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CALCULATION OF COMPOSITE STRUCTURES SUBJECTED
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Based on a 7-parameter shell model, a numerical algorithm has been developed for solving the geometrically
nonlinear problem of a multilayer composite shell subjected to a follower pressure and undergoing large dis-
placements and rotations. As unknowns, six displacements of the outer surfaces and additionally the trans-
verse displacement of midsurface of the shell are chosen. This allows one to use the Green—Lagrange strain
tensor, introduced earlier by the authors, which exactly represents arbitrarily large rigid-body displacements
of the shell in curvilinear coordinates of a reference surface. A geometrically exact solid shell element is for-
mulated, which permits one to solve the nonlinear deformation problem for thin-walled composite structures
subjected to a follower pressure by using a very small number of load steps.

Introduction

During the last years, a great deal of attention has been focused on the development of isoparametric three-dimen-
sional finite shell elements, which give satisfactory results in solving the geometrically nonlinear mechanical problems of
thin-walled composite structures subjected to follower loads [1-3]. Their particular feature is that the initial and deformed con-
figurations of the shell are interpolated uniformly in a global Cartesian system of coordinates, and thus great rigid-body dis-
placements can be described correctly. However, the isoparametric shell element is computationally inefficient in calculating
composite structures loaded with a follower pressure and subjected to arbitrarily large rotations, since it requires a rather great
number of loading steps.

An alternative is the geometrically exact finite shell elements based on the nonlinear deformation relations of 6- and
7-parametric 3D shell models introduced in [4-9], which exactly represent arbitrarily large rigid-body displacements in
curvilinear coordinates of a reference surface. The term geometrically exact means that the reference surface of the shell is de-
scribed by functions assigned analytically, in particular, by splines [10-12], which make the basis of modern CAD systems. In
this case, the vectors of displacements of external and middle surfaces are represented in a local basis related to the reference
surface of the shell. This factor allows one to decrease the number of loading steps considerably.
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Fig. 1. Geometry of a shell.

In the present study, a more general geometrically exact 7-parameter bilinear shell element is presented for calculating
thin-walled multilayer composite structures under the action of follower loads. To struggle against the emergence of both the
shear and the membrane lockings known in the finite-element method (FEM), a hybrid FEM model was used. According to this
model, the strains and resulting displacements inside the shell element are approximated independently. We should note that
the 6-parameter model [4-8], postulating a uniform distribution of the transverse normal strains across the thickness of layer
package, often leads to the Poisson locking of shell elements, while the 7-parameter model is free from this drawback [9, 13,
14].

7-Parameter Model of a Composite Shell

Let us consider a thin shell of thickness 7 =d~ +d " consisting of NL elastic anisotropic layers of constant thickness
hj . We assume that, at each point of the shell, there exists a surface of elastic symmetry parallel to a reference surface Q. As the
reference surface, we consider an inner surface of some k-layer or an interface between layers and relate it to curvilinear or-
thogonal coordinates 6; and 6,, reckoned along the lines of main curvatures. The transverse coordinate 05 is reckoned toward
the increasing external normal to the surface Q (Fig. 1). Let e; and e, be the unit vectors of tangents to the coordinate lines 6

and 0,, a3 =ej3 the unit vector of the external normal, 4, Lamé parameters, &, the main curvatures, d A the distances from
the reference to external surfaces Q*, r(0,0, )the radius vector of the reference surface €2, RM (81,0, )the radius vector of
the midsurface M, and RA (81,0, )the radii vectores of the external surfaces Q2 A Hereinafter, =1,2,..., NL, o, =1, 2;14, j, I,
m=1,2,3; A=—+.

For the radii vectores of the middle and external surfaces of the shell, we have

R =r+zla; (1=—M,+)

(1
27 ==d", zV =d", M :1(27 +z7).
2
wherefrom follow the formulas for base vectors (see Fig. 1)
Ag =T g =Ageq, gfx =R,1a =Aacfxeow )
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el =l+ky 2l (1=—M,+)

Let us assume that the tangential and transverse displacements are distributed across the shell thickness according to
the linear and square laws, respectively [15], i.e.,

Ug, :zNAuQ, us :ZLIué (I=—M,+), 3)
A 1

where uﬁ (01,0, )and u ? (81,0, )are the tangential and transverse displacements of the external surfaces; uév[ (01,0, )is the

transverse displacement of the midsurface; N A (63 )and I (05 )are the Lagrange polynomials of the first and second degrees,

respectively:
N =7(Z —93), N 27(93 —Zz ),
h h
4
L' =N"(N"-N"), IM=4N"N*, I'=NT(N* -N").

