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Free vibration analysis of laminated composite 

plates resting on elastic foundations by using 

a refined hyperbolic shear deformation theory

K. Nedri,1 N. El Meiche,1 and A. Tounsi1,2*
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The free vibration of laminated composite plates on elastic foundations is examined by using a refined hyperbolic 
shear deformation theory. This theory is based on the assumption that the transverse displacements consist of 
bending and shear components where the bending components do not contribute to shear forces, and likewise, 
the shear components do not contribute to bending moments. The most interesting feature of this theory is that 
it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies the 
conditions of zero shear stresses at the top and bottom surfaces of the plate without using shear correction factors. 
The number of independent unknowns in the present theory is four, as against five in other shear deformation 
theories. In the analysis, the foundation is modeled as a two-parameter Pasternak-type foundation, or as a 
Winkler-type one if the second foundation parameter is zero. The equation of motion for simply supported thick 
laminated rectangular plates resting on an elastic foundation is obtained through the use of Hamilton’s principle. 
The numerical results found in the present analysis for free the vibration of cross-ply laminated plates on elastic 
foundations are presented and compared with those available in the literature. The theory proposed is not only 
accurate, but also efficient in predicting the natural frequencies of laminated composite plates.

1. Introduction

Laminated composite plates are widely used in industry and new fields of technology. Due to the high degrees of 
anisotropy and the low rigidity in transverse shear of the plates, the Kirchhoff hypothesis as a classical theory is no longer ad-
equate. The hypothesis states that the normal to the midplane of a plate remains straight and normal after deformation because 
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of the negligible transverse shear effects. Refined theories without this assumption have been used recently. The free vibration 
frequencies calculated by using the classical theory of thin plates are higher than those obtained by the Mindlin theory of plates 
[1], in which the transverse shear and rotary inertia effects are included. 

A number of shear deformation theories have been proposed to date. The first such theory for laminated isotropic 
plates was apparently [2]. This theory was generalized to laminated anisotropic plates in [3]. It was shown in [4-6] that the 
Yang–Norris–Stavski (YNS) theory [3] is adequate for predicting the flexural vibration response of laminated anisotropic plates 
in the first few modes. In [7], the YNS theory was employed to study the cylindrical bending of antisymmetric cross-ply and 
angle-ply plate-strips under sinusoidal loading and the free vibration of antisymmetric angle-ply plate-strips (see also [8, 9]. 
Using the YNS theory, a closed-form solution for the free vibration of simply supported rectangular plates of antisymmetric 
angle-ply laminates was obtained in [10]. In [11] were also presented exact three-dimensional elasticity solutions for the free 
vibration of isotropic and anisotropic composite laminated plates, which serve as benchmark solutions for comparison by many 
researchers. The free vibration of antisymmetric angle-ply laminated plates, with account of transverse shear deformations, was 
investigated in [12] by using the finite-element method The author also derived a set of variationally consistent equilibrium 
equations for the kinematic models originally proposed by Levinson and Murthy [13]. In [14], analytical and finite- element 
solutions for the vibration and buckling of laminated composite plates were found by using various theories of plates to prove 
the necessity for shear deformation theories to predict the behavior of composite laminates. Using a higher-order shear 
deformation theory, finite-element solutions for free vibration analysis of laminated composite plates were also obtained 
in [15]. The complete set of linear equations of a second-order theory was derived in [16] to analyze the free vibration 
behavior of cross-ply and antisymmetric angle-ply laminated plates. In [17], the natural frequencies of composite plates with 
random material properties were determined by using a higher-order shear deformation theory (including the rotatory inertia 
effect). The natural frequencies of laminated composite plates were also found in [18] by employing a third-order shear defor-
mation theory. In [19], the dynamic deflections and the stresses of a functionally graded simply supported beam subjected to 
a moving mass were investigated by using the Euler–Bernoulli, Timoshenko, and the parabolic shear deformation theory of 
beams. In [20], the free vibration of functionally graded beams with different boundary conditions was examined by using the 
classical, first-order, and different higher-order shear deformation theories of beams. A stress analysis of a functionally graded 
plate subjected to thermal and mechanical loads was performed in [21] by using a two-dimensional higher-order theory. 
A new trigonometric shear deformation theory for isotropic and composite laminated and sandwich plates was developed 
recently in [22], where displacements of the middle surface were expanded in terms of tangential trigonometric functions of 
the thickness coordinate, and the transverse displacements were assumed to be constant across the thickness. 

