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Based on the dis crete-struc tural the ory of thin plates and shells, a vari ant of the equa tions of buck ling sta bil ity, 

con tain ing a pa ram e ter of crit i cal load ing, is put for ward for the thin-walled el e ments of a lay ered struc ture

with a weak ened in ter fa cial con tact. It is as sumed that the trans verse shear and com pres sion stresses are

equal on the in ter faces. Elas tic slip page is al lowed over the in ter faces be tween ad ja cent lay ers. The sta bil ity

equa tions in clude the com po nents of geo met ri cally non lin ear mo ment subcritical buck ling con di tions for the

com pressed thin-walled el e ments. The buck ling of two-layer trans versely iso tro pic plates and cyl in ders un der

ax ial com pres sion is in ves ti gated nu mer i cally and ex per i men tally. It is found that vari a tions in the ki ne matic

and static con tact con di tions on the in ter faces of lay ered thin-walled struc tural mem bers greatly af fect the

mag ni tude of crit i cal stresses. In solv ing test prob lems, a com par a tive anal y sis of the re sults of sta bil ity cal cu -

la tions for anisotropic plates and shells is per formed with ac count of both per fect and weak ened con tacts be -

tween ad ja cent lay ers. It is found that the model vari ant sug gested ad e quately re flects the be hav ior of lay ered

thin-walled struc tural el e ments in cal cu lat ing their buck ling stability.

In tro duc tion

In the ma jor ity of stud ies ded i cated to the in ves ti ga tion of buck ling sta bil ity of com pos ites shells, it is as sumed that the 

con di tion of a per fect con tact be tween their lay ers [1-3] is sat is fied. This as sump tion is one of the ide al iza tions in tro duced in

the cal cu la tion model of lay ered shells. In prac tice, as a rule, ar eas of lo cal ad he sion fail ure and delaminations oc cur at layer in -

ter faces. In this case, the as sump tion of con ti nu ity of dis place ments and stresses upon cross ing the interfaces can be violated

considerably. 

The cal cu la tion model of shells with delaminations sug gested in [4], in which the pres ence of interlaminar de fects is

taken into ac count by mod i fy ing the ex pres sion for the flex ural ri gid ity, seems to be the sim plest one. It is ob vi ous that this

model does not al low us to an a lyze a num ber of me chan i cal phe nom ena that ac com pany the pro cess of subcritical de for ma tion

and buck ling of layered structures. 
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A so lu tion to the prob lem of sta bil ity of struc tural el e ments with delaminations, with ac count of lo cal ef fects, is given

in [5, 6], where the ef fect of the sizes and ar range ment of interlaminar de fects on the sta bil ity of cy lin dri cal and spher i cal shells

is ex am ined. Multilayer shells of rev o lu tion with gaps be tween their lay ers were considered in [7].

The ques tion on the ac cu racy of the re sults of sta bil ity cal cu la tions for shells with delaminations, ob tained un der var i -

ous as sump tions, was in ves ti gated in [8]. It was found that, in prob lems on the sta bil ity of lay ered shells with an im per fect con -

tact be tween lay ers, the two-di men sional the ory led to more se ri ous er rors than in the case of het er o ge neous shells with out de -

fects. A de tailed anal y sis of re cent re sults and trends in the de vel op ment of sta bil ity the ory for lay ered plates and shells can be

found in re view [9].

In the pres ent study, for mod el ing the ar eas of a weak ened in ter fa cial con tact, a vari ant of the model of con tact prob -

lem on the ad he sion of rigid anisotropic lay ers is con sid ered. It is typ i cal of this model vari ant that the static con tact con di tions

are ful filled at the in ter face be tween in di vid ual lay ers (the first model). The in ter fa cial tan gen tial and nor mal stresses on the

con tact bound ary are as sumed equal. In this case, elas tic slip page is al lowed over the in ter face of ad ja cent lay ers. If, on some

lo cal area of the shell, a glue layer is ab sent, a uni lat eral con tact be tween rigid layers is taken into account in this area [10].

The re li abil ity of re sults ob tained by the first model was es ti mated by us ing the con tin u ous struc tural model of the the -

ory of plates and shells (the sec ond model). The sec ond model is well known and is fre quently used to cal cu late anisotropic

thin-walled el e ments, when lay ered plates or shells, piecewise-inhomogeneous across the thick ness, are re garded as quasi-ho -

mo ge neous with re duced elas tic char ac ter is tics.

