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ON THE PROPAGATION OF LAMB WAVES IN A SANDWICH
PLATE MADE OF COMPRESSIBLE MATERIALS WITH FINITE
INITIAL STRAINS
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The propagation of flexural Lamb waves in a prestrained sandwich plate made from compressible highly elas-

tic materials is investigated within the scope of a piecewise homogeneous body model by utilizing TLTEWISB.

The mechanical relations of layer materials are described by a harmonic-type potential, and numerical results

are obtained for the first and second vibration modes. According to the results, the influence of problem pa-

rameters and of the initial stretching strain along the layers on the wave propagation speed is examined. The

asymptotic values of the speed are considered in the cases of short and long wavelengths, and the influence of
the initial strains on these asymptotic (limit) values are also analyzed.

Introduction

The present level of modern engineering and technology requires a more detailed and accurate estimation of the dy-
namic carrying capacity of structural members, with taking into account their initial distinctive features. One of the features of
structural members is the presence of initial (residual) stresses in them. These stresses arise in the members after their manufac-
ture and assembly, in the Earth crust from the action of geostatic and geodynamic forces, in composites, in rocks, etc. There-
fore, the studies on wave propagation in bodies with initial stresses are of great significance both for the theory and the actual
practice. Up to now, a large number of investigations have been made in this field, and a considerable part of them were per-
formed by utilizing the Three-dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies (TLTEWISB).
Here, we briefly consider some of them with regard to the subject of the present paper.

The field equations of TLTEWISB were constructed in [1-3]. Moreover, in [3], detailed analyses of the results ob-
tained and of their applications were also carried out. It follows from these references and the review [4] that wave propagation
problems for prestressed multilayer cylinders and plates remain practically uninvestigated up to now. Also, the near-surface
waves in initially stressed layered half-planes have been examined very poorly. The first attempts in this field were made in
[5-8]. In [5], the axisymmetric wave propagation in a prestretched compound cylinder was considered, but in [6, 7] problems
on the generalized Rayleigh wave dispersion in a layered half-plane were studied.
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Fig. 1. Geometry of the sandwich plate considered.

In [8], the propagation of Lamb waves in a prestrained sandwich plate made of incompressible high-elastic materials
was investigated. However, the character of the investigation and discussions of the numerical results obtained in [8] do not al-
low one to draw any conclusion about the influence of initial strains on the propagation of Lamb waves in a sandwich plate.
Since systematic investigations into the problem are absent, in the present paper, an attempt is made to bridge the gap. It is as-
sumed that the layers of a sandwich plate, which are made of high-elastic compressible materials, are prestrained before their
assembling. The mechanical properties of layer materials are described by a potential of harmonic type.

More detailed analyses of recent investigations into the dynamics of initially stressed bodies can be found in [9-17].

1. Formulation of the Problem

We consider a sandwich plate with the structure shown in Fig. 1 and assume that the thickness and materials of the face
layers of the plate are the same. We differ three (natural, initial, and perturbed) states of the plate, and relate the points of the plate
in the natural (initial) state to the Lagrange coordinates in a Cartesian coordinate system Ox;x,x3(Oyy ¥, ¥3). In addition, the
midplane of each layer of the plate in the initial state is associated with the corresponding local coordinate system O, x;,,X2, X3, (
O, Y1 Y21 V35 )> Which is obtained by a parallel transition of the coordinate system Ox;x,x3 (Oy; ¥, ¥3) along the Ox, (Oy,)
axis. The layer materials are high-elastic, and the layers are prestretched by uniformly distributed normal stresses (Fig. 1) before
their assembly. As a result, initial strains in the layers, which are homogeneous, are determined by the relations

ufr”)’o =(7u(ir") 1) k(l.r") =const,,, H =13 =2 1 =L y, = (ir")xm ;o nomi=1,2,3. 1)

In Eq. (1) and in what follows, the conventional notation is used, and the quantities related to an nth layer are denoted
by the superscript (7, ). The quantities referring to the initial state are labeled by the superscript 0.
The elastic properties of layer materials are given by the harmonic-type potential

1, 2
D=—As] +usy,
5 M uss )

where

sp =14 28] +.[14 285 +,/1+283 =3,

53 =(J1+2e; 1% + (J1+ 285 —1)? +(J1+ 265 —1)°.