In this paper, a refined and simple theory of plates is presented and applied to the investigation of free vibration 
behavior of laminated composite plates on elastic foundations. This theory is based on the assumption that the in-plane and 
transverse displacements consist of bending and shear components where the bending components do not contribute to shear 
forces, and likewise, the shear components do not contribute to bending moments. The most interesting feature of this theory 
is that it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies zero shear stress 
conditions at the top and bottom surfaces of the plate without using shear correction factors. In addition, it contains four inde-
pendent variables, as against five in other shear deformation theories. The elastic foundation is modeled as a two-parameter 
Pasternak foundation. The equations of motion are derived using Hamilton’s principle. The fundamental frequencies are found 
by solving an eigenvalue equation. The results obtained by the present method are compared with solutions derived from other 
models known from the literature and are found to be in good agreement with them.
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2. Theoretical Formulations

2.1. Basic assumptions

The assumptions of the present theory are as follows.
(i) Displacements are small in comparison with plate thickness, and therefore the strains involved are infinitesimal.
(ii) The transverse displacement w  includes two components — the bending wb  and shear ws  ones, which are func-

tions only of x and y coordinates,
	 w x y z w x y w x yb s( , , ) ( , ) ( , ).= + 	 (1)

(iii) The transverse normal stress σ z  is negligible in comparison with the in-plane stresses σ x  and σ y .

(iv) The displacements u  in the x-direction and v  in the y-direction consist of extension, bending, and shear compo-
nents,
	 u u u ub s= + +0 ,    v v v vb s= + +0 . 	 (2)

The bending components ub  and vb  are assumed to be similar to the displacements given by the classical theory of 
plates, namely

	 u z
w
xb
b= −

∂
∂

,   v z
w
yb
b= −

∂
∂

. 	 (3)

The shear components us  and vs, in conjunction with ws , give rise to parabolic variations in the shear strains γ xz  
and γ yz  and hence in the shear stresses τ xz  and τ yz  across the thickness of the plate in such a way that the stresses τ xz  and 
τ yz  are zero at the top and bottom faces of the plate. Consequently, the expression for us  and vs  can be given as

	 u f z
w
xs
s= −

∂
∂

( ) ,   v f z
w
ys
s= −

∂
∂

( ) . 	 (4)

2.2. Kinematics 

Based on the assumptions made in the preceding section, the displacement field can be obtained using Eqs. (1)-(4):

	 u x y z u x y z
w
x

f z
w
x

b s( , , ) ( , ) ( ) ,= −
∂
∂

−
∂
∂0 	

	 v x y z v x y z
w
y

f z
w
y

b s( , , ) ( , ) ( ) ,= −
∂
∂

−
∂
∂0 	 (5)

	 w x y z w x y w x yb s( , , ) ( , ) ( , ),= + 	

where the shape function f z( )  is given as 

	 f z
h

h
z z

( )
sinh

cosh
.=

( ) 





 −

( ) −

π π

π 2 1
	

This function ensures zero transverse shear stresses at the top and bottom surfaces of the plate. The parabolic distri-
butions of transverse shear stresses across the plate thickness are taken into account in the analysis by means of a hyperbolic 
function of the displacement field assumed.
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The strains associated with the displacements in Eq. (5) are
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where
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	 (6)

and

	 g z f z( ) '( )= −1  with ′ =f z df z
dz

( ) ( ) . 	

2.3. Constitutive equations

The stress state in each layer is given by Hooke’s law 
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where Qij  are the stiffnesses, which are defined in terms of engineering constants in the material axes of the layer:
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12 211
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12 211
=
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ν ν
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12 211
=

−ν ν
,  Q G66 12= ,  Q G44 23= ,  Q G55 13= . 	

