and Er = ⋅0 56 108. Pa, respectively. The results of static tests in tension showed that, even at small 
tensile strains, the static elastic modulus of the rubber was by an order of magnitude lower than its dynamic elastic modulus, 
whereas that of the steel used for the base proved to be slightly lower than its static modulus. 

Figure 2 illustrates relations between the aerodynamic component of vibration decrement da  and amplitude A derived 
by using Eqs. (1.8), and Fig. 3 shows similar relations δ δ∗ ∗= ( )A describing only the internal damping of the base material 
and  rubber in three-layer specimen.  

Proceeding from the dependences presented in Fig. 3, according to Eq. (1.11) and the values of E0  and Ep  found 
from Eqs. (1.14) and (1.15), relations between the logarithmic decrement of vibrations of rubber and the amplitude A , i.e., 
δ δr r A= ( ) , were constructed, which are shown in Fig. 4.
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Fig. 1. Experimental relations between the logarithmic decrements of vibrations dexp and the am-
plitudes A of a test specimen of the base (1) and of a three-layer test specimen (hr = 1.2 mm) (2).
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Fig. 2. Theoretical relations between the parameters of aerodynamic damping da and the amplitudes A 
of a test specimen of the base (1) and of a three-layer test specimen (hr = 1.2 mm) (2).



637

It is easily seen that, for the material (rubber) examined, the logarithmic decrement of vibrations depends on the 
amplitude, and hence on strains only, weakly. Therefore, in describing its damping properties with an accuracy acceptable in 
practical calculations, the parameter dr  in the model (1.3), (1.4) can be considered constant. 

We should also note that the application of the suggested method to determining the internal damping properties of a 
material, as in [2], ensures reliable and trustworthy results only in the case where the rigidity B h Er r r=  of material layers is suf-
ficient, which can noticeably affect the dynamic behavior of a sandwich test specimen compared with that of the base specimen.

An analysis of the results obtained also shows that neglecting the aerodynamic damping can lead to errors of 
about 15% and higher toward underestimation of damping parameters of materials. 

1.3. Logarithmic decrement of vibrations of a material in shear deformations. During damped flexural vibrations 
of sandwich specimens with rigid outer layers, each of thickness h0 , the soft midlayer made of a low-rigidity material of 
thickness hr  is subjected to a practically pure transverse shear g  constant across the thickness hr . Let us express the tan-
gential stress t, arising in it as a function of the strain g , and its rate g  by the relation

	 τ γ α γ= +Gr sh , 	

where Gr  is the dynamic (instantaneous) shear modulus; αsh  is the viscosity factor of the material in shear, which is con-
nected with the logarithmic decrement of vibrations in shear dsh  by the relationship

	 δ
α πω

sh
sh=
Gr

.	  
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Fig. 3. Parameter of internal damping d* as a function of amplitude A. Designations as in Fig. 2.
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Fig. 4. Parameter of internal damping dr of rubber as a function of amplitude A.
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To determine the shear modulus Gr  and vibration decrement dsh  of the soft layer from experimentally found param-
eters (from the frequency w0exp  and vibration decrement d0  of the base, i.e., of a separate outer layer, and from the fre-
quency w exp  and the vibration decrement δ δ δ∗ = +exp a  of a specimen of sandwich structure), we can write formulas 
similar to (1.11) and (1.15). Such formulas can be found, in particular, in the Standard [2]; after some transformations and 
modifications, they take the form

	  G R
CE h h
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Fig. 5. Experimental relations between the logarithmic decrements of vibrations dexp and the am-
plitudes A of a test specimen of the base (h0 = 0.52 mm) (1) and of a three-layer test specimen 
(hr = 0.6 mm) (2).
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Fig. 6. Theoretical relations between the parameters of aerodynamic damping da and the amplitudes A. 
Designations as in Fig. 5. 
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The method described was employed to determine the damping properties of a soft rubber whose layers were meant 
to ensure normalized damping properties of torsion bar of the main rotor of a helicopter [1, 8]. With this purpose, sandwich 
test specimens of width b =10 mm, with load-carrying layers made of a St3 steel of thickness h0 0 52= .  mm and a soft rubber 
filler of thickness hr = 0 6. mm, were prepared.

An analysis of the vibrorecords of damped vibrations of test specimens of the base and a sandwich bar of length 
L = 300  mm allowed us to obtain relations between the logarithmic decrements of vibrations and amplitude, as shown in Fig. 5.