State ment of the Prob lem and the So lu tion Method 

It is as sumed that the multilayer shell con sid ered con sists of n thin anisotropic lay ers (Fig. 1). Each layer of the

undeformed shell is re lated to an or thogo nal curvilinear co or di nate sys tem a i  (i  = 1, 2), z k( ) . The z k( )  co or di nate is di rected

along the com mon nor mal m( )k  to the midsurface S k( )  and an equi dis tant sur face S z
k( ) ; k is the layer num ber. In in tro duc ing

new sym bols, the sub script “z” means that the cor re spond ing quan ti ties re fer to a point (a1, a 2 , z k( ) ) on the equidistant surface 

S z
k( ) .

The vec tor of to tal dis place ment u z
k( )  of a point of a rigid layer, ac cord ing to the re fined Timoshenko the ory of shells,

can be pre sented in the form 

u uz
k k k k k kz z( ) ( ) ( ) ( ) ( ) ( )( )= + +g yj , (1)

where u ( )k  is the dis place ment vec tor of points of the midsurface S k( ) ; g ( )k  is the vec tor func tion of ro ta tion an gles and com -

pres sion of the fi bers per pen dic u lar to the undeformed midsurface S k( ) ; j( ) ( )k z   is a non lin ear con tin u ous dis tri bu tion func -

tion of tan gen tial dis place ments across the layer thick ness, whose anal y sis and ap prox i ma tion are pre sented in [11]; 

y ( ) ( ) ( )( , )k k ka a
1 2

  is the vec tor func tion of shear. The covariant com po nents of the vec tors u ( )k , g ( )k , and y ( )k  are given by

the ex pres sions 

u r m( ) ( ) ( ) ( ) ( )k k i
i
k k ku w= + ,   g ( ) ( ) ( ) ( ) ( )k k i

i
k k k= +r mg g ,

(2)

y ( ) ( ) ( )k k i
i
k= r y .

The com po nents of the ten sor of fi nite strains at a point (a1, a 2 , z k( ) ) is de ter mined as half-dif fer ences be tween the

com po nents of met ric ten sors be fore and af ter deformation: 
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(3)
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If we as sume that the ax ial lines of the gen eral and lo cal co or di nate sys tems co in cide along the nor mal to the

midsurfaces of in di vid ual lay ers of the shell and the lo cal co or di nate sur faces co in cide with the layer midsurfaces, the Reissner

variational equa tion for the multilayer shell can be written as 
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ab
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n

R
k

k

n

V
k

k

k

= = - -
= =
å å òòò

( ) ( )
( )

( ) (

( )

(
1 1

k

k

n

dV) ) =
=
å 0

1

  (a, b = 1, 2, 3).
(4)

The lay ers are num bered from unity to n, be gin ning with neg a tive val ues of the co or di nate; F k( )  is the ad di tional unit

work of de for ma tion; sab
( )k

 and e
ab
( )k  are the com po nents of stress and strain tensors. 

If the ki ne matic and static per fect con tact con di tions are ful filled be tween the ad ja cent faces of layers 
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the vari a tion of the el e men tary work of ex ter nal forces dAR  can be pre sented in the form 
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Here, S k( )  is the layer midsurface; l k
1
( )  and l k

2
( )  are parts of the con tour l k( ) . The vec tors of ex ter nal forces X ( )k , mo -

ments M( )k , and ad di tional mo ments B ( )k , which en ter into Eq. (6), are de ter mined by the equal i ties 
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Fig. 1. Structure and designation of layers across the thickness of a thin-walled structural

element.
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where the vec tors X
( )k
+  and X ( )k

-  con tain the contravariant com po nents s
( )k
i3+  and s

( )k
i3-  (i  = 1, 2, 3) of the ten sor of con tact

stresses: 
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In Eqs. (7) and (8), the su per scripts “+” and “–” de note the up per and lower faces of a layer con sid ered. The vec tors of

ex ter nal loads q
( )n
+  and q( )1

-  are writ ten in a sim i lar way: 
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The vec tor P( )k  takes into ac count the in flu ence of the dead weight. 

The ex pres sion of el e men tary work (6) also in cludes the vec tors of force F
( )k
S , mo ment G

( )k
S , and ad di tional mo ment 

L
( )k
S , which arise un der the ac tion of the given ex ter nal con tour forces on l k

1
( ) . The vec tors of force F( )k , mo ment G( )k , and ad -

di tional mo ment L( )k  oc cur at points of the con tour l k
2
( )  if the dis place ment vec tor of con tour points u

S
k( )  is given.