Since the laminate is made of several orthotropic layers with their material axes oriented arbitrarily with respect to 
laminate coordinates, the constitutive equations of each layer must be transformed to the laminate coordinates x, y, and z. The 
stress–strain relations in the laminate coordinates of a kth layer are
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where Qij  are the transformed material constants, which an given in [23].
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2.4. Governing equations

Using Hamilton’s energy principle, we derive the equation of motion of the laminated composite plate

	 δ U U V T dtF
t

t

+ − −( ) =∫
1

2

0, 	

where U  is the strain energy, T  is the kinetic energy of the plate, UF  is the strain energy of foundation, and V  is the work 
of external forces. Employing the principle of minimum total energy leads to the general equation of motion and boundary 
conditions. Taking the variation of the above equation and integrating by parts, we obtain

	 σ δε σ δε τ δγ τ δγ τ δγx x y y xy xy yz yz zx zx
Vt

t

+ + + +( )





∫∫

1

2

	

	 − + + + +( ) − +


∫ρ δ δ δ δ   u u v v w w w w dv f w w dAb s b s e b s
A

0 0 0 0 ( ) ) ) ( (




=dt 0, 	 (8)

where two points above a variable means the second derivative with respect to time, and fe  is the density of the reaction force 
of foundation. For the Pasternak foundation,
	 f k w k we = − ∇0 1

2 . 	 (9)

If the foundation is modeled as a linear Winkler foundation, the coefficient k1 in Eq. (9) is zero. With account of 
Eqs. (6), Eq. (8) takes the form
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The stress resultants N , M , and S  are defined as
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Inserting Eq. (7) into Eqs. (11) and integrating across the thickness of the plate, the stress resultants are obtained
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and the stiffness components and inertias are given as
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Collecting the coefficients of δu0 ,  δ v0 , δwb , and δws  in Eq. (10), the equations of motion are obtained as
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Clearly, when the effect of transverse shear deformation is neglected (ws = 0 ), Eqs. (14) yield the equations of motion 
of a composite plate based on the classical theory of plates.



635

2.5. Analytical solutions for simply supported rectangular laminates

Rectangular laminated composites plates are generally classified in accordance with the type of support used. We are 
concerned here with analytical solutions of Eqs. (14) for simply supported composite plate. The following boundary condi-
tions are imposed at the side edges: 

	 v y w y w y
w
y

y
w
y

yb s
b s

0 0 0 0 0 0 0( , ) ( , ) ( , ) ( , ) ( , )= = =
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=
∂
∂

= ,	
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a y
w
y

a yb s
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∂
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=
∂
∂
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b

x
s

x x
b

x
s( , ) ( , ) ( , ) ( , ) ( , ) ( , )0 0 0 0= = = = = = ,	 (15)
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=
∂
∂
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∂
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∂
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b

y
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The displacement functions that satisfy boundary conditions (15) are taken in the form Fourier series
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, 	

where Umn , Vmn , Wbmn , and Wsmn  are arbitrary parameters to be determined, ω  is the eigenfrequency associated with an 
( m , n )th eigenmode; λ π= m a  and µ π= n b .

Inserting Eqs. (15), (12), and (13) into the equations of motion (14) we get the following eigenvalue equations for the 
free vibration problem at any fixed values of m  and n :

	 K M[ ]− [ ]( ){ } = { }ω2 0∆ ,	 (16)

where ∆{ }  denotes the column

	 ∆{ } = { }T
mn mn bmn smnU V W W, , , ,  	

and

	 K

a a a a
a a a a
a a a a
a a a a

[ ] =






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
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11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44
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




,  M

m
m

m m
m m

[ ] =
















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11

22

33 34

34 44

0 0 0
0 0 0
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0 0

.	