The frequencies of the first tone of flexural vibrations were found to be ω0 30 2exp .=  rad/s for the specimen of the 
base and ωexp .= 71 6 rad/s for the sandwich test specimen, which made it possible to calculate the dynamic elastic modulus 
E0

112 08 10= ⋅. Pa of material of the base from Eq. (1.14) and the dynamic shear modulus Gr = ⋅6 84 105. Pa of the tested 
rubber from Eq. (1.16).

For the test specimens examined, Fig. 6 illustrates the amplitude dependences of the aerodynamic component of 
logarithmic decrements of vibrations found from Eqs. (1.8). When they are taken into account, the amplitude dependence of 
logarithmic decrements of vibrations caused only by the internal damping of layer material takes the form shown in Fig. 7.

The dependences shown in Fig. 7 and formulas (1.17) were used to determine the relations δ δsh sh= ( )A  between the 
logarithmic decrement of vibrations of rubber and vibration amplitude (Fig. 8). It is seen that, for the material (rubber) exam-
ined, the logarithmic decrement of vibrations strongly depends on the level of shear strain. 
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Fig. 7. Parameter d* as a function of amplitude A of the test specimen of base (h0 = 0.52 mm) (1) and 
of sandwich specimen (hr = 0.6 mm ) (2). 
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Fig. 8. Parameter of the internal damping of rubber dsh as a function of amplitude A.
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2. Determination of the Strain-Dependent Parameters of Internal Damping of Materials

2.1. Direct problem. Let us assume that a test specimen in the form of a cantilever sandwich plate has been prelimi-
nary curved (Fig. 9), and its right end x L=  is simply supported and has a deflection amplitude w00  at the initial instant of 
time. We assume that its vibration starts after the removal of the support mentioned. To determine the logarithmic decrement 
of vibrations of layer materials in tension–compression, as was already noted, the midlayer is assumed to be more rigid than 
the outer layers. In this connection, as in Sect. 1, within the framework of the classical Kirchhoff–Love model, the axial dis-
placements and strains in an ith layer are determined by the expressions ( i is the number of a layer, Fig. 9)

	  u yw x t w w x ti i= − ′ =( , ), ( , ), ε i u yw= ′ = − ′′,  	  (2.1)
where h h h h hr1 2 2 0= = =and .

 The physical relations for layer materials are taken according to the Voigt model (1.3): 

	 σ ε α εi i i i iE= +� � , α δ πωi i iE= ( ) . 	 (2.2)

We assume that the logarithmic decrement of vibrations d i  does not depend on vibration frequency (i.e., on strain 
rate), but, in the general case, depends on the strain level ε i . For simplicity, we will suppose that this level is the same both 
in tension and compression. To develop a method of fast solution to the direct problem on vibrations of the plate, the functions 
δ εi ( )  are approximated by polynomials of the kind 

	 δ ε δ δ ε δ ε δ εi i i i i( ) ...= + + + +0 1 2
2

3
3 .	 (2.3)

The system of equations of motion of the plate is written in the form

	 ′ =M Qx y ′ =Q qy q mw= −  , m A A A= + +ρ ρ ρ1 1 2 2 3 3, 	
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(2.4)

where Mx  is the bending moment, Qy is the shearing force, Ai is the cross-sectional area of an ith layer, and ρi  is density 
of this layer. System (2.4) yields the nonlinear equation in w

	 E w w y dA mw yi
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i i i
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To use the Ritz method instead of (2.5), let us construct a variational equation in the deflection w . With this purpose, 
we multiply Eqs. (2.5) by the variation of deflection d w  and integrate by parts two times along the length of the plate with 
account of boundary conditions (in what follows, the symbol d  without indices means the variation sign): 	

y

w

x

w00
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y

b

h3

h2

h1

Fig. 9. Diagram of testing of a specimen and the form of its transverse cross section.
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	 δw( )0 0= , δ ′ =w ( ) ,0 0 M L( ) ,= 0 Q L( ) .= 0  	  (2.6) 

As a result, we come to the equation
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The solution for the deflection w x( )  is sought in the form 

	 w N x V t N x N x N x V t V t V t= [ ]{ } [ ] = [ ] { } =( ) ( ) , ( ) ( ), ( ),... , ( ) ( ), ( )1 2 1 2 ,, ... .[ ]T 	 (2.8) 

Hereinafter, the square brackets and braces designate matrices and vectors: N[ ]  is the form function, V{ }  is the 
time-dependent vector composed of required scalar functions V t V t1 2( ), ( ), ... , and the superscript T denotes transposition.  

