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INVESTIGATION OF STRAIN RATE EFFECTS 

ON THE DYNAMIC RESPONSE OF A GLASS/EPOXY 

COMPOSITE PLATE UNDER BLAST LOADING BY USING 

THE FINITE-DIFFERENCE METHOD

M. M. Shokrieh* and A. Karamnejad

Keywords: dynamic response, finite-difference method, progressive damage model, strain rate

Nonlinear equations of motion for a laminated composite plate under blast loading, based on the first-order 
shear deformation theory, are derived. The governing equations are solved by the finite-difference method in 
conjunction with the Newmark time integration scheme. The rules of material property degradation are modified 
to allow for strain rate effects. A progressive damage model is developed based on the modified rules of material 
property degradation and Hashin-type failure criteria to predict different failure modes. The validity of the 
method is demonstrated by quantitative and qualitative comparisons of present results with those available in the 
literature. Results for clamped glass/epoxy laminated composite plates with constant and strain-rate-dependent 
mechanical properties under a blast load are presented and compared for various ply stacking sequences, and 
pertinent conclusions are outlined.

1. Introduction

Due to their appropriate high energy absorption capacity, composite materials have extensive applications in struc-
tures subjected to high-intensity dynamic loads and rapid deformations. Under dynamic loads, such as blasts, the structures 
experience medium and high strain rates. Since mechanical properties can vary with strain rate, the dynamic response of the 
structures depends on the strain rate. In addition to strain rate effects, the geometrical nonlinearity due to large deformations 
and transverse shear strains is also an important factor in a structural analysis in such conditions.
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Composite structures under blast loads have been studied experimentally, analytically, and numerically by various 
researchers. Reddy [1] examined the transient response of laminated composite panels by using the finite-element method, 
which allows for geometrical nonlinearities. Librescu and Nosier [2] investigated the response of laminated composite flat 
panels to sonic boom and explosive blast loads by employing the technique of integral transforms. The transverse shear de-
formations, the transverse normal stresses, and higher-order effects are taken into consideration in their analysis. Turkmen and 
Mecitoglu [3] studied the dynamic response of a stiffened laminated composite plate subjected to blast loads experimentally 
and numerically. Turkmen [4] presented theoretical and experimental investigations into the dynamic response of cylindri-
cally curved laminated composite shells subjected to blast loading by using the Galerkin and Runge–Kutta–Verner methods. 
Utilizing the Galerkin and finite-difference methods, Kazanci and Mecitoglu [5] studied the nonlinear dynamic response of a 
laminated composite plate subjected to blast loads. Chenetal [6] presented a semi-analytical finite-strip method for an analysis 
of the geometrically nonlinear response of rectangular composite laminated plates to dynamic loading.

But none of the above-mentioned studies consider the effects of strain rate. Batra and Hassan [7] developed a math-
ematical model for analyzing the transient response of a composite plate subjected to underwater blast loads. They considered 
strain rate effects on the transverse and shear stiffnesses. Zhu et al. [8] presented a micromechanics model taking into account 
the transverse shear stress, the strain rate, and inelasticity to analyze the transient response of a laminated composite plate.

In the present work, the response of a laminated composite plate under blast loading is investigated. In the macro-
mechanical approach, the finite-difference method and a progressive damage modeling algorithm considering the geometric 
nonlinearity are used. The effects of transverse shear strain and strain rate are studied. Coupled nonlinear equations of motion 
for a laminated plate based on the first-order shear deformation theory (FSDT) are derived and reduced to nonlinear ordinary 
differential equations in the time domain by using finite-difference approximations for displacements. The Newmark time 
integration scheme in association with the Newton–Raphson iteration method is employed to solve the system of nonlinear 
equations. The mechanical properties are updated based on the values of calculated strain rate at each material point. Further-
more, the degradation of mechanical properties due to failure is considered using the rules of sudden degradation of material 
properties and Hashin-type failure criteria for composite materials. The damage evolution and the strain-rate-dependence of 
longitudinal, transverse and shear mechanical properties can be considered by the model. Moreover, the present macrome-
chanical model is less complex than micromechanics models.

