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Finite-Layer Method: A Unified approach 
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A new method for a stress–strain analysis of layered composites, named the finite-layer method, is proposed, 
which is based on the consideration of each particular layer as a constituent of the entire laminate. This method 
serves as a unified approach to the development of new algorithms for computing stresses in composite layers, 
interlaminar contact stresses, large deflections, and critical buckling loads of thin-walled laminated structures 
with delaminations. The calculation of a laminated structure is reduced to solving a boundary-value problem 
for a system of first-order ordinary differential equations. The number of equations depends on the number of 
layers in the composite. The resolving system of differential equations is a stiff system. The stable numerical 
method of discrete orthogonalization is used for solving the boundary value problem. Part 1 is dedicated to the 
application of the proposed method to a linear analysis of free-edge stresses in composite laminates, to a study 
of the deformation of composite plates with delaminations and bending of composite beams with patches, and 
to calculations of adhesive joints.
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Introduction. Description of the Method

Many structural composite elements or their large-sized parts can be regarded as multilayer strip-beams or wide 
plates subjected to cylindrical bending. In this case, their stress–strain state (SSS) depends only on two — longitudinal and 
transverse — coordinates. In the direction of the third coordinate, lying in a plane parallel to layers, the SSS does not vary. 
The multilayer package as a whole consists of separate layers which deform jointly.

The essence of the finite-layer method (FLM) suggested consists in the fact that a multilayer package subjected to 
a given set of force loads and a temperature field is divided into separate layers, and  the interlaminar normal and tangential 
contact stresses are introduced into consideration. 

The first step is construction of such a deformation model of a layer that most accurately takes into account the distri-
bution of stresses on faces of the layer. In fact, this is a refined model of bending of a beam-layer with account of transverse 
normal and shear strains. In the present study, the model is a system of six ordinary differential equations in resolving func-
tions — the average displacements, the average rotation angle of cross section, and the integral characteristics of stress field 
in the transverse cross section: the longitudinal and shear forces and the bending moment. The system is supplemented with 
corresponding boundary conditions and expressions for displacements and stresses at any point of transverse section of the 
layer in terms of resolving functions, normal and tangential contact stresses, and their derivatives. Within the framework of the 
FLM, the layer deformation model developed can be regarded as an analogue of the shape function of the standard FEM. In the 
general case, the model is different for different layers, and it can be refined further to increase the approximation accuracy in 
reducing the three-dimensional problem of deformation of a thin layer to a one-dimensional problem along one of these direc-
tions and to take into account the singularities at angular points of the layer, where the type of boundary conditions changes.

At the following step, from the conditions of equality of transverse and longitudinal displacements for each contact 
surface of layers, two differential equations are additionally derived in new resolving functions — the tangential stress and its 
first derivative with respect to the longitudinal coordinate. The boundary conditions for these equations are found. As a result, 
the calculation of SSS of the layers and the interlaminar stresses in an n-layer package is reduced to a boundary-value problem 
for a coupled system consisting of 6 2 1n n+ −( )  ordinary differential equations of the first order.

The final stage is the numerical solution of the boundary-value problem obtained for the resolving system of ordinary 
differential equations and the calculation of all components of the SSS, including the interlaminar stresses. Owing to intro-
duction of two rapidly varying resolving functions into the system — the interlaminar tangential stress and its first derivative, 
whose distribution over the contact surface has a pronounced form of a boundary layer, — the resulting system of ordinary 
differential equations becomes “stiff” [1]. The integration of such systems by standard shooting methods or by reducing them 
to Cauchy problems is impossible because of the exponential fading of the required solution on a section which is much smaller 
than the integration region.

The most suitable method for solving the boundary-value problems described by “stiff” systems of equations is the 
method of discrete orthogonalization suggested by S. K. Godunov [2]. The development and application of the method to 
solving wide classes of linear and nonlinear problems of mechanics was realized by Ya. M. Grigorenko and his school 
[3-7]. In fact, the Godunov–Grigorenko method is an exact numerical method that allows one to obtain a solution accurate “to 
equations”. This method is efficiently employed to solve boundary-value problems for systems containing a great number of 
equations with an implicit expression of their right-hand sides in terms of resolving functions, which are calculated by using 
complex computing algorithms [4, 7].