Insertion of Eqs. (2.8) into Eq. (2.7) yields the equation
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For Eq. (2.9), we will formulate the following initial conditions. At t = 0 , w = 0 , while the initial deflection is de-
scribed by the function
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Here, P  is the reaction of the right support, which is calculated from the initial deflection of the free end of the plate 
by the formula w PL EJ00

3 3= ( ) . From initial condition (2.12), it follows that

	 N x V w x( ) { ( )} ( )[ ] =0 0 . 	  (2.13)

Using the method of minimization of the squared discrepancy in relation (2.13), we arrive at the equation for the 
initial vector{ ( )}V 0

	 [ ] ( ) ( ) ( )M V N x w x dx
l

0 0
0

{ } = [ ]∫
T

. 	  (2.14)

The solution of Eq. (2.14) has the simplest form in the case of a polynomial function of the form N x( )  . Let

	 N x x x[ ] = 
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2 3 4, , ,... . 	
Then, from Eq. (2.14), we have
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In addition, from the initial condition w = 0 , it follows that

	 V ( ) , ,... .0 0 0{ } = { }T 	 (2.16)

Thus, the original problem is reduced to the initial problem (2.9), (2.15), (2.16) with respect to the vector V t( ){ } . To 
find its numerical solution, time discretization was carried out by the finite-difference method with a uniform step Dt . At 
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t t tn nn= = =∆ , , , ,...,0 1 2  the following approximations of time derivatives (further on, the braces for V{ }  are omitted for 
simplicity) were assumed:

	 V V V
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, V V V V
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n n n
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2
2

∆
. 	

The problem formulated was also solved by the Crank–Nicholson method. The calculations showed that the solutions 
derived on the basis of both time integration methods differ from each other only slightly (by no more than 1%).

For describing the behavior of plates, we also considered the cases where, in the function of form N[ ] , various num-
bers of terms of polynomial were retained. It was found that, with only two terms retained in this polynomial, the results of 
solution of the problem (for frequencies, amplitudes, and vibration decrements) differed by no more than 5% from those ob-
tained by using three and four terms of the polynomial. 

For statement of the problem on vibrations of test specimens with a soft midlayer (Fig. 10), we assume the numbering 
of layers already adopted, starting from the lower one, still designating their thicknesses by h h h1 2 3, , ,and  and the coordinates 
of layer boundaries by yi . But, in this case, we take that h h h h hp1 3 0 2= = =and .

Let us introduce, as unknowns, the displacements of points of the layer boundaries in the direction of x  axis, desig-
nating them by U U1 2, ,... . Then, for the displacements u wi iand  in an ith layer, we can assume the approximations
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which, within each layer, correspond to the Timoshenko model without account of transverse compression. Their insertion 
into the Cauchy relations for determining the components of strain leads to the expressions
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For the plate model assumed, the relations of type (1.3), (1.4) for an ith layer can be written in the form

	 σ σ ε α εi
xx
i i i i iE= = +( )

 α δ πωi i iE= ( ) , 	

	  τ τ γ β γ β δ πωi
xy
i i i i i i i

c
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(2.19)
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Fig. 10. Arrangement of layers of a test specimen and the distribution of displacements across its 
thickness.
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Since the plate is considered thin, it is possible to neglect the inertia of rotation and deformation shear. Then, to deduce 
the conclusion of the equations of motion, we can write the variational equation 
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i i
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ViVi
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dV dV w wdV

ii i

+ + =∫∑∫∑ ∫∑
== =1

3

1

3

1

3
0 , 	 (2.20)

which, for plates with a rectangular cross section, is transformed to the form
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Here, the following designations have been introduced:
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As earlier, for the unknowns U x t W x ti ( , ), ( , ) , we assumed approximations in the form of polynomials

	 U x t U t U t x U t xi i i i n
n( , ) ( ) ( ) ... ( ), , ,= + +0 1 , 	  

(2.22)
	 W z t W t W t x W t xn

n( , ) ( ) ( ) ... ( )= + + +
+

0 1 1
1 , 	

where U U W Wi i n, ,, ,..., ,...,0 1 0 1+  are the required functions of time, whereas the degree of the polynomial for W  is taken by 
one unity higher than for the polynomials for the unknowns Ui . 