In this case, I/ (z‘] )=1ifJ =1, and I (zJ )=0ifJ = 1.

Introducing displacements (3), with account of Egs. (4), into the deformation relations of the three-dimensional elas-
ticity theory and assuming that all components (except for the transverse tangential ones) of the Green—Lagrange strain tensor
vary linearly across the thickness of the layer package [9], we come to the strain relations of the 7-parameter shell model

_ A_A _ A_A
eap =2, N Eop> E33 =2 N e,
A A

(%)
_ ~ 1, _ i
€03 T€q3> €q3 =5(80,3 Te.3 )
Here, e (61,9, )are the strains of external surfaces of the shell, which are determined by the formulas
ij \V1-Y2
A A A A4 A A 4 A A ApA A A A
2845 =CaXop + €4 Mgy +inaxl_ﬁ, 260, =coBo + X5, + 2B Mg
i i
(6)
26, =2B8 + Y BABE,
i
where
1
Xﬁa = —ué +Baaué+Baﬁu€+kqu? PB=a)
A, “
1 A A A
VA B -B
P [Aa L ja *laaty “fapra (B2l ™)

5

1A A A 1
A2 z(u j +Boq s —kgty, BaB :714043:
3o AOL 3 o 3 AOLAﬁ E
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B7 = (duy 4l —u ) BF =y M 3wl = (g )
Deformation relations (5)-(7) are rather attractive from the viewpoint of their use in the FEM, since they exactly repre-
sent arbitrarily large rigid-body displacements [9]. Another advantage of these strain relations is that they allow one to over-
come the so-called Poisson locking (artificial overestimation of shell rigidity in the transverse direction) [14].

The radii vectores of external surfaces of the deformed shell can be presented in the form

R =R +u?, (8)

llA =Zul~Ael~.
i

)

Differentiating equalities (8) and (9) and taking into account Eq. (2), we come to the expressions for the base vectors
of external surfaces of the deformed shell

—A _pA A A
8q =Ry =84 +ujy, (10)

wherefrom follows the formula for the unit vector of the normal to the external surface of the deformed shell
A 1 oAy gA
A‘ g *8y-

nt=—
‘gl X2,

(11)

Taking into account the known formulas of differentiation of the base vectors e; with respect to the coordinates 0,
[16] and the representations for displacement vectors (9), we have

A A
L zAaincxei' (12)
i
Using relations (2) and (10)-(12), we arrive at the sought-for formula for the normal vector

A_ 1 A
" ]TAZ”" € (13)
1

A _2AsA A LA A A_aA A _2A LA A
Ny =hyhgy A5 () +hp ) My =R Ay —Agy (e +A7),

(14)

ng = (et + 28 (el +25,)- 145t =J<n{*)2 +(5)7 + ).

We should note that formulas (13) and (14) are of great importance in constructing a geometrically exact element of a
composite shell under the action of a follower load, since they are employed in recalculating the external load at each step of the
Newton—Raphson iteration process. It is precisely this factor that allows us to considerably reduce the number of loading steps.

Geometrically Exact Hybrid Bilinear Element of a Composite Shell
In[4, 6, 12], a family of geometrically exact bilinear 6-parameter shell elements based on the introduction of displace-

ment-independent strains has been developed. Generalizing this method to the 7-parameter model and taking into account dis-
tribution (5), we can write
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ZNAEA AS _p

33 332 %a3 a3’ (15)

AS _ A A
So.ﬁ —%‘N E(xB’ e

where £ é\ﬁ (01,0,)E 3A3 (01,65 )and £ 03 (8,6, )are the displacement-independent strains of external surfaces of the shell.

Since functional variables of different types are introduced in constructing a hybrid element, independent approxima-
tions must be used for them on each finite element [17]. For displacements, we employ the standard bilinear approximation

szr:N,Vr, (16)

é\/I]T’ v, =[uy, up, u3ru ” ”+ ”M]T

===+t
v=[u; uy; uz u; u, u, u 3y Uz,

1 72 73

El

where v, are the columns of nodal displacements; N, (§;,&, ) are the bilinear shape functions; &, =(0, —d gl )/ Z&l are the
normalized curvilinear coordinates of the element; d &l are the center coordinates of the element; 2/ 81 are the lengths of sides of
the element. Hereinafter, r = 1,7