2. Governing Equations 

Figure 1 shows a rectangular laminated composite plate subjected to a blast load. The displacement field, according 
to the first-order shear deformation theory, can be expressed as [9]

	 u x y z t u x y t z x y zx( , , , ) ( , , ) ( , , ),= +0 ϕ 	
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Fig. 1. Laminated composite plate under a blast load.
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	 v x y z t v x y t z x y zy( , , , ) ( , , ) ( , , ),= +0 ϕ 	

	 w x y z t w x y t( , , , ) ( , , ),= 0 	

where u, v, and w are displacements in the x, y, and z directions, respectively; u0 , v0 , and w0  denote displacements on the 
plane z = 0;ϕx  and ϕy are rotations of the transverse normal about the x and y axes, respectively.

The nonlinear strain–displacement relations based on the von Karman theory of plates can be written as
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where, ε xx
0 , ε yy

0 , g xy
0 , g xz

0 , and g zy
0  are the membrane strains; κ xx ,κ yy ,κ xy ,κ zx , and κ zy  are the flexural strains or curvatures, 

but ε zz is obviously equal to zero; z is the distance of an arbitrary point from the reference surface. The stress–strain relations 
for a kth layer are
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where Qij
k( )

 at i, j = 1, 2, 6 are the inplane reduced stiffness coefficients and i, j = 4, 5 denote the through-the-thickness shear 
stiffness coefficients; ε yz ,ε zx , andε xy represent the tensorial shear strains, which are half of the engineering shear strains g yz , 
g zx , and g xy , respectively. Qij

k( )
 can be obtained from the relationships
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where [T] k( )  is the transformation matrix,m nk k= =cos , sin ,θ θ  and θk denotes the orientation angle of fibers in laminate 
axes for a kth layer. Qij

k( ) can be expressed in terms of engineering constants:
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Other components of the stiffness matrix [ ]Q k( )  are zero. E k
11
( ) , E k

22
( ) , G k

12
( ) , G k

23
( ) , and G k

13
( )  are the longitudinal, 

transverse, in-plane shear, and out-of-plane stiffnesses of a kth layer; υ12
k( )  and υ21

k( )  represent the major and minor Poisson’s 
ratios.

The constitutive equations for the laminate can be derived by through-the-thickness integration:

	

N
N

N

M
M

M

A A A B B Bxx

yy

xy

xx

yy

xy































=

11 12 16 11 12 166

12 22 26 12 22 26

16 26 66 16 26 66

11 12 16 11 12 16

1

A A A B B B
A A A B B B
B B B D D D
B 22 22 26 12 22 26

16 26 66 16 26 66

B B D D D
B B B D D D

xx

























ε 00

0

0

ε

γ

κ
κ

κ

yy

xy

xx

yy

xy

































,	 (3a)

	
Q

Q
K

A A
A A

y

x
s

yz

xz












=






















44 45

45 55

0

0

γ

γ
,	 (3b)

where Nxx , Nyy , and Nxy are the membrane normal and shear forces per unit length; Mxx , Myy , and Mxy  are the bending and 
twisting moments per unit length; Qx and Qy are the through-the-thickness shearing forces per unit length. Aij , Bij , and Dij  
are expressed as
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The parameter Ks  in (3b) is a shear correction coefficient. The recommended value of the coefficient for a rectangu-
lar section is 5/6 [10].

Using the dynamic version of the principle of virtual displacements in association with constitutive equations and 
strain–displacement relations, the following nonlinear equations of the first-order theory can be obtained [9]:

	 − +( ) + + =N N I u Ixx x xy x tt x tt, , , , ,0 0 1 0ϕ 	 (4a)

	 − +( ) + + =N N I v Ixy x yy y tt y tt, , , , ,0 0 1 0ϕ 	 (4b)
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The mass moments of inertia Ii  in Eqs. (4a-4e) are defined as
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where h , ρ0 , and q  are the laminate thickness and density, and the transverse distributed load, respectively.
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3. Blast Loading