In relation (3), A and p are material constants, and €; (i=1, 2, 3) are the principal values of the Green strain tensor.

3)

When needed, expressions (2) and (3) are supplied with corresponding indices.
Taking into account the foregoing assumptions, we will investigate the propagation of Lamb waves in a sandwich
plate within the scope of a piecewise homogeneous body model, by utilizing TLTEWISB under the plane strain state in the

Oy, ¥, plane, for which k(;) = 7»(32) =1.0 and 851),0 = 8%2),0 = sgl) = 8(32) =0.
The field equations of TLTEWISB for the problem considered are
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the equation of motion

(ry) 2. (1)
an] :p(rn) 0 uj A
ayin 6t2 ( )
and the mechanical relations
) ( () ()
00 — o) O o) 92" e o O ) O
11 1 gy, 122 5, 12 1212 1221 gy, -
(%)
() () () )
Q(rn) :m(rn) ul (D(rn) auz Q(rn) :(D(rn) ul (rn) auz
21 2112 7 2121 5, - 2 2117, 222 5,
where
7\((}’11) }\'(rn) m(rn)x(rn)
(n) _ 71 (1) (ry) (r) _"2 (1) (1) ) _ () _a(n) ) _ () _ 2
O = N A7+ o) G A7+ 2070) oy =0y =ML o =0y, = NN
2 1 )
(6)
) g eyt
©1221 =P112 = =nBT4 D=

——————, K
}\'(Zrn) (;\‘(1’}1) + )\'(Zrn) )

In Egs. (4) and (5), the following notation is used: ng.r”) are the perturbations of components of the Kirchhoff stress

tensor in an nth layer, u E.V") are the components of perturbations of the displacement vector, and p ) s the density of the mate-

rial of the nth layer.

Note that, in the theory of large elastic deformation, a symmetric stress tensor S U s also introduced. The compo-
nents S l.g.r”) of this tensor are determined through an elastic potential:

S 2;( ?r) " ?r)wd)(r")’
L Oe i 68].1.” )
() ) () ()
) =1(5”i N Ou; L ou oy \
Y 2L Oy Oxy o Oy Oxgy J

() ; : :
where g, are components of the Green strain tensor in the nth layer. According to Egs. (1)-(3) and (7),

(rn)’o — (Vn) (rn) (rn) (Vn) (rn) (rn) 71 (rn) —
S0 =) o8 1200 ~2) 40 ) A0 10T, s =0

It follows from the problem formulation that S gg,),o = 0, from which

(rn) — (rn)_ (rn) (rn)_ (rn) (rn) -1
2 = ) 0 () —2y) (W) 4 2 )y

The initial strains and stresses in the layers depend on the elongation parameter %(lr"), but the perturbations of compo-

nents of the nonsymmetric Kirchhoff stress tensor Qig.r") are determined by the expressions
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(1) ou
[ ) o O
Q" = Sy +—— S, 8,

OV mn " Vm ’ (3)

where S l(r:f) are the perturbations of components of the symmetric stress tensor s,

By employing the linearization procedure, the following relation is obtained from Eq. (7):

G0 _ () oul
1"1 lmaB ayﬁn )

)

) _I(Saf”ér")Y 2 2 o gpmo

Vimap = 4| % "5, 5 (r o 260 | o0 " 560 J
kn eip ea € €
Substituting relation (9) into Eq. (8) and using expressions (1)-(3), after some mathematical manipulations, we obtain
Egs. (5) and (6).
We assume that the face planes of the plate are force-free:

0’ Q('})

2i

Q ('fl )
bY)

= = 0.
=h®0 2 Y= @12 2 (10)

At the same time, between the layers of the plate, the complete contact conditions

jQ(”l)l Q(”z)

(r) (n)
luirl Jy21=—h(2)7“(22)/2 tuir Jy22=h(l)7“(2l)/2

e
4

(”2) [u_(”s) J
y22=—h(1) 7»(21) /2 i y23=h(2) }‘(22) /2

>

(1)

are obeyed.

A more detailed description of deduction of the foregoing basic equations of TLTEWISB is given in the monograph
[3]. Note that, in the absence of initial strains in layers of the sandwich plate considered, the foregoing problem transforms to
the corresponding one of the classical linear theory of elastodynamics.