The sec ond term of Eq. (4) can be pre sented in the form 
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In sert ing geo met ri cal re la tions (1)-(3) into Eqs. (4), (6), and (9) and us ing the Reissner variational prin ci ple, we

readily come to the sys tem of equi lib rium equa tions, the phys i cal re la tions, and the static and ki ne matic bound ary con di tions

for each in di vid ual layer of the shell. The tran si tion to phys i cal com po nents of the ten sors used in this study and the de duc tion

of equi lib rium equa tions and bound ary conditions are described in [10]. 

Linearized Equa tions of Sta bil ity

The linearized equa tions of sta bil ity of multilayer shells of rev o lu tion are de rived by us ing the geo met ri cally non lin ear 

equa tions of dis crete-struc tural the ory [10] and the Eu ler static cri te rion, i.e., mixed equi lib rium modes of the com pressed

struc tural el e ment, close to the ini tial one but dis tinct from it, are al lowed. The crit i cal load is de fined as the small est load un der

which mixed equi lib rium modes along with the initial one are possible.

Let the ex is tence of a mixed equi lib rium con fig u ra tion un der an ex ter nal load be de ter mined by the expressions
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Here, the com po nents of the ini tial subcritical stress-strain state are marked by the su per script “0”, while the ad di tional 

com po nents of dis place ments and forces of the per turbed state are given with out any su per script.

Af ter sub sti tut ing Eqs. (10) into the equi lib rium equa tions given in [10] and sub tract ing the equi lib rium equa tions of

ini tial state from the re sult ing re la tions, the linearized sta bil ity equa tions of a kth layer of the multilayer shell, which in clude the

strains of trans verse shear and com pres sion, take the form
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If the trans verse com pres sion of the kth layer is taken into ac count, sys tem (11) is sup ple mented with the eighth equa -

tion
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Sim i lar to Eqs. (9) and (10), the geo met ri cal re la tions are also linearized [10]:

2 0e w wij
k

ij
k

ji
k

i
k

j
ke e( ) ( ) ( ) ( ) ( )= + + ,

2c g g g
g

g
gij

k
i j

k
j i

k
i
k

j
k

j
k

i
kâ e â e( ) ( ) ( ) ( ) ( ) ( ) ( )= Ñ + Ñ - - ,

(13)

2 2
3 3

e e j yg
i
k

i
k k

i
kz( ) ( ) ( ) ( )( )= + ¢ ,   e g

33
( ) ( )k z k= .

Equa tions (11) and (12) have to be sup ple mented with the bound ary con di tions of fas ten ing of con tours of the plates or 

shells con sid ered.

In de duc ing Eqs. (11) and (12), the ad di tional dis place ments ui
k( )  and w k( )  were con sid ered small, which al lowed us

to dis re gard the de grees of these quan ti ties ex ceed ing the first one. There fore, based on the re sult ing sys tem of equa tions, it is

pos si ble to find only the up per crit i cal loads. If a momentless subcritical state is as sumed, the un der lined terms in the fourth and

fifth equa tions of (11) turn to zero.

Based on the linearized equa tions of sta bil ity (11) and (12), geo met ri cal re la tions (13), phys i cal re la tions, and given

bound ary con di tions, a re solv ing sys tem of 14 ho mo ge neous par tial dif fer en tial equa tions is de rived for a kth layer of the shell:
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is the so lu tion vec tor.

If we as sume that the physicomechanical and geo met ri cal char ac ter is tics of the shells of rev o lu tion do not vary along

the a 2  co or di nate, the so lu tion of re solv ing equa tions (14) of the sta bil ity prob lem can be pre sented in the form of Fourier

series 
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By sub sti tut ing Eqs. (15) and (16) into the sys tem of equa tions (13), we come to the sys tem of or di nary ho mo ge neous

dif fer en tial equations

d

A d
F nn

k

k
k n

k k
n

kY
Y

( )

( )
( )

( ) ( ) ( )( , , )
a

a

1

1
= ,     k = 1, 2,..., n,

(17)

where

Y( )
,
( )

,
( )

,
( )

,
( ){ , ,... , } { ,k

n
k

n
k

n
k T

n
kY Y Y T T= =

1 2 14 11 12,
( )

,
( )

,
( )

,
( )

,
( )

,
( ), , , , ,

n
k

n
k

n
k

n
k

n
k

n
kR M M L L

13 11 12 11 12
,

u u w
n
k

n
k

n
k

n
k

n
k

n
k

n1 2 1 2 1 2,
( )

,
( ) ( )

,
( )

,
( )

,
( )

,
, , , , , ,g g y y ( ) }k T

is the so lu tion vec tor. Such a sys tem for a kth layer of the shell is of 14-th or der. 