In a blast loading, the pressure increases to a peak overpressure ( pmax ) and then decays to the ambient pressure p0  
in time t0  (the positive phase); it continues to decay below the ambient pressure and then returns to the pressure once more 
(the negative phase).When the blast source is far enough from the target, the Friedlander equation [5] can be used to describe 
the air blast pressure:
	 p t p t t e t t( ) ( / ) ,max

/= − −1 0
0α 	

where a is the waveform parameter. The underwater blast pressure is expresses as [7]

	 p t p e t( ) .max
/= − λ 	 (5)

In an underwater blast wave, no negative phase exists, and λ  is a constant. The quantities pmax , t0 ,a , and λ  depend 
on the explosive type and weight and on the distance between the explosive and target. In addition to the peak overpressure, 
the impulse should also be taken into the consideration in a blast event, which is defined as the area underneath the pressure–
time curve and is the measure of the energy transferred to the target. The impulse controls the level of deflection of the target, 
and the slope of the impulse–time curve controls the strain rate experienced by the target [11].

4. Progressive Damage Model

The progressive damage model introduced by Shokrieh [12] is developed using two-dimensional Hashin-type failure 
criteria, the rules of sudden degradation of material properties, and empirical relations for the mechanical properties in terms 
of strain rate.

4.1. Sudden degradation of material properties 

The failure modes and the rules of sudden degradation of material properties for a strain-rate-dependent composite 
can be expressed as follows:
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for the fiber-matrix shearing failure,
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for the tension failure of matrix,
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for the matrix compression failure:
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where σ11  is the stress in the fiber direction,σ 22 is the stress in the direction transverse to the fiber, and σ12 is the in-plane 
shear stress. Xt , Xc , Yt , Yc , and S are the longitudinal tensile strength, the longitudinal compressive strength, the transverse 
tensile strength, the transverse compressive strength, and the in-plane shear strength, respectively; eft , efc , efms , emt , and 
emc  denote the damage variables in fiber tension, fiber compression, fiber-matrix shearing, matrix tension, and matrix com-
pression failure modes, respectively. In addition, ε11

( )k , ε22
( )k , and ε12

( )k  are the rates of longitudinal, transverse, and shear strains 
at a kth time step, respectively; σ11 ,σ 22 , and σ12  for an nth layer are calculated from the relationship
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4.2. Mechanical property–strain rate relations

The mechanical properties of a composite are functions of strain rate. When a composite plate is exposed to a dynamic 
loading, different points of the plate are subjected to different time-dependent strain rates, and therefore they have different 
mechanical properties. Shokrieh and Omidi [13-15] investigated the effect of strain rate on the mechanical properties of uni-
directional glass/epoxy composites by using a servohydraulic apparatus at varying strain rates, ranging from 0.001 to 100 1/s. 
In their study, the mechanical properties are plotted versus the logarithms of strain rate, and the data are fitted by using the 
regression function
	 M  ε α βε γ( ) = + ,	 (7)

where M and ε are the mechanical property and strain rate, respectively; a , b , and g are material constants. Table 1 shows 
the values of a , b , and g  for various mechanical properties of glass/epoxy composites.

5. Finite-Difference Model

Inserting Eqs. (3a) and (3b) into Eqs. (4a)-(4e) and using Eq. (1), the equations of motion can be expressed in terms 
of the displacements u0 , v0 , w0 ,ϕx , and ϕy . The nonlinear coupled partial differential equations can be reduced to a set of 
ordinary differential equations in the time domain by using the finite-difference approximation for the displacement field. 
Employing the central finite-difference approximations, the differential equations, initial conditions, and boundary conditions 
can be converted into finite-difference expressions at a mesh point i j,( ) . The central finite-difference equations for the first- 
and second-order derivatives of an arbitrary variable f  can be written as

	 f
h

f fx i j i j, , , ,= ( )− +− + +
1
2 1 1 	

	 f
h

f fy i j j, , , ,= ( )− +− + +
1
2 1 11 	

	 f
h

f f fxx i j i j i j, , , , ,= −( )+− + +
1 22 1 1 	 (8)

	 f
h

f f f fxy i j i j i j i j, , , , , ,= − −( )+− + − + − + + + − + + +
1
4 2 1 1 1 1 1 1 1 1 	

	 f
h

f f fyy i j i j i j, , , , ,= −( )+− + +
1 22 1 1 	

where fi j,  and h  denote the value of f  at the mesh point ( , )i j  and the spatial length scale, respectively. The finite-difference 
form of Eq. (4a) is given in Appendix A. Equations (4b)-(4e) can be similarly converted into finite-difference expressions by 
using Eqs. (7).