For the independently introduced strains, we have even simpler approximations:

E=} (§)1(&)2QM"E™,

rl,rz
E=[E E|| Ex, E, Ex3 Ey, 2B, 2B, 2E3 2E93]",

EOO [E—OO E+00 E 00 E+00 E—OO E+0() 2E—00 2E+00 2E00 EOO ]T

(17)
EO! = [E‘Ol E+o1 E—01 E+01 2E()l]
_[E—IO E+10 E—IO E+10 2E10]T, Ell :[E3—311 E;—}ll]T’
[1 0 0 0 O] [0 0 0 0 0] [0 0]
01000 00O0O0OO O 00
000O0O 0 1 00 0O 00
000O0OO O 01000 00
00100 00100 10
01 10 11 _
Q 00010’Q 00010’Q 0 1|
000O0O 0 000O0OO0 00
000O0OO O 000O0OO 00
000 01 000O0OO0 00
100 0 0 O] 0 0 0 0 1] 10 0]
where QO0 is the 10 x 10 unit matrix. Hereinafter, , », =0, 1.
For the resulting pressures [9]
A A _ k arA _ k
H. ZJS N™dos, HE _%ISBN o3, Hys _§j5a3de3 s
by Iy Iy
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we assume a similar approximation:

H=3 (&)"1(&)?Q"H",

Vl,rz
- - - - T
H=[H H | Hy Hy, H33 Hyy Hyp H)y His Hyz 1

00 _rgy=00 77400 7700 77400 77—00 77+00 77-00 77+00 7700 ;00T
H _[Hll Hll H22 H22 H33 H33 H12 H12 H13 H23] ?

(19)
01 _rpg—01 77401 77=01 77401 ;01T
H _[Hll Hll H33 H33 H13] >
10 _ =10 77410 77-10 77+10 ;7104T 11 _ppp—11 p+114T
H _[H22 H22 H33 H33 H23] , H _[H33 H33 I

where S 11]‘ are components of the Piola—Kirchhoff symmetric strain tensor of a kth layer.

Introducing the distributions of (3), (5), and (15) and finite-element approximations (16), (17), and (19) into the
Hu—Washizu mixed variational principle [18] and employing the standard procedure of the mixed FEM model, we derive the
following equilibrium equations for the element:

Er,rz — (Qr|r2 )T (B”l”z + Rr,rQV )V, Hr|r2 — (Qr|r2 )T DQr|r2 E’”l”z )
(20

z 3V1‘1Fi’2 (B2 +2R"1"2V )T Q" H" = pAGA V)
1:12

Here, V = [VlT V; V;r VI ]T is the column of nodal displacements of an element of size 28 x 1; B''"2 are 10 x 28 matrices, con-

stant inside the element, describing the linear components of Green—Lagrange strain tensor (6); R""2 are three-dimensional 10
x 28 x 28 arrays, constant inside the element, describing the nonlinear components of the Green—Lagrange strain tensor (6) (in
this case, R"1"2V is a 10 x 28 matrix); pA is the pressure distributed over one of the external surfaces QA, and therefore the
summation with respect to the A in the last equation of (20) is not required; GA (V)isa28x 1 column, which initially depends
on the nodal values of the normal nlé to the external surface of the deformed shell and finally, in view of relations (7), (13),
A,
>

(14), and (16) — on the nodal displacements u;,; D is the matrix of elastic coefficients of the layered composite, whose ele-

ments are determined from the formulas

D;l]ifl :Z J‘C;;lm (N~ )Z—S]—sz (N+ )s]+s2 d63 (Sl’ 5y = 0, 1),
L ki

e2))

100 01 1
Dasps =D 353 2D 555 + D 5p30

where C;;lm are the rigidities of a kth layer.

We should note that the system of equations (20) was derived on the assumption that the metrics of the external shell
surfaces are equivalent to the metrics of the midsurface; an analytical integration [6-9], which is the prerogative of a geometri-
cally exact shell element, was also performed.
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To solve the nonlinear system (20), we will use an incremental approach. Let us consider two deformed (not necessar-
ily close to each other) states of the shell and mark the quantities describing the previous state of the shell with a left superscript
¢t and those belonging to the subsequent state with a left superscript 7 + At, i.e.,

HAL LAt LA L ARA ALYy LAY
(22)

t+ At £ _t E"2 + AEN™ , t+ At H1™2 _t H1"2 + AH1 ,

where Ap™, AV, AE'"2, and AH" are incremental variables.