The bound ary con di tions, which de fine the fas ten ing con di tions for the edges of the kth layer of the shell, can be pre -

sented in the ma trix form

B k
k

k
0 10

0( )
( )

( )( )Y a = ,      Bn
k

k n
k( )

( )
( )( )Y a
1

0= , (18)

where B k
0
( )  and Bn

k( )  are rect an gu lar 7 ´ 14 ma tri ces.

A sta ble com pu ta tion pro cess for the nu mer i cal so lu tion of bound ary prob lem (17), (18) is pro vided by the Godunov

method of or thogo nal sweep. In te grat ing the equa tions pre sented, we ob tain a sys tem of seven al ge braic equa tions in com po -

nents of the vec tor of ar bi trary constants C( )k :

B Zn
k

n
k k( ) ( ) ( )( , )a l

1
0C = .

Here, Z
n
k( , )( )a l

1
 is a 7 ´ 7 ma trix, whose co ef fi cients are ob tained by orthogonalization and nor mal iza tion of the sys -

tem of so lu tion vec tors at each step of nu mer i cal in te gra tion; l is an eigenvalue.

For the ex is tence of a nontrivial so lu tion to the prob lem of sta bil ity (17), (18), the con di tion  

B Zn
k

n
k( ) ( )( , )a l

1
0=

(19)

must be ful filled, wherefrom the eigenvalue l of the prob lem is de ter mined. The value of l is found by us ing the trial-and-er ror

method un til de ter mi nant (19) changes its sign for two sub se quent it er a tions of l. 
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In con struct ing the re solv ing sys tem of sta bil ity equa tions for a shell con sist ing of two and more rigid lay ers, the static

and ki ne matic con tact con di tions on the con ju gated sur faces of each layer must be taken into account.

The ki ne matic and static con di tions of per fect con tact be tween the sep a rate lay ers of thin-walled el e ments on the con -

ju gated faces have the form 
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Sat is fy ing the ki ne matic (20) and static (21) con tact con di tions at the in ter faces by means of the pen alty func tion

method, we readily set up the com plete sys tem of re solv ing equa tions (17) for solv ing the con tact prob lem of the dis crete-struc -

tural the ory of multilayer shells.

Since a soft in ter fa cial glue layer (whose thick ness, as a rule, is con sid ered equal to zero) is formed be tween the rigid

lay ers dur ing the man u fac ture of multilayer shells, an elas tic slip page be tween the rigid lay ers is al lowed in the model vari ant

sug gested, i.e., on the con ju gated faces, only static con tact con di tions (21) are satisfied. 

The sys tem of equa tions (11) in cludes the forces T k
11

0( ) , T k
12

0( ) , and T k
22

0( ) , as well as the dis place ments and shear

strains in the co or di nate sur face of a kth layer u k
2

0( ) , w
k( )

0 , g
1

0( )k , and 2
13

0e g( )k , which de ter mine the subcritical stress-strain state

[10]. 

A com par i son be tween the sys tems of re solv ing equi lib rium equa tions [10] and sta bil ity equa tions (17) shows that

they are sim i lar, which al lows us to con struct a uni fied com pu ta tion pro cess for de ter min ing the stresses and strains of the non -

lin ear mo ment subcritical state of shells of rev o lu tion and for cal cu lat ing the crit i cal pa ram e ters of ex ter nal loads.

If we as sume that the ki ne matic bonds be tween shell lay ers are ab sent, un known force vec tors q( )k  and q( )k+1  of con -

tact in ter ac tion may arise at the in ter faces S z
k k( , )+1 . Ac cord ing to New ton’s third law, q q( ) ( )k k= - +1 . To take into ac count the

ef fect of the forces of con tact in ter ac tion be tween the lay ers, Reissner variational equa tion (4) must be sup plied with a term

con sid er ing the work done by the con tact forces act ing through the dis place ment vec tor of each layer of the section of contact

surface: 
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is sat is fied in con tact zones be tween the rigid lay ers. If in equal ity (22) does not hold upon dis place ment of points of the re gion 

S z
k k( , )+1  dur ing de for ma tion, the con tact pres sure q( )k  in equi lib rium equa tions [10] takes the value q( )k  = 0. By solv ing the

sys tem of equa tions [10], it is easy to find, with a given ac cu racy, the con tact pres sure of subcritical state by us ing the it er a tive

method sug gested in [7].