TABLE 1. Material Constants in the Regression Function of the Mechanical Properties of Glass/Epoxy Composites [13-15]

Constant
Stiffness, GPa Strength, MPa

E11 E22 G12 Xt Xc Yt Yc S
a 37.243 10.037 4.919 788.120 243.497 43.451 109.970 31.316
b 1.139 0.437 -0.941 7.721 316.151 13.088 0.110 15.656
g 0.276 0.262 0.054 0.886 0.0874 0.131 1.278 0.086
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Figure 2 shows an example of the finite-difference mesh. For each mesh point, five ordinary differential equations in 
the time domain are obtained. After assembling these equations for all mesh points, the matrix form of the equations can be 
written as
	 MU = F F (U)

ext int( ) ,t − 	 (9)

where M , Fext , and Fint  are the mass matrix and the external and internal force vectors, respectively. U  and U  are the 
displacement and acceleration vectors, respectively. The displacement vector can be written as

	 U u v w= = − = −{ , , , , } , , ,..., , , ,...,, , ,
, ,

i j i j i j x
i j

y
i j T i n j mϕ ϕ 1 2 1 1 2 11. 	

As shown in Fig. 2, n and m represent the numbers of division in the x and y directions, respectively. In order to reduce 
the set of ordinary differential equations (9) to algebraic ones, the time derivatives are approximated using the Newmark 
implicit time integration scheme [9]. At the time t t+ ∆ , equation (9) can be rewritten as

	 MU U = F ( ) F (U)

( ) ( ) ( )
int
( ) ,t t t

ext
t t tK+ ++ −∆ ∆∆ t 	

where K  is the tangential stiffness matrix, which is defined as

	 K
F
U

=
∂
∂
int . 	 (10)

The solution procedure is as follows
Step 1: calculate a t a t a t a a t a1 2 3

2
4 3 51 1 1 2 1= = −( ) = = = −α α β β∆ ∆ ∆ ∆, , / ( ), , / ( ) ;    

Step 2: initialize U( )0 , U( )0 , and U( )0

Step 3: calculate 
( ) ( ) ( ) ( ) ( ) ( )

int
0

0
0

1 2K F� � � ��= + = + +( ) −+K M F M U U Ft
ext
t t t ta a aand ∆ (( ) ;t  

Step 4: solve 
( ) ( ) ( )0 1 0
K F ∆U =  and calculate ( ) int

( )1 F t t+∆ ;
Step 5: set iteration i = 2  
Step 6: update ( ) ( )i t t− +1 K ∆  using (10)
Step 7: calculate

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) (,i t t i t t i i ta a a− + − − −= − − =1
0

1
1 2

1 1�� � �� �U U U U K∆ ∆ K ++ +∆t a) ,0M and 	

	 ( ) ( ) ( ) ( ) ( )
int
( ) ;i t t i t t i t t− + − + − += − −1 1 1R F M U Fext

∆ ∆ ∆ 	

Step 8: solve 
( ) ( ) ( )i i id
− −=
1 1K U R  and update ( ) ( ) ( )i i i d∆ ∆U U U= +−1 ;

Step 9: update ( ) int
( )i t tF +∆ ;

y j,

x i,
n=4

m=4

h{

{

h

Fig. 2. Finite-difference mesh.
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Step 10: check convergence: 
if yes, go to step 11, if no, set i i= +1  and go to step 6;
Step 11: calculate acceleration, velocity and displacement vectors:

	      U U U U U U U( ) ( ) ( ) ( ) ( ) ( ),t t t t t t t ta a a a a+ += − − = + +∆ ∆∆0 1 2 3 4
U( ) ,t t+∆ and	