Here,

	 a A A11 11
2

66
2= +λ µ , a A A12 12 66= +( )λµ ,  a B13 11

3= − λ , a Bs
14 11

3= − λ ,	
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	 a A A22 66
2

22
2= +λ µ , a B23 11

3= µ , a Bs
24 11

3= µ ,	

	 a D D D D k k33 11
4

12 66
2 2

22
4

0 1
2 22 2= + + + + + +λ λ µ µ λ µ( ) ( ) ,	

	 a D D D D k ks s s s
34 11

4
12 66

2 2
22 0 1

2 22 2= + + + + + +λ λ µ µ λ µ( ) ( )    4 ,	

	 a H H H H A A k ks s s s s s
44 11

4
12 66

2 2
22

4
55

2
44

2
0 1

22 2= + + + + + + +λ λ µ µ λ µ λ( ) ( ++ µ2 ) ,	

	 m m I11 22 1= = , m I I33 1 3
2 2= + +( )λ µ , m I I34 1 5

2 2= + +( )λ µ , m I I44 1 6
2 2= + +( )λ µ .	

The natural frequencies of the laminates can be obtained by setting the determinant of the coefficient matrix in Eq. 
(16) to zero.

3. Numerical Results and Discussion

In this study, a free vibration analysis of symmetrically and antisymmetrically laminated composite plates resting on 
an elastic foundation by using the present shear deformation theory for laminated plates is suggested. The Navier solutions 
for free vibrations of laminated composite plates are found by solving eigenvalue equations. Comparisons are made with vari-
ous theories of plates and with exact solutions of three-dimensional elasticity theory. The description of various displacement 
models is given in Table 1. 

In order to verify the accuracy of the present analysis, some numerical examples were solved. It was assumed that 
the thickness and the material properties for all laminas were the same. In the analysis, the elastic properties of a lamina were 
taken to be as follows:
	 G G E12 13 20 6= = . ,  G E23 20 5= . ,  ν ν12 13 0 25= = . .	

The following nondimensional fundamental frequency, nondimensional linear Winkler foundation parameter, and 
nondimensional Pasternak foundation parameter were used:

	 ω ω
ρ

=
a
h E

2

2
,   K k L

E h0
0

4

2
3= ,  K k L

E h1
1

4

2
3= .	

The fundamental frequencies of the systems were calculated by Eq. (16) as an eigenvalue problem. 
In Tables 2 and 3, the nondimensional fundamental frequencies of antisymmetrically laminated cross-ply plates 

obtained by using different shear deformation theories are shown for various values of a/h and moduli ratios. It can be seen 
that, in general, the present theory gives more accurate results in predicting the natural frequencies than the PSDT and the 
three-dimensional elasticity solution given in [11]. It should be noted that unknown functions in present theory are four, while 

TABLE 1. Displacement Models

Theory Unknown functions
Classical theory of laminated plates (CLPT) 3

First-order shear deformation theory (FSDT) [7] 5
Parabolic shear deformation theory  (PSDT) [13] 5

Exponential shear deformation theory [24] (ESDT) [24] 5
Sinusoidal shear deformation theory [25] (SSDT) [25] 5

Present refined shear deformation theory of plates 4
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the unknown functions in the FSDT and higher-order shear deformation theories (PSDT, ESDT, and SSDT) are five. It can be 
concluded that the present theory is not only accurate, but also simple in predicting the natural frequencies of laminated plates.

TABLE 2. Nondimensional Fundamental Frequencies of Antisymmetric Square Plates at Various Values of Orthotropy 
Ratio with a h/ = 5

No. of layers Theory
E1/E2

3 10 20 30 40
(0/90)1 Exact [11] 6.2578 6.9845 7.6745 8.1763 8.5625

FSDT 6.2085 6.9392 7.7060 8.3211 8.8333
PSDT 6.2169 6.9887 7.8210 8.5050 9.0871
ESDT 6.2224 7.0066 7.8584 8.5630 9.1661
SSDT 6.2188 6.9964 7.8379 8.5316 9.1236

Present 6.2164 6.9839 7.8095 8.4863 9.0610
(0/90)2 Exact [11] 6.5455 8.1445 9.4055 10.1650 10.6790

FSDT 6.5043 8.2246 9.6885 10.6198 11.2708
PSDT 6.5008 8.1954 9.6265 10.5348 11.1716
ESDT 6.5034 8.1939 9.6201 10.5261 11.1628
SSDT 6.5012 8.1929 9.6205 10.5268 11.1628