Anal y sis of The o ret i cal and Ex per i men tal Results 

To il lus trate the ef fi ciency of the model of multilayer shells and plates sug gested, we ex am ined  [±45/03/90]s  car -

bon-fi ber-re in forced plas tic (CFRP) plates [12], with an ep oxy resin as a binder and 60% fi bers by vol ume. The plate was com -

pressed along the lon gi tu di nal axis. As sum ing that the lon gi tu di nal edges are hinge-sup ported, i.e., at y = 0 and y b= , we have

for a kth layer of the plate 

u w T M Lk k k k k
1 22 22 22

0( ) ( ) ( ) ( ) ( )= = = = = . (23)

For the other two edges of the plate, an ar bi trary fas ten ing is ad mit ted.

The so lu tion to sys tem (17), (18) with ac count of Eq. (23), has the form

Y Y
1 1
( )

, sink
n

n y

b
=

p
,     Y Y

2 2
( )

, cosk
n

n y

b
=

p
, (24)

where

Y
1 22 22 22 1,

( ) ( ) ( ) ( ) ( ){ , , , , }
n

k k k k k TT M L u w= ,

Y
2 11 12 13 23 1 2 11,

( ) ( ) ( ) ( ) ( ) ( ) ({ , , , , , ,
n

k k k k k kT T R R Q Q M= k k k k kM L L Q) ( ) ( ) ( ) ( ), , , , ,
12 11 12 3

L L uk k k k k k k T
13 23 2 1 2 1 2
( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , }g g y y .

The right-hand side of re solv ing equa tions (17) must be re writ ten with re gard for ex pres sions (24) and zero val ues of

the layer cur va ture k kk k
1 2
( ) ( )= = 0 and r

1
( )k  = 0. A com par i son of the re sults ob tained is pre sented in Table 1.

As ex pected, the the o ret i cal val ues of the crit i cal force Pcr , pre sented in Ta ble 1 and ob tained by us ing the con tin u -

ously struc tural the ory (model 2) for plates with a low ri gid ity in trans verse shear, are al ways smaller than those found ac cord -

ing to the clas si cal the ory, i.e., dis re gard ing the de for ma tions of trans verse shear and com pres sion [12]. The dif fer ence be tween 

the re sults given by the clas si cal the ory and the vari ant of the re fined the ory sug gested is 8-14%. A no tice able de crease in Pcr

(22-39%), com pared with the re sults of clas si cal the ory, is ob served in cal cu la tions based on model 1. This dis tinc tion is ex -
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TABLE 1. Values of Critical Force Pcr  for GFRP plates in Axial Compression

Variant
of a plate

L b ×10 h ×102

b h

Pcr, kN

m 
Classical

theory
Model 2 D,% Model 1 D, %

1 0.2 0.51 0.16 31.88 17.77 15.22 14 13.85 22

2 0.2 0.51 0.21 24.29 40.01 35.48 11 27.54 31

3 0.2 0.51 0.26 19.62 71.12 61.22 14 43.67 39

4 0.31 0.76 0.16 47.5 12.62 11.55 8 9.56 24



plained by the no tice able de crease in the flex ural modulus of the plate upon in tro duc tion of the as sump tions of model 1. The

plate in cluded two rigid anisotropic lay ers of iden ti cal thick ness, with weak ened con tact con di tions on the ad ja cent faces. It is

well known that, in most cases where a lay ered com pos ite struc tural el e ment is sub jected to uni ax ial ten sion or com pres sion,

first the poly mer ma trix fails in the weak lay ers, as a re sult of which the ri gid ity of the el e ment de creases. This state ment is once

again con firmed by com par ing the mag ni tude of Pcr  (the next to the last col umn in Ta ble 1) ob tained from model 1 and the ex -

per i men tal data given in [12]. The dif fer ence does not ex ceed 13%. In a sim i lar com par i son be tween the re sults of clas si cal

theory and experiments [12], the above-mentioned difference varied from 15 to 70% with increasing thickness of the plate.

The ef fi ciency of the vari ant of cal cu la tion model sug gested in solv ing sta bil ity prob lems for com pressed cy lin dri cal

shells was es ti mated on the test ex am ple given in [13]. Three-layer shells made of a CFRP hav ing a sym met ric struc ture with

thick ness of each layer h = 0.2 × -10 3  m were ex am ined. The shells had dif fer ent an gles of layer re in force ment: 0, 45, and 90°.