	 U U U( ) ( )t t t+ = +∆ ∆ ;	
Step 12: calculate the strain and stress tensors using Eqs. (1) and (2), respectively;

Step 13: calculate the strain rate   ( ) ( ) ( ) ;t t t t t

t
+ += −( )∆ ∆

∆
1  

Step 14: check for the failure in layers using Eqs. (6): 
if failed, use the rules of sudden material property degradation and go to 14, if not, go to step 15
Step 15: update material properties using Eq. (7);
Step 16: go to the next time step.
Here, Dt  is the time step, i  denotes the iteration, and a  and b  determine the stability and accuracy of the scheme. 

In the present work, the constant-average acceleration method with α β= = 0 5.  is used.

6. Verification Study

In order to validate the present model, a comparison with the results obtained by Batra and Hassan [7] was carried 
out. In [7], the response of a composite panel exposed to an underwater explosive load is obtained using the three-dimensional 
finite-element method. A 10-mm-thick, 220×220-mm square AS4/PEEK composite panel with a fiber volume content of 0.6 
was used. The mechanical properties were:

E1 = 130.86 GPa, E2 = 14.7 GPa, G G12 23= = 5.44 GPa, Xt = 1375 MPa, Xc = 1080 MPa, Yt = 78 MPa, 
Yc = 150 MPa, S = 70 MPa, ρ = 1640 kg/m3, andυ12 = 0.3.

The plate was made of four plies with fiber orientation θ = 0°, clamped along all four edges, and subjected to a non-
uniform blast pressure from 64 kg of TNT with a standoff distance of 10 m. The pressure distribution over the plate was:

	 p r t r r r r p t( , ) ( . . . . ) ( )= − + − − +0 0005 0 01 0 0586 0 001 14 3 2 ,	

where r is the distance from the center of the plate in cm, and p t( )  denotes the pressure at the center of the plate, which can 
be expressed by Eq. (5) with pmax = 17.68 MPa and λ = 0 424. . The strain rate effects on the transverse and shear stiffnesses 
are considered in [7], but due to the lack of information in [7], all material properties were assumed to be constant in the 
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Fig. 3. Comparison of deflections δ  at the center of the plate: (––––) — present; (––○––) — data 
from [7].
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verification study. Figure 3 depicts a comparison between the deflection δ  at the center of the plate reported in [7] and that 
obtained from the present model. The failure modes given by the present model and in [7] are also shown in Fig. 4. A good 
agreement can be observed between the results.

7. Numerical Results and Discussion

A 16-mm-thick, 200×200-mm glass/epoxy composite plate with a [ ]0 s  ply stacking was considered. The fiber volume 
fraction of the composite was 50%. The plate was clamped at all edges and subjected to a uniform underwater blast load. The 
parameters of the load (Eq. (5)) from 51 kg of TNT with a standoff distance of 15 m are pmax = 10 MPa and λ = 0 4. .

In order to investigate the strain rate effects two material models were considered.
Static model. The mechanical properties were obtained from static tests and were constant (see Table 1):
E11 = 37.243 GPa, E22 = 10.037 GPa, G G12 23= = 4.919 GPa, Xt = 788.122 MPa, Xc = 243.497 MPa, 

Yt = 43.451 MPa, Yc = 109.97 MPa, and S = 31.316 MPa,.
Dynamic model. The mechanical properties were strain-rate-dependent and werecalculated from Eq. (7).
The density and Poisson’s ratio did not vary with strain rate:
ρ = 2100 kg/m3, andυ12 = 0.237.
From convergence studies, it was found that 400 mesh points and a time increment of 0.012 ms were adequate for 

the numerical simulation.