It is an advantage of the method that the calculations are carried out with functions having a clear physical meaning. 
This makes it possible to solve the problems for integration regions consisting of separate sections in the presence of discon-
tinuities of the resolving functions and jump-like variations in the coefficients and free members of the right-hand sides of 
the system upon transition from one section to another [8]. This method served as the basis in creating effective computing 
complexes for calculating the strength, stability, and vibrations of thin-walled structures whose surfaces have an intricate 
branched and multiply connected shape [9].  
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In the present study, the Godunov–Grigorenko method of discrete orthogonalization is applied to solving boundary-value 
problems in the case where the type of the right-hand sides of the system of equations and the number of required resolving 
functions differ on some sections inside the integration interval. Such problems arise in calculating layered structures with 
layers of different length and multilayer packages with delaminations.

1. Construction of a Deformation Model for a Thin Layer

Let us consider a plane orthotropic layer of thickness h, width b, and length L. The layer is referred to a Cartesian 
system of coordinates x, y, and z (Fig. 1). The coordinate plane xy is the midplane of the layer and divides the thickness h into 
halves. The layer is subjected to the normal and tangential stresses p xi ( ) and q xi ( ) , the boundary forces and moments Ni ,Qi , 
and Mi  (i = 1, 2), a uniform transverse strain e0, and temperature T. Axes 1, 2, and 3 — the orthotropy axes of the layer mate-
rial — coincide with the coordinate axes x, y, and z.

The layer is in the conditions of cylindrical bending. We assume that 
(1)  the constituents of displacement of points of the layer along the x  and z  axes do not vary in the direction of y  

coordinate,

	 u u x z w w x z u
y

w
y

= ( ) = ( ) ∂
∂

=
∂
∂

=, , , , , ;0 0 	

(2) the displacement along the y  axis does not depend on the x  and z  coordinates, 

	 v v y v
x

v
z

= ( ) ∂
∂

=
∂
∂

=, , ;0 0 	

(3) the strain in the direction of y  axis is constant, independent of the coordinates x, y, and z,

	 ε εy = =0 const. 	

In view of these assumptions, the full system of equations of the linear theory of thermoelasticity, describing the 
deformation of an orthotropic layer under the action of a given load, has the following form:

— equilibrium equations 
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Fig. 1. Plane orthotropic layer.
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— geometrical relations
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— elasticity relations

	 ε
σ σ

α ν α ν ε τ εx
x z

xz xzE E
G= − + +( ) − =

1
1 12 2 12 0 13T , , 	
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, E
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3
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23 321
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31 21 32
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; Ei  and n ij  (i, j = 1, 2, 3) are the elastic 

moduli of the material and the Poisson ratios; E E3 32 2 23ν ν= , E E2 21 1 12ν ν= ,  and E E1 13 3 31ν ν= ; G13  is the shear modulus in 
the xz plane; αi  are the coefficients of linear thermal expansion.

On faces of the layer, the conditions in stresses

	 τ τxz xzx h q x x h q x, , , ,
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must be fulfilled.
Let us construct statically allowable distributions of stresses in the layer satisfying equilibrium equations (1) and 

conditions (2). For this purpose, we present the stresses in the form of expansions along the z coordinate with coefficients ai ,�
bj, and ck ( , , , ; , )i j k= = =0 1 0 2 0 3  in terms of the longitudinal coordinate x:

	 σ τ σx xz za a z b b z b z c c z c z c z= + = + + = + + +0 1 0 1 2
2

0 1 2
2

3
3, , . 	 (3)

Let us introduce integral characteristics of the stress field in the transverse section of the layer, namely the longitudi-
nal force N , the shear force Q , and the bending moment M :
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Inserting expansion (3) into Eqs. (1), in view of conditions (2) and expressions (4), after some transformations, we 
find that the equilibrium equations of the layer and the static boundary conditions on its surfaces are fulfilled exactly if the 
stresses are given by the expressions
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and the three differential equations 

	 dN
dx

b q q dQ
dx

b p p dM
dx

Q bh q q
= − −( ) = − −( ) = −

+
1 2 1 2

1 2

2
, , . 	 (6)

are satisfied.
We should note that the expression for the stress σ z x z( , ) , normal to the midsurface of the layer, contains the first 

derivatives of the external tangential loads ′ ( )q x1 ,  and ′q x2 ( ) . Next, we assume that, within the limits of the part of the layer 
considered, the external surface loads are continuous functions and have continuous derivatives up to the third one inclusive.