Six types of shells with dif fer ent re in force ment struc ture were in ves ti gated (Ta ble 2). The ra dius of the shells was R = 0.1 m and 

the length L = (1, 2, 4) R. The fi bers and ma trix had the fol low ing physicomechanical char ac ter is tics: Ef  = 4.2 ×105  MPa, Em  =

3.5 ×103  MPa, nf  = 0.21, and nm  = 0.35. The vol u met ric con tent of car bon fi bers was 40%. Other pa ram e ters of CFRP were

determined according to the dependences suggested in [11].
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TABLE 2. Values of Pcr  for Cylindrical GFRP Shells in Axial Compression

Type of 
structur

e
Structure L R

Buckling mode

Axisymmetric Nonaxisymmetric

Classical
theory

Model 2 Model 2 Model 1

MLSS MSS
Classical

theory
MLSS MSS MLSS MSS

1 [0/45/0] 1 80.03 74,08 73,82 40.01(10) 35,23(12) 33,79(12) 14,68(11) 14,62(11)

2 80.03 74,24 74,01 40.63(8) 35,88(12) 34,23(12) 15,08(10) 15,00(10)

4 80.03 74.24 74.01 39.82(6) 35.01(10) 33.72(10) 14.01(9) 13.98(9)

2 [45/0/ 45] 1 51.01 50.01 46.28 52.38(1) 49.47(3) 49.47(3) 17.08(10) 17.01(10)

2 51.01 50.37 46.79 52.38(1) 49.65(3) 49.65(3) 17.59(9) 17.34(9)

4 51.01 50.37 46.63 52.38(1) 49.02(3) 49.02(3) 17.18(8) 17.01(8)

3 [45/90/
45]

1 75.95 69.18 68.13 62.04(10) 56.49(8) 56.58(9) 18.46(9) 18.12(9)

2 75.95 68.61 67.65 61.68(6) 55.71(7) 53.69(7) 18.98(8) 18.76(8)

4 75.95 68.02 67.54 52.88(4) 52.14(5) 51.07(5) 18.41(7) 18.41(7)

4 [90/45/
90]

1 49.56 48.84 46.36 40.63(10) 43.14(14) 37.05(15) 15.83(10) 15.66(10)

2 49.56 48.44 46.83 40.63(10) 43.14(14) 37.05(15) 15.83(10) 15.66(10)

4 49.56 48,44 46.42 40.63(10) 43.14(14) 37.05(15) 15.41(10) 15.32(10)

5 [90/0/ 90] 1 57.92 55.01 52.16 28.57(11) 18.53(11) 18.53(11) 14.7(9) 14.45(9)

2 57.92 54.71 51.68 28.57(11) 18.29(10) 18.03(10) 14.91(9) 14.62(9)

4 57.92 54.71 51.43 28.57(11) 18.01(10) 17.73(9) 14.88(8) 14.43(8)

6 [0/90/ 0] 1 138.6 137.3 125.0 28.51(10) 18.77(7) 18.56(7) 14.47(10) 14.36(10)

2 138.6 137.1 125.6 28.51(10) 18.71(6) 18.43(6) 14.38(9) 14.01(9)

4 138.6 137.1 125.5 28.51(10) 18.64(6) 18.21(6) 14.26(8) 14.14(8)



The crit i cal forces Pcr  of ini tial buck ling of the cyl in ders un der ax ial com pres sion, with hinge-sup ported ends, are

given in Ta ble 2. Sim i lar to the pre vi ous ex am ple, two vari ants of the cal cu la tion model for anisotropic el e ments were in ves ti -

gated. The in flu ence of the non lin ear mo ment subcritical state (MSS), as well as the trans verse shear and com pres sion strains,

on the crit i cal load of the cyl in ders was con sid ered. For com par i son, the re sults for the shells in the case of a momentless

subcritical state (MLSS) are also given in the table. 

An anal y sis of the data given in Ta ble 2 shows that the buck ling mode of the struc tural el e ments con sid ered, ex cept for 

model 2 of the cyl in der with the sec ond-type struc ture, is nonaxisymmetric (the num ber n of waves in the cir cumfer ential di rec -

tion at the in stant of buck ling is given in pa ren the ses). In this case, the re sults ob tained ac cord ing to the sec ond cal cu la tion

model, in many re spects, are de ter mined by the re in force ment di rec tion in the in di vid ual lay ers of the cyl in der. Thus, for ex am -

ple, the value of Pcr  for the shell with the third-type struc ture is more than 2.5 times higher than for that with the sixth-type one.