Inserting Eqgs. (22) into Eqgs. (20) and assuming that the latter are valid for an “instant of time” ¢, we come to an incre-
mental form of the equilibrium equations for the finite element of the shell under the action of a follower pressure:

AE"> =(Q""2)T (B"" 4+ 2R""2 'V + R""2 AV)AV,

AHrlrz _ (errz )T Derrz AErlrz ,
(23)

Z 1 {Z(errz AV )T errz tHrlrz + [B"lrz + 2R (tV +AV )]T errz AH'1"2 }

3}’1+}"2

11
=('p* +ap"IGA(V +AV) ' pAGR (V).

The solution of incremental equations (23) is obtained according to the Newton—Raphson method by presenting the it-
erative process in the form

AV Ay (n] +A\7[”]’ AR+ Agninln] +AEr1rz["]’ 24

AR agrnln] Al (=0, 1,0,
Substituting relations (24) into Egs. (23), linearizing the resulting equations, and excluding the incremental strains
AE""21"] and the incremental resulting strains AH'2l") | we come to the resolving FEM system of equations

KAV = AR (25)

where K=K + Ky + K| is the tangential rigidity matrix of the shell element, and AF s the column of the right-hand
sides, which are calculated as
Kp = Z 1 (tL”I”z[”] )T D2 tLr]rz[n],

3r1+r2
n.n

_ 1 nr s nn Aaghinlnl y\pnn
Ky _223n+r2 Q"2 "H'"2 + Q"2 AH R"2,
rl ,rz

A A
Ky =—('p"* +ap™)

oGt [n]
T ('v+aviny 26
v ¢ ) (26)
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Fig. 2. A ring under the action of a follower load.

AFL"] :_Z — ir [(ZL’”l’”z[”] )T D2 (tLrlrz[”] _R'12 AV )
31t
n.n

" 2(Qr]r2 tHr]r2 )Rr]rz ]AV[n] +(tpA +ApA )GA(tV +AV[n] )—tpAGA(tV), (26)

tLr1r2[i1] — B2 LR (tV +AV[n] )’ D2 =Qr1r2 (Qr1r2 )T DQr1r2 (errz )T )

Note. The rigidity matrices Kp and Ky are symmetric. The symmetry of the second matrix can be revealed by using
the results obtained in [9]. However, the rigidity matrix K| , corresponding to the action of a follower load, is generally asym-
metric [1, 19]; therefore, the solution of the system of linear algebraic equations (25), (26) is performed by the modified Gauss
method for banded matrices [1]. We should also mention that the incremental resulting strains at an nth step of the iterative pro-
cess are calculated by the formula

Q"]”zAHrlrz[”] =D"1"2 {[B""2 + 2R""2 (tV LAyl )]Av["]
—(R2AVITIAY I Ay —g A2l Zg) p=1,2, ..
The iterative process is continued until the fulfillment of the inequality

HU[”+ 1] _U[n]

< SHU["]

’ 27

where Uis the global vector of nodal displacements,

. H is the Euclidean norm in the space of displacements, and ¢ is the calcu-
lation accuracy required, which is specified a priori.

Numerical Results

As a first example, we consider an isotropic ring (Fig. 2) (£ =2.1 107 andv= 0.3) and a two-layer composite ring
(Ep =25 107, Er = 10°, Gy =5 10°, Grp =2 110°, and vir =vrr =0.25) under the action of a nonuniformly distributed
follower pressure p(@)= pg(1—ecos 2¢). The geometrical parameters of both rings are »= 100, 2 =1, and b = 20. The sub-
scripts L and T correspond to the reinforcement and transverse directions of the composite material. The thickness of layers of
the composite ring are assumed to be the same, i.e., h; =k, =0.5, but the reinforcement directions in the internal and external
layers coincide with the circumferential and longitudinal directions, respectively.
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Fig. 3. Relations between the load and deflection —uM with (—) and without (- - -) account of

3
the follower load for the homogeneous (a) and the two-layer composite (b) rings. (O) — data
[19] obtained by analytically solving the bending problem for an isotropic ring [20].