Let us pass now to consideration of the geometrical relations and elasticity relations, combining which we can write

	 ∂
∂
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From relation (7), after insertion of dependences (5) in it and integration with respect to z , we come to the expression 
for the transverse displacements of points of the layer
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where w0 � is the transverse displacement (deflection) of the midline at z = 0 .
Let us present the longitudinal displacements of points of the layer as a third-degree polynomial in z  with coefficients 

u0 , , ,α β γand depending on x :

	 u x z u z z z u
z

z z, , .( ) = + + +
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= + +0
2 3 22 3α β γ α β γ 	

Here, u0 � is the longitudinal displacement of points of the midline; α � is the slope of the tangent to the deformed 
contour of cross section at z = 0 ; the functions β  and γ  are determined from the first pair of conditions (2) for tangential 
stresses. As a result, relation (8) takes the form
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According to expression (5), the left-hand side of this equality is a quadratic function of z , and the right-hand one is 
a fourth-degree polynomial. At the same time, both the sides satisfy the conditions for the tangential stress on layer faces. 
Integrating the previous equality with respect to the thickness, in view of expressions (4), we have

	 dw
dx

Q
G bh

q q
G

h
E

p p
h

q q0

13

1 2

13

2
1 2 1 2

3

3
2 4 160 2

= − −
+

−
′ − ′

+
′′+ ′′







α . 	 (10)



236

Likewise, by considering expression (9), after two integrations across the layer thickness, with account of Eqs. (4), 
we find that
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Here, 1 1 1

13K G E
= − ; N E bh TT = +( )1 1 12 2α ν α and N E bhε ν ε= 1 12 0  are the longitudinal forces in the cross section 

of the layer caused by the temperature field T  and the strain e0 , respectively.
Thus, from relations (7)-(9), we derived three differential equations (10)-(12) in the displacements of points of the 

axial line, u w0 0and , and the rotation angle α .
Let us introduce the displacements u wav avand  averaged across the thickness and the rotation angle θav :
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,  is the average rotation angle at the point [10]. As a further simplification of the system, we 

exclude the second and third derivatives of external loads ′′ ′′p p1 2, , ′′′ ′′′q q1 2, and  from the equations. For this purpose, we pass 
to an angle θ that differs from the average angle θav  by a small value:
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The final form of the stress–strain state of the layer is described by
— the system of six ordinary linear differential equations of the first order with variable coefficients
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— the expressions for displacements of points of the cross section
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— expressions (5) for stresses in the layer.
The boundary conditions for the resulting system of differential equations at the edges x x L= =0 and  are given by 

three quantities — by one from each of the pairs N uav,� ,( ) Q wav, ,( ) and M av, .θ( )  The resolving equations, the boundary 
conditions, and the expressions for displacements and stresses include the derivatives of external surface loads up to the sec-
ond one inclusive.

In fact, the last three equations of system (14) are the compatibility conditions. They were deduced not by using the 
Castigliano variational principle but by averaging the displacements and rotation angles across the thickness of the layer, 
which leads to the same results [11].

The model obtained describes the cylindrical bending of a layer under a generalized plane deformation determined 
by the value ε εy = 0 . For the case of a plane stress state, at σ y = 0 , all dependences can be derived from the presented ex-
pressions assuming that E v v v v2 12 21 23 32 0= = = = = .

2. Resolving System of Differential Equations for a Multilayer Package

The derivation of the resolving system of equations can briefly be shown with the example of a two-layer package. 
In the equations, the index av  will not be used. The subscript at the resolving functions and the superscript in parentheses at 
physicomechanical characteristics of the material correspond to the number of a layer. The temperature of all layers is taken 
the same. We divide the package into separate layers of thickness h h1 2,  and introduce the stresses pc(x) and qc(x) on the con-
tact surface (Fig. 2). It is assumed that the external loads on package surfaces — the stresses p1, p2 and q q1 2,  — do not depend 
on x .
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The system of differential equations (14) for each layer is written as follows:
layer 1

	 dN
dx

b q qc1
1= − −( ) , 	

	 dQ
dx

b p pc1
1= − −( ) , 	

	 dM
dx

Q bh
q qc1

1 1
1

2
= −

+
, 	

	  du
dx

N N N
E bh

h
E

p p
h

qT c c1 1 1 1

1
1

1

1
1

1

12 6
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+ −
−

+
−
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





ε

( ) ( ) , 	 (17)

	 dw
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Q
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h
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h
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1
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
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layer 2

	 dN
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b q qc
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	 dQ
dx
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2
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Fig. 2. Two-layer package.
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The right-hand sides of Eqs. (17) contain the unknown functions pc , ′pc  and qc , ′qc , ′′qc  . Using the conditions of 

equality of transverse displacements of the layers on the contact surface, w x h w x h1
1

2
2

2 2
, ,−







 =









 , and expression (15), we 

have
	  p c N c N c M c M c w c w c q d p d p dc c= + + + + + + ′ + + +1 1 2 2 3 1 4 2 5 1 6 2 7 1 1 2 2 0. 	 (18)