The data ob tained by us ing cal cu la tion model 1 de pend on the type of re in force ment struc ture only slightly and dif fer from each 

other by no more than 25%, which qual i ta tively agrees with the con clu sions drawn in [14, 15]. When the weak ened con tact be -
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Fig. 2. Buck ling mode of a GFRP cyl in der.

TABLE 3. Values of Pcr  for Cylindrical GFRP Specimens with Hinge-Supported Edges 

Specimen
L R ×10

L R h ×102 , m R h
Pcr,  kN

m Experiment Model 2 D,% Model 1 D,,%

A1 0.1 0.45 2.22 0.10 45.00 14.24 18.66(6) 31 13.57(6) 5

A2 0.1 0.45 2.22 0.11 40.91 15.45 19.86(6) 29 14.07(6) 9

A3 0.1 0.45 2.22 0.10 45.00 13.01 18.88(6) 45 13.57(6) 4

B1 0.2 0.45 4.44 0.10 45.00 14.87 18.66(6) 25 13.57(7) 9

B2 0.2 0.45 4.44 0.11 40.91 16.67 19.86(6) 19 14.07(7) 16

B3 0.2 0.45 4.44 0.10 45.00 15.13 18.66(6) 23 13.57(7) 10

C1 0.1 0.45 2.22 0.20 22.50 48.45 69.15(3) 43 49.46(3) 2

C2 0.1 0.45 2.22 0.21 21.43 50.15 71.03(3) 42 50.87(3) 1

C3 0.1 0.45 2.22 0.20 22.50 47.43 69.15(3) 46 49.46(3) 4

D1 0.2 0.45 4.44 0.20 22.50 45.93 67.85(4) 48 47.46(6) 3

D2 0.2 0.45 4.44 0.22 20.45 46.07 68.09(4) 48 48.17(6) 5

D3 0.2 0.45 4.44 0.20 22.50 46.59 67.85(4) 46 47.46(6) 2



tween the rigid lay ers of the anisotropic shell is taken into ac count, the crit i cal load de creases no tice ably in comparison with

that obtained from the continuous structural theory. 

Dur ing the de for ma tion of lay ered struc tures in ax ial com pres sion, the ma te rial struc ture can un dergo some changes,

i.e., the con di tions of  per fect con tact at the in ter faces be tween ad ja cent rigid lay ers can be vi o lated. There fore, the ide al iza tion

of the model of multilayer struc tures ac cord ing to the clas si cal the ory and aban don ing the dis crete-struc tural the ory, as a rule,

yields re sults dif fer ing from experimental data noticeably. 

Based on the vari ant of the cal cu la tion model sug gested, the o ret i cal and ex per i men tal in ves ti ga tions into the sta bil ity

of cy lin dri cal glass-fi ber-re in forced plas tic (GFRP) spec i mens of length 0.1-0.2 m, di am e ter 0.09 m, and thick ness

0.001-0.002 m were car ried out. The cyl in ders con sisted of two or four lay ers of a TG 430-C (100) fi ber-glass fab ric (Lat via).

As a binder, we used a Cristic 2-446 PA poly es ter orthophthalic resin with a low ered emis sion of sty rene (Great Brit ain). Some

part of the spec i mens had ini tial de fects in the form of cir cu lar lo cal ar eas of ad he sion fail ure lo cated at the cen ter of the cyl in -

ders be tween their sec ond and third lay ers. These ar eas were cre ated while man u fac tur ing the specimens by inserting a thin

polyethylene film.

The physicomechanical char ac ter is tics of the cy lin dri cal GFRP shells were de ter mined in the fol low ing se quence.

First, ac cord ing to GOST 25.601-80, we found the elas tic modulus and Pois son ra tio of GFRP spec i mens in com pres sion. The

me chan i cal tests per formed al lowed us to as sert that the ma te rial of the spec i mens could be con sid ered trans versely iso tro pic 

(E E11 22= = 1.2 ×104  MPa and n n12 21= = 0.12). The other physicomechanical char ac ter is tics of the GFRP were de ter mined

in te grally for the whole pack age of lay ers based on the dependences given in [11], where the elas tic moduli of the first kind and

the Pois son ra tios of the fi bers and ma tri ces were as fol lows: Ef  = 7.0 ×104  MPa, Em  = 3.5 ×103  MPa, nf  = 0.22, and nm  = 0.35.

The crit i cal buck ling loads of the cy lin dri cal spec i mens with hinge-sup ported edges are pre sented in Ta bles 3 and 4

(the num ber n of waves in the cir cumfer ential di rec tion is given in parentheses).