Present 6.5017 8.1999 9.6353 10.5467 11.1853
(0/90)3 Exact [11] 6.6100 8.4143 9.8398 10.6950 11.2720

FSDT 6.5569 8.4183 9.9427 10.8828 11.5264
PSDT 6.5558 8.4052 9.9181 10.8547 11.5012
ESDT 6.5595 6.5595 9.9313 10.8756 11.5314
SSDT 6.5567 8.4066 9.9211 10.8603 11.5102

Present 6.5563 8.4069 9.9205 10.8568 11.5019
(0/90)5 Exact [11] 6.6458 8.5625 10.0843 11.0027 11.6245

FSDT 6.5837 8.5132 10.0638 11.0058 11.6444
PSDT 6.5842 8.5126 10.0674 11.0197 11.6730
ESDT 6.5885 8.5229 10.0881 11.0522 11.7180
SSDT 6.5854 8.5156 10.0740 11.0309 11.6894

Present 6.5846 8.5131 10.0670 11.0175 11.6682
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Fig. 1. Effect of the orthotropy  ratio E E1 2  on the nondimensional fundamental frequencies ω  of 
laminated cross-ply plates  with layups (0/90/90/0) (a) and (0/90/0/90) (b) on an elastic foundation. 
(K0, K1) = (0, 0) (––––) and (100, 10) (– – –); a/h = 5 (1), 10 (2), 20 (3), 50 (4), and 100 (5). 
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TABLE 3. Nondimensional Fundamental Frequencies of Antisymmetric Square Plates at Various Values of a h/  with 
E E1 2 40/ =

No. of layers Theory a/h
2 4 10 20 50 100

(0/90)1 CLPT 8.6067 10.4244 11.1537 11.2693 11.3023 11.3070
FSDT 5.2104 8.0349 10.4731 11.0779 11.2705 11.2990
PSDT 5.7170 8.3546 10.5680 11.1052 11.2751 11.3002
ESDT 5.8948 8.4561 10.5964 11.1132 11.2764 11.3005
SSDT 5.8000 8.4017 10.5811 11.1089 11.2757 11.3003

Present 5.6568 8.3208 10.5587 11.1025 11.2746 11.3000
(0/90)2 CLPT 14.1036 16.3395 17.1448 17.2682 17.3032 17.3083

FSDT 5.6656 9.8148 14.9214 16.6008 17.1899 17.2796
PSDT 5.7546 9.7357 14.8463 16.5733 17.1849 17.2784
ESDT 5.8129 9.7362 14.8338 16.5683 17.1840 17.2781
SSDT 5.7794 9.7314 14.8376 16.5700 17.1843 17.2782

Present 5.7413 9.7464 14.8571 16.5773 17.1857 17.2786
(0/90)3 CLPT 15.0895 17.2676 18.0461 18.1652 18.1990 18.2038

FSDT 5.6992 9.9852 15.5010 17.3926 18.0673 18.1706
PSDT 5.8741 9.9878 15.4632 17.3772 18.0644 18.1698
ESDT 5.9888 10.0323 15.4702 17.3787 18.0646 18.1699
SSDT 5.9243 10.0036 15.4634 17.3768 18.0643 18.1698

Present 5.8428 9.9838 15.4676 17.3792 18.0648 18.1699
(0/90)5 CLPT 15.6064 17.7314 18.4916 18.6080 18.6410 18.6457

FSDT 5.7140 10.0628 15.7790 17.7800 18.4995 18.6100
PSDT 5.9524 10.1241 15.7700 17.7743 18.4984 18.6097
ESDT 6.0889 10.1854 15.7847 17.7784 18.4991 18.6099
SSDT 6.0133 10.1481 15.7739 17.7751 18.4985 18.6097

Present 5.9129 10.1137 15.7716 17.7753 18.4986 18.6098

TABLE 4. Comparison of the Fundamental Frequency Parameter  Ω =ω ρa h D2 /  of Isotropic Square Plates