Inserting Eqs. (2.22) into Eq. (2.21), we come to the equations of motion composed with respect to the functions Ui n,
andWn  in the standard way. In their solution and calculations, the minimum number of unknowns, corresponding to the ap-
proximations
	 W W t x W t x= +2

2
3

3( ) ( ) U U t x U t xi i i= +, ,( ) ( )1 2
2 , 	

were used.
To define the initial conditions, we first solved the static problem on cylindrical bending of a plate with a given w00  

deflection for its right end and determined the values of U U W Wi i, ,( ), ( ), ( ), ( )1 2 2 30 0 0 0and . As earlier, the first derivatives 
of the sought-for functions at the initial instant of time were equal to zero. As a result, Eq. (2.21), in a combination with the 
initial conditions, leads to the initial problem relative to the functions U U W Wi i, ,, , ,1 2 2 3and , which is solved by the same 
method as in Sect. 2.1. 

2.2. Identification of the logarithmic decrement of vibrations of materials. Let experimental results for vibrations 
of the plate shown in Figs. 9 and 10 be known. Then, it can be considered that the time dependences of vibration amplitude 
of its right free end are found. In the general case, we assume that the experiments were carried out for different relations of 
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layer thicknesses and different lengths of the plate. Hence, we can determine experimental values of the logarithmic decre-
ments of vibrations of different test specimens, d d d1 2

exp exp exp, ,..., n , for different amplitude ( n  is the total number of experi-
mental values of the logarithmic decrement of vibrations).

The identification problem consists in search for the functions for layer materials

	 δ ε δ δ ε δ ε δ εi i i i i( ) ...= + + + +0 1 2
2

3
3 ,	

	 δ γ δ δ γ δ γ δ γγ γ γ γ γ( ) ...= + + + +0 1 2
2

3
3 	

from the condition that the results of computational experiments differ only slightly from the results of physical tests. For this 
purpose, the problems on vibrations of plates with the same sizes as in experiments, but with trial values d d d0 1 2

i i i, , , ... , have 
to be solved. Then, the vibration decrements d d d1 2

cal cal cal, ,..., n  of a sandwich plate can be calculated. To compare the results 
obtained, the norm of discrepancy of the quantities to be compared must be introduced, for example, in the form
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Minimizing the quantity D by choosing various values of d d d0 1 2
i i i, , , ... , we find the values of d d d1 2

cal cal cal, ,..., n  which 
best agree with experimental data. 

In order to exclude the influence of environment caused by the aerodynamic forces of air resistance, the calculation 
results for the vibration decrement were obtained by using expression (1.8). As the norm (2.23), the quadratic discrepancy was 
employed. Its minimum was found by using the method consisting in the following. A base point of d d d0 1 2

i i i, , , ...  is chosen, 
and the value of the objective function D is estimated at points surrounding the base one. If the point giving a minimum of the 
objective function is new, it is taken for the next base point. Otherwise, the region of search is narrowed and the procedure is 
repeated. 

In what follows, some results of identification of damping characteristics for a base made of St3 steel and for a rubber 
are presented. First, the experimental data for steel single-layer test specimens with L = 200 , 250, and 300 mm were processed. 
The results are shown in Fig. 11. An analysis of these relationships shows that, up to a strain of 0.08%, the characteristic dst  
in tension-compression can be regarded as a linear function of strains. 

Next, the experimental data for sandwich test specimens of the same length L =  200, 250, and 300 mm, with a 
1.2-mm-thick outer rubber layers, were processed. The results obtained are illustrated in Fig. 12. 

An analysis of these relations showed that, up to strains of the order of 0.3%, the characteristic dr  in tension-com-
pression could be considered constant. 
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Fig. 11. Graphs of relations between the damping characteristic dst  and strain ε  for steel obtained 
in different experiments.
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However, in the case of shear deformations, quite a different picture is observed — the vibration decrement of resin 
considerably depends on shear strains, as seen from Fig. 13. The solution of the corresponding identification problem makes 
it possible to assume the following relation between the vibration decrement dsh  and the shear strain g :

	 δ γ γsh = + −0 0014 103 3 2360 2. . . 	

Comparing the results presented in Figs. 12 and 13, it can be seen that, for the material examined, the use of the for-
mula δ δ µsh = +( ) r r2 1 , similar to the formula G Er r r= +( ) 2 1 µ , allows one to estimate the effect of damping proper-
ties of a material on the dynamic processes of its deformation in shear only with a significant error.
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