Differentiating expression (18) and inserting the derivatives of resolving functions from Eqs. (17), we obtain

	  ′ = + + + + + ′′ + +p e Q e Q e e e q e q f q f qc c c1 1 2 2 3 1 4 2 5 6 1 1 2 2θ θ . 	 (19)

The condition of equality of longitudinal displacements on the contact surface, u x h u x h1
1

2
2

2 2
, ,−







 =









 , in combina-

tion with Eqs. (16), gives
	  ′′ = + + + + + + + +q a Q a Q a u a u a a a q b q b qc c1 1 2 2 3 1 4 2 5 1 6 2 7 1 1 2 2θ θ . 	 (20)

Using expressions (18)-(20), the functions pc ,� ′pc , and ′′qc  are determined in terms of the resolving functions 
N Q M u wi i i i i i,� ,� , , ,and θ  (i = 1, 2) and functions qc  and ′qc .  The coefficients a c ej j j,� ,� j b d f kk k k=( ) =1 7 1 2, , , ( , )and  enter-
ing into these formulas are expressed in terms of characteristics of the layers; the quantity d0  depends on temperature T  and 
the strain e0 .

Let us join the functions qc  and ′qc  to the resolving functions. Then, the calculation of the two-layer laminate is re-
duced to the solution of the boundary-value problem for a coupled system of 14 ordinary linear differential equations of the 
first order, including 12 equations (17) and two additional equations

	  dq
dx

q
dq
dx

qc
cc

c= ′
′
= ′′, . 	 (21)

At each edge x x L= =0 and , it is necessary to assign seven boundary conditions: six conditions for the basic resolv-
ing functions — one from each of the pairs N u1 1, ,( ) Q w1 1, ,( ) M av1 1,θ( ) , N u2 2, ,( ) Q w2 2, ,( ) and M2 2, ,θ av( )  and one ad-
ditional condition for the tangential stress qc. Here,θ1av  and θ2av  are the average rotation angles determined by Eq. (13).

In many practical problems, at the edge of a layer, the contact surface appears either on the free butt end or on the 
adjacent section with a free face. For these cases, the boundary condition for the tangential stress is qc = 0 . 

The described algorithm for deriving the coupled system of resolving differential equations is naturally extended to 
a multilayer package with an arbitrary number of layers. 

3. Calculation Results

Let us show the possibilities of the method suggested by the example of solution of some statics problems for ele-
ments of multilayer structures.

Two-layer plate with a defect. We will consider a plate consisting of two orthotropic layers with dissimilar physicom-
echanical characteristics. In the midplane of the plate, there is a symmetric delamination of length a . The upper layer is di-
vided by a crack across the entire width of the plate (Fig. 3). Both layers are extended in the crack direction by an identical 
strain e0.

The initial data for calculation are �L = 200 mm, a = 100 mm, b = 200 mm, and ε0 0 01= . ;
layer 1: h1  = 2.5 mm, E1

1( )  = E2
1( )  = 60 GPa, E3

1( )  = 10.5 GPa, G13
1( ) = 6 GPa, n13

1( ) = n 21
1( ) = n12

1( ) = n 23
1( ) = 0.07, and n31

1( )

= n32
1( ) = 0.4;

layer 2: h2  = 2.5 mm, E1
2( ) = 30 GPa, E2

2( )  = 20 GPa, E3
2( )  = 7 GPa, G13

2( ) = 3 GPa, n13
2( ) = n 23

2( ) = 0.07, n 21
2( ) = 0.24 

n12
2( ) = 0.16, n31

2( ) = 0.3, and n32
2( ) = 0.2.

Due to symmetry, we consider only half of the plate. The boundary conditions are:
x = 0 :  layer 1 — N Q M1 1 1 0= = = ;  layer 2  — N Q M2 2 2 0= = = ; qc = 0 ;
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x L= 0 2and :  layer 1 — N Q M1 1 1 0= = = ;  layer 2 — u w2 2 2 0= = =θ ; qc = 0 .
The resolving system of differential equations on the fastened section 0 2≤ ≤ −x L a( )  coincides with the system 

(17), (21). For the delamination zone at ( )L a x L− ≤ ≤2 2 , we must put that  p p q q qc c c c c= ′ = = ′ = ′′ = 0  in the resolving 
system.