2. Solution Procedure and Deriving the Dispersion Equation

Substituting Eq. (5) into Eq. (4), we obtain the equation of motion in displacements

2 () 2 () 2, %) 2 ()
iy Oy O () o 2 o 0T
O1111 5 T 5 (@) Ty =p" 7
oy, oy, oy 8yz ot
(12)
52 (r) 2. (1) 2 (r) 2 (1)
(o) + ot ) e O ) 0T i T
1212 2211 6 6)/ 1221 aylz 2222 ay; 612

Since y11 = y12 = ¥y, the displacements can be presented as
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u{™ (71, 920, 0) =U ™ (33, )exp il oot (3)

Substituting Eq. (13) into Eq. (12), we obtain the following equations in the unknown functions U l.(r") (Yan )

dzU(rn) U(’”)
() 1 o (1) (V) ¢ ) o2 2 (r) () _
D112 5 k(o) + +(p —kop U =0,
Von D2 (14)
dzU(rn) du(”)
(1) 2 . (1) (V ) 1 (r, ) 2 2 () () _
©3720 02 + k(o)) +©)51,) p +(p —kTop U,
A Yon

After some mathematical manipulations, we have from Egs. (14)

() 27 7(ry)
aw® [ y . T )
p =1 ay, D) + n 2 J, 5
Y2on dyZn (15)
d4U(”n) dzU(r’)
42 +ay, 22 +b, U( ) =, 6
dyzn dyzn (16)
where
D111 _ 2222 _ 2 2 () () () () -1
ap = k(’)—(’) RN ayy =[by (@7 k7o) )+ a, o)y +k(op, + 2121)][‘”21121’] :
(@37 +@551,) (@37 +@551,)
Let us consider the solution of Eq. (16). Using the representation U ér”) (yo,)=F l(r”) exp(M, Y2, )» we obtain the equa-
tion

4 2
N, +ayMy, +b1, =0

forn,,, wherefrom

2
a
ﬂi :_alzn tyD,, D, = ;n —by,.

Thus, we have various solutions to Eq. (16) depending on the sign of D,, and n%.

For the case D, <0, the solution is

Uérn) (y2n ) ZFl(rn)COSh ((Xn Yan )cos (Bn Yan )+F2(rn)COSh (an Yon )sin (B”’ Y2n )

+F"sinh (ct,, 3, )sin (B, ¥2, )+ FAsinh (ct,, 2, )eos (B, 2, )
(17)

159



In the case D, > 0, the solution of Eq. (16) depends on the sign of the quantities nlzn =—a12” +4D, and

ngn =— alz” —./D,, . These solutions can be classified as follows:
>0andn 2 50
n 2n ?

U™ (y2n) =F " eosh (11, y2, )+ Fy " sinh (1 y2 )+ Fyeosh (N2 y20 )+ F{Wsinh 2, 720)5 (1)

ifnlzn >0andn§n <0,

US™ (72)= F)"eosh (11, y2, )+ Fy sinh (11, 2, )+ F3™ cos (M v2, )+ F{™ sin (20020 (19
o 2 2
1fn1n <Oandn2n >0,
U(rn)( )=F(rn) cos (_ +F(rn) 1 1 F(rn) h F(rn) nh .
) Yan 1 nlnyZn) 2 Sln( nlny2n)+ 3 Cos (nZnyZn )+ 4 St (n2ny2n)’ (20)
ifnlzn <0andn§n <0,

U™ (72)= F\"™ €08 (M1 y2 )+ Fy ™ sin (A1 720 )+ Fy €08 (M2 120 )+ F,7 sin (o020 oy

For each of cases (17)-(21), the expressions for U l(r") (2, ) are found from Eqgs. (15) and the expressions for Ql.(jr”)

from Egs. (5) and (13). Using these expressions, we obtain a linear system of algebraic equation for the unknown constants

F l(r") ,F 2(r") ,F 3(r”) ,and F 4(r”) from boundary condition (10) and contact condition (11). For the existence of nontrivial solutions

to this system, its determinant must be equal to zero, i.e.,

detly ] =0, i,j=12...,12 (22)

XU =Xij(cakHik(IZ)a}\/(ll)sh(l)/h(Z) 5u(2)/u(1)a}\/(2)/u(2) s}\'(l)/“(l)v p(Z)/p(l) )9

where
c=a/k, H=2H® +HO.
Relation (22) is the dispersion equation for the wave propagation problem considered. The explicit expressions for y ;;
occupy considerable space and therefore are omitted here. Thus, for every value of the problem parameters X(lz), k(ll),