7.1. Effect of strain rate 

Figure 5 depicts the time histories of deflection at the center of a plate with a [ ]0 s  ply stacking sequence. Results of 
the static and dynamic models are shown by dashed and solid curves, respectively. As seen, the maximum deflection at the 
center (absolute value) obtained from the static model is larger than that given by the dynamic one. This is due to the fact that, 
the stiffness in the dynamic model increases with strain rate, and therefore the static model, which has constant mechanical 
properties, is softer than the dynamic one. This result is consistent with that obtained by Zhu et al. [8].
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Fig. 4. Comparison of predicted failure modes: (a) [7] and (b) present model.
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Figure 6 shows the maximum stresses for the static and dynamic models during the loading. It can be observed that 
the stresses obtained from the static model are higher than those given by the dynamic one (except for σ13 ). This can be ex-
plained by the fact that the maximum deflection at the center for the static model is greater than for the dynamic one, which 
leads to greater strains and stresses for the static model. As shown in Fig. 6, the maximum out-of-plane shear stress calculated 
from the dynamic model is slightly higher than that found from the static one. However, the mean value of σ13  during the 
loading is 20 MPa for the static model and only 15.6 MPa for the dynamic one.
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7.2. Effect of stacking sequence

To investigate the effect of stacking sequence on the dynamic response of a composite plate under a blast load, 
200×200×16-mm glass/epoxy composite clamped plates with [ ]0 s , [ / ]0 90 s , [ / ]+ −45 45 s , and [ / / / ]0 90 45 45+ − s  layups 
were analyzed. The maximum deflections wmax  at the center of the plates are given in Fig. 7. As seen, the trends for the 
static and dynamic models are the same. It can be observed that, for both the models, the maximum deflection at the center of 
the [ / ]+ −45 45 s  plate is larger than that of the other ones. This is due to the higher flexibility of the [ / ]+ −45 45 s  stacking 
sequence in comparison with those of the other stacking sequences.

7.3. Effect of strain rate on failure modes

Figure 8 exhibits fringe plots of various damage variables at the top surface of a 200×200×16-mm clamped glass/
epoxy composite plate with the [ ]0 s  stacking sequence under a uniform underwater blast load with λ = 0 4.  and pmax = 10 MPa. 
It can be concluded from these plots that, for all failure modes, at a specific time, the failed region obtained using the static 
model is larger than that given by the dynamic model. This is due to the fact that the strength of the dynamic model increases 
with strain rate and is higher than that of the static one. It can also be observed that, for a specific failure mode, the location 
of damage initiation for the static and dynamic models are similar.

The propagation of cracks in interfaces, which is known as the delamination failure mode, depends on the transverse 
normal (σ33 ) and transverse shear stresses (σ13 , and σ 23 ). According to the 3-D Hashin-type criteria, the delamination fail-
ure mode can be predicted using the relations [12]

eft (0.372 )ms

а b

efms (0.24 )ms

efc (0.3 )ms

emt (0.144 )ms

emc (0.192 )ms

Fig. 8. Comparison of failure modes for the static (a) and dynamic (b) models.
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where Zt and Zc denote the normal tensile and compressive strengths, respectively. S13  and S23 represent the out-of-plane 
shear strengths. As mentioned before, based on the first-order theory, the transverse normal stress is zero. Therefore, Eq. (11) 
is reduced to
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where, edel is the damage variable for the delamination failure mode. In Fig. 9, at S S13 23= = S =  31.316 MPa, the delamina-
tion failure mode at the bottom surface according to the static and dynamic material models is shown. As seen, in both the 
cases, the delamination occurs at the edges perpendicular to the fiber direction. Similar fringe plots were also obtained for the 
top surface. Since variations in the out-of-plane strength and stiffness with strain rate were unknown, these characteristics 
were assumed to be constant.

Although a 2-D model was used for modeling of the delamination, this failure mode is a three-dimensional phenom-
enon. A proper modeling of delamination can be carried out using 3-D theories and approaches for composite plates.

Conclusions

In the present study, nonlinear equations of motion for a laminated composite plate under blast loading based on 
the first-order shear deformation theory (FSDT) are derived. The rules of material property degradation in association with 
Hashin-type failure criteria are used to model various failure modes. The equations derived are solved numerically using the 
finite-difference method. The validity of the model is examined by quantitative and qualitative comparisons of calculation 
results with those presented in the literature. The rate effects are taken into account by using rate-dependent material proper-
ties. The following conclusions can be drawn from the present work.