The gen eral view of the test plant and the buck ling mode of a cyl in der of length L = 0.2 m in ax ial com pres sion are

shown in Fig. 2.

A com par i son be tween the the o ret i cal and ex per i men tal re sults al lows us to con clude that model 1 (Ta ble 3) of the dis -

crete-struc tural the ory of lay ered plates and shells rather ac cu rately re flects the de for ma tion pro cess and the be hav ior of
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TABLE 4. Values of Pcr  for Cylindrical GFRP Specimens with Areas of Local Adhesion Failure 

Specimen

L R ×10

L R h ×102,

m
R h I

Pcr, kN

m
Experime

nt

Model 1

II D,% III D,,%

G1 0.1 0.45 2.22 0.20 22.50 0.05 24.54 26.29(0) 10 36.48(5) 49

G2 0.1 0.45 2.22 0.21 22.43 0.05 25.73 27.01(0) 5 37.12(5) 44

G3 0.1 0.45 2.22 0.20 22.50 0.05 25.04 26.29(0) 5 36.48(5) 46

J1 0.2 0.45 4.44 0.20 22.50 0.16 29.92 26.29(0) 12 30.12(3) 1

J2 0.2 0.45 4.44 0.21 22.43 0.16 30.82 27.01(0) 12 31.28(3) 1

J3 0.2 0.45 4.44 0.20 22.50 0.16 28.68 26.29(0) 8 30.12(3) 5

F1 0.1 0.45 2.20 0.20 22.50 0.08 34.56 26.29(0) 24 36.48(5) 6

F2 0.1 0.45 2.22 0.21 21.43 0.08 35.12 27.01(0) 23 37.12(5) 6

F3 0.1 0.45 2.22 0.20 22.50 0.08 33.36 26.29(0) 21 36.48(5) 9

Note. I is the length of ad he sion fail ure in m; II re fers to the lo cal buck ling of the ex ter nal layer; III re fers to the to tal loss of sta bil ity.



thin-walled struc tural el e ments made of com pos ite ma te ri als. The dis crep ancy be tween the the o ret i cal and ex per i men tal re sults 

does not ex ceed 16%. For model 2, the dis crep ancy lies within the range of 19-48%. It is seen from the ta ble that, with in creas -

ing thick ness of the shells, the dif fer ence be tween the ex per i men tal value of crit i cal load and that ob tained from model 2 grows

mark edly. We should note that, in test ing the defectless cy lin dri cal GFRP spec i mens, the joint work of lay ers was ob served up

to the loss of sta bil ity. In this case, as stated the o ret i cally and con firmed experimentally (see Fig. 2), a nonaxisymmetric

buckling mode took place.

A somewhat dif fer ent re sult was ob tained in in ves ti gat ing the size ef fect of the cir cu lar area of ad he sion fail ure at the cen ter

of the cy lin dri cal shells on their crit i cal force (Ta ble 3). At a ra tio be tween the length of this area and the cyl in der length l Laf £ 0.5, a 

lo cal axisymmetric buck ling of the ex ter nal layer of the shell oc curred in the zone of ad he sion fail ure. At l Laf > 0.5, both a lo cal

axisymmetric buck ling of the ex ter nal layer and a nonaxisymmetric joint buck ling of all lay ers in the zone are pos si ble.

Con clu sions

In the pres ent study, based on the geo met ri cally non lin ear dis crete-struc tural the ory of lay ered struc tural el e ments, the

sta bil ity of anisotropic plates and shells with struc tural de fects of the ma te rial was in ves ti gated. The in ter ac tion of rigid

anisotropic lay ers at their in ter faces was de scribed by us ing two cal cu la tion mod els, with per fect or weak ened con tact con di -

tions, re spec tively. The crit i cal forces of two-layer plates and cy lin dri cal shells, both with out struc tural de fects and with ar eas

of a lo cal ad he sion fail ure, were de ter mined nu mer i cally and ex per i men tally. It is found that vari a tions in the ki ne matic and

static con tact con di tions on the in ter faces of rigid lay ers of anisotropic el e ments of thin-walled struc tures con sid er ably af fects

the char ac ter of dis tri bu tion of trans verse shear and com pres sion strains. The model vari ant where the in ter fa cial tan gen tial and

nor mal stresses on the con tact ing bound aries of lay ers are equal and their rel a tive elas tic slip page is allowed adequately reflects 

the behavior of layered thin-walled structures under large deformations.
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