H(l)/H(2), n ) /u (1), k(z)/u (2), k(l)/u (1), and p ) /p (1), we can construct the dispersion curve ¢ = c¢(kH ) from the solution

of Eq. (22) and investigate the influence of these parameters on the curve.
3. Numerical Results and Discussions

It is known that, in the case of Lamb waves in a homogeneous plate, the extensional and flexural modes do not depend
on each other, and they can be investigated separately. Note that the possibility of such a separation is caused by the geometrical
and mechanical symmetry of the problem with respect to the midplane of the plate. Since the problem considered has also this
symmetry, we can analyze the flexural and extensional Lamb waves in the sandwich plate individually. The corresponding
relations for the modes are
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Fig. 2. Dispersion curves for the first (a) and second (b) modes in the absence of initial strains in layers of the plate. Num-
bers at the curves are the values of u(z) /u . 7»(12) = k(ll) =1.0;H= 20 +H(1); H® =pgO,
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The case k=2 (k= 1) pertains to the flexural (extensional) modes. In this paper, we will analyze only the numerical re-
sults for the flexural modes. To simplify the considerations, we will assume that X(l)/p M= l(z)/p @ = 1.0, H(l)/H(Z) =1.0,
andp 2) / p M =1.0. Moreover, we will consider only the first and second modes, because the character of dispersion curves of
the third and subsequent modes are similar to that of the second mode.

First, let us consider the case where initial strains in all layers of the plate are absent, i.e., 7»(12) = K(ll) =1.0. The disper-
sion curves constructed at various values of ) / 0 M are given in Fig. 2 for the first and second modes, respectively. Note that

the dispersion curves constructed at @ / 1) () = 1.0 coincide with those following from the linear theory of elastodynamics,
which can be found in the monographs [2, 3] and elsewhere. It follows from the graphs in Fig. 2a that, at all the values of

n @) / 1 ) selected, for the first mode, ¢ cgz N 0(where C§2) is the speed of the distortion wave in the face layers) as kH — 0.
At the same time, the limit values of c/ 052) as kH — 0 differ from each other at various values of u(z) / 1) D In the case
n & /u M = 1, this limit is cj(ez) /CEZ) , where 61(22) is the speed of the Rayleigh wave in the plate material. For p ) /u QN 1, this
limit is equal to Cgl) /cgz). As Cg) /cgz) = L/w/p ) /u ) , the limit values of ¢ ng) at kH — oo decrease with & /u M This

conclusion is supported by the graphs given in Fig. 2a

The dispersion curves depicted in Fig. 2b show that, for the second mode, c/ cgz) does not tend to a finite limit as
kH — 0. At the same time, the limiting value of ¢ 652) as kH — o is equal to min {cl(ez)/céz); cl(l)/cgz)}. For example, at
u(z) /u M =2, this limit is equal to c](ez)/cgz), but, in the cases u(z)/u(l) =5 and 10.0, it is equal to cl(l)/cgz), where
el = \/(xﬂ) 2 My/p 0,

Figure 2a shows that the character of behavior of dispersion curves for the first mode, within the foregoing limit values

of c/ ng)’ depends on p @) / U D The ratio ¢ c§2) increases monotonically with kH at ) / n M =1 and 2.0, but the relation-
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Fig. 3. Influence of initial strains of face layers of the plate on the dispersion curves for the first (a) and second (b) modes.
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Fig. 4. Influence of initial strains of the midlayer of the plate on the dispersion curves for the first (a) and second (b) modes.
1— P =120 =175, 2— 0@ = a0 =155,3 — P =12 =12}, and 4 — P =2 = 1.0}
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ship between ¢ ng) and kH is nonmonotonic at p @) / U M =5 and 10. Figure 2b shows that, for the second mode, c/ 052) de-

creases with kH for all the values of p 2) / 0 D selected.
We will now analyze the numerical results for the influence of initial strains of layers of the plate on the dispersion

curves. Let us consider the case p ) / n M= 5, and first assume that initial strains occur only in the face layers of the plate, i.e.,