TABLE 1. Transverse Displacement u3 = u3M / rat the Points A and B of the Homogeneous

Ringate=1and py =3

NStep =1 NStep =15 NStep =10
Element
u3(A) | —u3(B) | Nlter | u3(A) | —u3(B) | Nlter | u3(A) | —uz(B) | Nilter
GEX7P4F  0.3660 0.8407 7 03660 0.8407 25 03660 0.8407 50
GEX7P4 0.3554  0.8220 6 0.3554  0.8220 18 0.3554  0.8220 30
TABLE 2. Transverse Displacement u3 = u3M / rat the Points A and B of the Two-Layer
Composite Ring ate=1 and p, =0.4
NStep =1 NStep =5 NStep =10
Element
u3(A) | —3(B) | Nlter | u3(A) | —u3(B) | Nlter | u3(A) | —u3(B) | Nlter
GEX7P4F 03647 0.8798 7 0.3647 0.8798 24 0.3647 0.8798 50
GEX7P4 0.3529 0.8831 6 0.3529 0.8831 18 0.3529 0.8831 30

Owing to symmetry of the problem, we consider only a quarter of the ring and use uniform 18 x 1 finite-element
meshes. The calculations were carried out with the help of GEX7P4F and GEX7P4 geometrically exact bilinear shell elements
developed with and without account of the follower load, which additionally allowed us to model a plane stress state. Figure 3
shows the load—deflection curves obtained at different values of the eccentricity e. As nondimensional load parameters,
Po =12pg = / Ebh* was chosen for the homogeneous ring and p, =12p, = / ELbh3 for the composite one. The dots illus-
trate the data obtained in [19] by analytically solving the bending problem for an isotropic ring [20]. As is seen, the results of
calculations with and without account of the follower pressure considerably differ at large deflections and small values of ec-

centricity. In Tables 1 and 2, the transverse displacement ug/l at the points A and B obtained by using different numbers of load
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Fig. 4. Schematic sketch of a cross-ply rubber-cord toroidal shell.

1.0 Po- MPa

0.6 -
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Fig. 5. Relations between the load p( and deflection uM with (—) and without (- - -) account

3
of the follower load for the rubber-cord toroidal shell.

TABLE 3. Transverse Displacement u;v[ (mm) at the Points A and B of the Cross-Ply
Rubber-Cord Toroidal Shell at p, = 1 MPa

NStep =1 NStep =5 NStep =10
Element
A | B | Niter | A | A B) | Niter | d(A) | 1 (B) | Niter
GEX7P4F 33409 25721 5 33409 25721 20 33409 2.5721 40
GEX7P4 33057 2.5649 5 33057 2.5649 16 3.3057  2.5649 31

steps, NStep, is presented, and the total number of iterations, Nlter, necessary for achieving the specified accuracy e= 10°° ac-
cording to the criterion of convergence (27) is shown. We should mark off two important results: first, the solution of bending
problems for isotropic and composite rings under the action of a follower pressure is possible without the use of the incremental
approach (NStep = 1) and requires only seven iterations, and, second, the number of loading steps does not affect the calculated
values of displacements, which confirms the efficiency of the geometrically exact shell elements constructed.
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Now, let us consider a four-layer cross-ply rubber-cord toroidal shell of circular cross section, loaded with a pressure
po uniformly distributed over its inner surface (Fig. 4). This shell will be used for modeling a diagonal tire. The initial charac-
teristics of the elementary rubber-cord layers are [21] £y = 510.45 MPa, E1 = 6.91 MPa, G 1 =2.33 MPa, Gt = 1.77 MPa,
and vy 1 =0.46. Let the shell thickness be /= 4.8 mm, the thickness of a rubber-cord layer ;, = 1.2 mm, and the orientations of

rubber-cord layersy; = (—1)"71 v, where y=45°and k = 1, 4. As a reference surface, we assume the shell midsurface formed by

rotation of a part of the circumference of radius R = 50 mm. The distance from the rotation axis to the equator of midsurface

R =250 mm; the cross sections of the shell with the coordinates £120° are rigidly clamped.

Calculation results for the tire under the action of follower and conservative loads were obtained by using regular 24 x
1 finite-clement meshes at = 10~° (see Table 3 and Fig. 5). As is seen, the data in Tables 1 and 3 agree in a qualitative sense
with each other. In particular, the solution of this problem for a diagonal tire can also be found without using the incremental
approach. However, here the influence of the follower load does not appear so noticeably (see Figs. 3 and 5).

In the following investigation, the present authors are going to generalize the results obtained and use them for calcu-
lating a rubber-cord shell of revolution in the presence of unilateral restrictions.

This study was financially supported by the Russian Fund for Basic Research (Project No. 08-01-00373) and the Min-
istry of Education of Russian Federation (Project Ne 2.1.1/660).
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