Thickness-to-length ratio K0, K1
Theory

[27] [26] Present method
h/a = 0.001 0, 0 19.7391 19.7392 19.7322

102, 10 26.2112 26.2112 26.2049
103, 102 57.9961 57.9962 57.9894

h/a = 0.1 0, 0 19.0840 19.0658 19.0657
102, 10 25.6368 25.6236 25.6235
103, 102 57.3969 57.3923 57.3922

h/a = 0.2 0, 0 17.5055 17.4531 17.4531
102, 10 24.3074 24.2728 24.2727
103, 102 56.0359 56.0311 56.0310
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In order to validate the present theory in the case of plates resting on an elastic foundation, the results for the funda-
mental natural frequency parameter of an isotropic thick plate with three different values of thickness-to-length ratios and three 
different values of Winkler elastic coefficients are compared in Table 4 with those obtained in [26, 27]. A excellent agreement 
of the three methods can be seen. We should note here that, in Table 4, D Eh= −3 212 1/ ( )ν , as defined in [26].

In Fig. 1, variations in the nondimensional fundamental frequencies of symmetrically and antisymmetrically laminated 
orthotropic cross-ply plates on an elastic foundation are given. It is seen from the figures that an increase in the degree of orthot-
ropy produces an increase in the fundamental frequency. The effect of foundation stiffness on the vibration of thick laminated 
plates is illustrated in Fig. 2. The figure shows that the frequencies of laminates increase when foundation parameters increase.

4. Conclusions

A refined hyperbolic shear deformation theory of plates has been successfully developed for the free vibration of 
simply supported laminated plates on an elastic foundation. The theory allows for a square-law variation in the transverse 
shear strains across the plate thickness and satisfies the zero-traction boundary conditions on the top and bottom surfaces of the 
plate without using shear correction factors. The equations of motion were derived from Hamilton’s principle. All comparison 
studies show that the natural frequencies obtained by the proposed theory with four unknowns are almost identical to those 
predicted by the shear deformation theories containing five unknowns. It can be concluded that the theory proposed is accurate 
and efficient in predicting the vibration responses of composite plates.

References

1. R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates,” J. of Appl. Me-
chanics, 18, 31-38 (1951).

2. Y. Stavski, “On the theory of symmetrically heterogeneous plates having the same thickness variation of the elastic 
moduli,” Topics in Applied Mechanics. American Elsevier, N. Y., 105 (1965),

3. P. C Yang, C. H. Norris, and Y. Stavsky, “Elastic wave propagation in heterogeneous plates,” Int. J. of Solids and 
Structure, 2, 665-684 (1966).

4. S. Srinivas and A. K. Rao, “Bending, vibration and buckling of simply supported thick orthotropic rectangular plates 
and laminates,” Int. J. of Solids and Structures, 6, 1463-1481 (1970).

1
2
3

b

4
5
6

0 10 20 30 40

26

24

22

20

18

16

14

12

10

E E1 2/

�
�

+| +|
+|

+| +| +|

0 10 20 30 40

24

22

20

18

16

14

12

10

E E1 2/

a

+|

�
�

+|
+|

+| +| +|

12

3
4
5

6

Fig. 2. Effect of the orthotropy ratio E E1 2 on the nondimensional fundamental frequency ω  of 
antisymmetrically laminated (0/90/0/90) cross-ply plate on an the elastic foundation at (K0, K1) = (0, 
10) (1), (20, 10) (2), (40, 10) (3), (60, 10) (4), (80, 10) (5), and (100, 10) (6) (a) and (K0, K1) = (100, 
0) (1), (100, 2) (2), (100, 4) (3), (100, 6) (4), (100, 8) (5), and (100, 10) (6) (b).



640

5. J. M. Whitney and C. T. Sun, “A higher-order theory for extensional motion of laminated composites,” J. of Sound 
and Vibration, 30, 85-97 (1973).

6. C. W. Bert, “Structure design and analysis: Part I,” in: C. C. Chamis (Ed.), Analysis of Plates. Academic Press, N. Y. 
(Chapter 4), (1974).

7. J. M. Whitney and N. J. Pagano, “Shear deformation in heterogeneous anisotropic plates,” J. of Appl. Mechanics, 37, 
1031-1036 (1970).