•	 The maximum deflection at the center of the plate considered and the maximum stresses obtained using the static 
model (with constant material properties) are higher than those obtained using the dynamic model (with strain-rate dependent 
material properties).

edel (0.12 )ms

a b

Fig. 9. Delamination failure mode for the static (a) and dynamic (b) models.
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•	 The influence of stacking sequence on the maximum deflection at the center of the plate obtained using the static and 
dynamic models is similar; the largest maximum deflection is obtained for composite plate with the [ / ]+ −45 45 s  stacking 
sequence.

•	 At a certain time, for all failure modes, the failed regions found using the static model are larger than those obtained 
using the dynamic model. However, in a specific failure mode, the location of damage initiation is the same for both the models.

References

1. J. N. Reddy, “Geometrically nonlinear transient analysis of laminated composite panels,” Amer. Inst. of Aeronautics 
and Astronautics J., 21, 621-629 (1983).

2. L. Librescu and A. Nosier, “Response of laminated composite flat panels to sonic boom and explosive blast loadings,” 
AIAA J., 28, No. 2, 345-352 (1990).

3. H. S. Turkmen and Z. Mecitoglu, “Dynamic response of a stiffened laminated composite plate subjected to blast load,” 
J. of Sound and Vibration, 221, No. 3, 371-389 (1999).

4. H. S. Turkmen, “Structural response of laminated composite shells subjected to blast loading: comparison of experi-
mental and theoretical methods,” J. of Sound and Vibration, 249, No. 4, 663-678 (2002).

5. Z. Kazanci and Z. Mecitoglu, “Nonlinear dynamic behavior of simply supported laminated composite plates subjected 
to blast load,” J. of Sound and Vibration, 317, 883-897 (2008).

6. J. Chen, D. Dawe, and S. Wang, “Nonlinear transient analysis of rectangular composite laminated plates,” Compos. 
Struct., 49, 129-139 (2000).

7. R. C. Batra and N. M. Hassan, “Response of fiber reinforced composites to underwater explosive loads,” Composites: 
Part B, 38, 448-468 (2007).

8. L. Zhu, A. Chattopadhyay, and R. K. Goldberg, “Nonlinear transient response of strain rate dependent using multiscale 
simulation”, Int. J. of Solids and Structures, 43, 2602-2630 (2006).

9. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells (Theory and Analysis), CRC Press-USA (2004).
10. Livermore Software Technology Corporation, LS-DYNA 971 keyword user’s manual, California-USA (2006).
11. A. Wright and M. French, “The response of carbon fibre composites to blast loading via the Europa CAFV program,” 

J. of Mater. Sci., 43, No. 20, 6619-6629 (2008).
12. M. M. Shokrieh, Progressive Fatigue Damage Modeling of Composite Materials, Ph.D. thesis, Department of Mechani-

cal Engineering, McGill University Montreal-Canada (1996).
13. M. M. Shokrieh and M. J. Omidi, “Tension behavior of unidirectional glass/epoxy composites under different strain 

rates,” Compos. Struct., 88, No. 4, 595-601 (2009).
14. M. M. Shokrieh and M. J. Omidi, “Compressive response of glass–fiber reinforced polymeric composites to increasing 

compressive strain rates,” Compos. Struct., 89, No. 4, 517-523 (2009)
15. M. M. Shokrieh and M. J. Omidi, “Investigation of strain rate effects on in-plane shear properties of glass/epoxy com-

posites,” Compos. Struct., 91, No. 1, 95-102 (2009).

Appendix A

In order to convert Eq. (4a) into a finite difference form, Nxx  and Nxy  are written in terms of displacements and 
rotations by using Eqs. (3a), (3b) and (1) for a mesh point i j,( ) :
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The derivatives of Nxx and Nxy  with respect to x can be obtained as
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Finding the finite-difference form of derivatives of displacements and rotations by using Eqs. (8) and inserting the 
finite-difference expressions in (A.1) and (A.2), one can obtain the finite-difference form of Eq. (4a):
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