k(lz ) >1and K(ll) =1. The corresponding dispersion curves are given in Fig. 3 for the first and second modes, respectively. Ac-
cording to mechanical considerations, in the case analyzed, the ratio ¢ cgz ) must have the same limit at ki — oo for all the val-
ues of X(lz ) considered, and this limit must be equal to cél) / cgz) (cl(l) / c§2)) for the first (second) mode. This prediction is sup-
ported by the graphs given in Fig. 3. At the same time, Fig. 3a shows that, for k(]z) > 1, the limiting values of ¢ cgz) atkH — 0
are finite and differ from zero. The limiting values mentioned increase with 11(2). Also, the values of ¢, cgz) obtained for each
kH increase with 11(2). The foregoing results qualitatively agree with the corresponding results obtained for the homogeneous

prestressed plate and analyzed in the monograph [3].
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Fig. 5. Dispersion curves for the first (a) and second (b) modes in the case where initial strains occur in all layers of the
plate. 7»(12) = k(ll) (numbers at the curves).H = 20 +H(1), H® =H(1), p(z)/p M =35

Let us consider the case where the initial strains occur only in the midlayer of the plate, i.e., x(lz ) =1and xﬁ“ >1. The

dispersion curves constructed for this case are illustrated in Fig. 4 for the first and second modes, respectively. It follows from

these curves that, at kH — oo, the limit of the ratio c/ 652) depends on the parameter k(ll). Actually, cg) and cl(l) depend on the
parameter k(ll), ie., cg) = cgl) (k(ll) )and cl(l) = cl(l) (k(ll) ), and this limit is equal to cgl) (k(ll) )/céz) (cl(l) (k(ll) )/cgz)) for the
first (second) mode. Note that the character of the dependences cg) = cgl) ( k(ll) )and cl(l) = cl(l) (k(ll) )was studied in the mono-
graph [3], where it was established that cgl) = cél) (k(ll) )and cl(l) = cl( D (K(ll) )both increase with k(ll) . Therefore, in the case con-
sidered, the limiting values of ¢ céz) at kH — oo increase with k(ll). Figure 4a shows that, as in the previous case, for the first

mode, the limit values of ¢ c§2) at kH — 0 differ from zero and increase with X(ll). However, these values are significantly
smaller than those in the previous case.

Finally, let us consider the case with X(lz) >1 and k(ll) > 1. The dispersion curves obtained are given in Fig. 5 for the
first and second modes, respectively. An analysis of these curves shows that, for each fixed k(l), the limiting value of ¢ 052) at

kH — o coincides with the corresponding one obtained at ?»(12) =1and k(ll) >1. At the same time, the limiting values of ¢ ng)

at kHH — 0, as in the previous cases, differ from zero and increase with A (= k(lz) = k(ll) ). Moreover, these values of ¢ cgz ) are

significantly greater than those in the previous cases.
5. Conclusions

In the present paper, the propagation of flexural Lamb waves in a prestrained sandwich plate made from compressible
high-elastic materials have been investigated within the scope of a piecewise homogeneous body model by utilizing
TLTEWISB. It was assumed that the mechanical relations of layer materials could be described by a potential of harmonic
type, and particular numerical results were found for the first and second modes.

From the numerical results obtained, the following conclusions can be drawn:

e Inthe case where initial strains are absent in layers of the plate, for the first mode, ¢, 052) — 0 (where cgz) is the speed
of the distortion wave in the face layers) as kH — 0, but the limiting values of ¢, c§2) as kH — oo differ from each other

for various values of u @) /u D in the case n ) /p M= 1, this limit is cg) /ng) (= cg) /cgl)), where 01(3)(: cg)) is the
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speed of Rayleigh wave in the plate material; however, at u(z)/ u(l) >1, this limit is equal to cgl) / cgz). As
cgl) /052) = ]/w“,t 2) /p. D the limiting values ofc/cgz) decrease with @ /u () as kH — oo, For the second mode, the
values of c/ c§2) do not tend to a finite limit with kH — 0, but the limiting value of ¢ cgz) is equal to 61(32) / cf);
cl(l)/cgz)} as kH — oo,

The wave propagation speed decreases with p ) / u .

The initial stretching increases the speed ¢ cgz) of the flexural Lamb wave considered.

For the first mode, as a result of the existence of initial strains, the limiting values of ¢ c§2) as kH — Odiffer from zero

and increase with initial strains.
The limit of c/ cgz ) at kH — depends on the parameter k(ll).
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