8. R. C. Fortier and J. N. Rossettos, “On the vibration of shear-deformable curved anisotropic composite plates,” J. of 
Appl. Mechanics, 40, 299-301 (1973).

9. P. K., Shinha and A. K. Rath, “Vibration and buckling of cross-ply laminated circular cylindrical panels,” Aeronautical 
Quarterly, 26, 211-218 (1975).

10. C. W. Bert and, T. L. C. Chen, “Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectan-
gular plates,” Int. J. of Solids and Structure, 14, 465-473 (1978).

11. A. K. Noor, “Free vibrations of multilayered composite plates,” AIAA J, 11, 1038-1039 (1973).
12. J. N. Reddy, “Free vibration of antisymmetric angle-ply laminated plates including transverse shear deformation by 

the finite element method,” J. of Sound and Vibration, 66 (4), 565-576 (1979).
13. J. N. Reddy, “A simple higher-order theory for laminated composite plates,” ASME J Appl. Mech., 51, 745-752 (1984).
14. J. N. Reddy and A. A. Khdeir, “Buckling and vibration of laminated composite plates using various plate theories,” 

AIAAJ, 27(12), 1808-1817 (1989).
15. C. A. Shankara and N. G. Iyengar, “A C0 element for the free vibration analysis of laminated composite plates,” J. of 

Sound and Vibration, 191 (5), 721-738 (1996).
16. A. A. Khdeir and J. N. Reddy, “Free vibration of laminated composite plates using second-order shear deformation 

theory,” Compos. Struct., 71, 617-626 (1999).
17. B. N. Singh, D. Yadav, and N. G. R. Iyengar, “Natural frequencies of composite plates with random material properties 

using higher-order shear deformation theory,” Int. J. of Mechanical Sci., 43, 2193-2214 (2001).
18. M. Rastgaar, Agaah, M. Mahinfalah, and G. Nakhaie Jazar, “Natural frequencies of laminated composite plates using 

third-order shear deformation theory,” Composite Structures, 72, 273-279 (2006).
19. M. Şimşek, “Vibration analysis of a functionally graded beam under a moving mass by using different beam theories,” 

Compos. Struct., 92, 904-917 (2010).
20. M. Şimşek, “Fundamental frequency analysis of functionally graded beams by using different higher-order beam 

theories,” Nuclear Engineering and Design, 240, 697-705 (2010).
21. H. Matsunaga, “Stress analysis of functionally graded plates subjected to thermal and mechanical loadings,” Compos. 

Struct., 87, 344-357 (2009).
22. J. L. Mantari, A. S. Oktem, and C. Guedes Soares, “A new trigonometric shear deformation theory for isotropic, lami-

nated composite and sandwich plates,” Int. J. of Solids and Structures, 49, 43-53 (2012).
23. J. N. Reddy, Mechanics of Laminated Composite Plate: Theory and Analysis, N. Y.: CRC Press, 1997.
24. M. Karama, K. S. Afaq, and S. Mistou, “Mechanical behavior of laminated composite beam by the new multi-layered 

laminated composite structures model with transverse shear stress continuity,” Int. J. Solids and Structures, 40, 1525-
1546 (2003).

25. M. Touratier, “An efficient standard plate theory,” Int. J. Eng. Sci., 29, 901-916 (1991).
26. H. Ait Atmane, A. Tounsi, I. Mechab, and E. A. Adda Bedia, “Free vibration analysis of functionally graded plates 

resting on Winkler-Pasternak elastic foundations using a new shear deformation theory,” Int. J. Mech. Mater. Des., 6 (2), 
113-121 (2010).

27. H. Akhavan, Sh. Hosseini Hashemi, H. Rokni Damavandi Taher, A. Alibeigloo, and Sh. Vahabi, “Exact solutions for 
rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis,” 
Computational Materials Sci., 44, 951-961 (2009).


	Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory
	1. Introduction
	2. Theoretical Formulations
	2.1. Basic assumptions
	2.2. Kinematics 
	2.3. Constitutive equations
	2.4. Governing equations
	2.5. Analytical solutions for simply supported rectangular laminates

	3. Numerical Results and Discussion
	4. Conclusions
	References