The calculated distributions of interlaminar tangential qc  and normal � � pc  stresses along the length of the plate are 
shown in Fig. 4. The results of an analysis of the deflections of contact surfaces of the layers disclosed that, under the action 
of tensile strain, a gap arises between the layers along the entire length of the delamination zone. Accordingly, upon application 
of a compression strain ε0 0 01= − . , a contact of the layers with slippage will occur in the delamination zone. For this case, it 
must be assumed that q q qc c c= ′ = ′′ = 0  in the resolving system of differential equations on the section with delamination, and 
the values of pc  and ′pc  have to be determined only from the conditions of equality of transverse displacements of contact 
surfaces of the layers. The calculation results for the case of compression are shown in Fig. 5. It is seen that the peak of the 
tangential stress increased in magnitude from 5.16 to 5.22 MPa. The magnitude of the normal stress at the top of delamination 
decreased from 2.59 to 1.56 MPa. On the delaminated section, a contact compression stress appeared near the top of delami-
nation, which, with distance, became equal to zero without changing its sign.

Beam with a doubler. An orthotropic beam has a symmetric doubler of length a  on its middle part (Fig. 6). The beam 
is rigidly fixed at its butt ends and loaded with a uniform pressure p1  (plane stress state, σ y = 0) . In this example, the doubler 
(layer 1) has a smaller length than the beam (layer 2). In calculations, this is taken into account as follows. On the section with 
the doubler, 0 2£ £x a , the resolving system of equations is assumed in form (17), (21). Outside the doubler, at a x L2 2£ £ , 
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Fig. 3.  Two-layer plate with a delamination and a crack.
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the right-hand sides of the equations of layer 1 in the resolving system (17) are taken to be zero; in the right-hand sides of Eqs. 
(17) for layer 2 and Eqs. (21), we put that p p q q qc c c c c= ′ = = ′ = ′′ = 0.

The boundary conditions are:
x = 0  — layer 1: u Q1 1 1 0= = =θ ; layer 2: u Q2 2 2 0= = =θ ; qc = 0 ;
x L= 2�  — layer 1: N Q M1 1 1 0= = = ; layer 2: u w2 2 2 0= = =θ ; qc = 0 .
The initial data: L = 200 mm, a = 100 mm, b = 100 mm, h1 = h2 = 5 mm, and p1 = −0 1.  MPa. 
The material of the layers is the same: E1 = 30 GPa, E2 = 20 GPa, E3 = 7 GPa, G13 = 3 GPa, n13 = 0.07, and n31= 0.3.
Figure 7 illustrates the distributions of interlaminar tangential and normal stresses along the length of the beam.
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The distributions of longitudinal and shear forces and bending moments in the layers of the beam are shown in Fig. 8. 
The dashed lines designate the total forces and the bending moment in the beam, which are determined by the expressions

	 N N N Q Q Q M M M N h N h
Σ Σ Σ= + = + = + + −1 2 1 2 1 2 1

1
2

2

2 2
, , . 	

Adhesive joint. Let us compare the calculation results of an single lap joint obtained with the FLM and the Goland–
Reissner solution taken from [12].

A three-layer adhesive joint is stretched by a force N0  (Fig. 9). The loaded butt ends of layers 1 and 3 are not displaced 
in the vertical direction and do not rotate. The initial data: a c= = 12.7 mm, b = 25.4 mm, h1 = h2 = 1.62 mm, h2 = 0.25 mm, 
and N0  = 1 kN. The material of the layers is isotropic: layers 1 and 3 — E = 70 GPa and n = 0.3; the adhesive layer 2 — E = 
4.82 GPa and n = 0.4. 

The calculation results for tangential stresses on the adhesive surface of layers 1-2 are presented in Fig. 10a; the dashed 
line shows the results obtained in [12].

The distributions obtained by the FLM are asymmetric to the center of the adhesive joint. The peak of tangential 
stresses on the surface appearing on the free edge of the adherend layer is lower than on the opposite edge.

Figure 10b shows the normal stresses on surfaces of the adhesive joint. It is seen that, at the right edge of contact surface 
between layers 1-2, due to the presence of the free butt end of layer 1, the peak value of the normal stress decreases, and it even 
becomes compressive. The data of Fig. 10c illustrate the strain state of the adhesive joint under the action of a tensile force.
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Conclusions

The results presented, as well as solutions of other test problems not included in the given publication, allow us to 
conclude that the finite-layer method suggested is efficient in analyzing the SSS of the class of layered structures considered. 

In the following publications, a geometrically nonlinear deformation model of a layer and the corresponding resolving 
system of differential equations, describing the elastic deformation of a multilayer package in the quadratic approximation, 
will be presented. The results of calculations, of the SSS of adhesive joints, large deflections, and the stability of layered beams 
and plates with delaminations will be reported.
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