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Abstract Mammals can serve as an indicator of global climate change impacts on species’
distributions due to the wide range of ecological niches they utilize. Tropical Asia encom-
passes several biodiversity hotspots, is the largest reservoir of mammalian diversity on earth,
and has already experienced the extinction of several mammal species either regionally or
locally. Global climate change could become a significant driver of species extinction, either
directly or synergistically with other factors, such as habitat loss, agricultural expansion,
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overexploitation, and land use change. Despite the variability of climatic regimes across
tropical Asia, the potential impacts of climate change on continental-scale distributions of
mammals have not been examined. To address this issue, we developed habitat suitability
models for four threatened large mammals (Ursus thibetanus, Elephas maximus, Hoolock
hoolock, and Panthera tigris tigris), across their entire distributions in Asia. We used presence-
only distribution records and nine bioclimatic and environmental variables and built species-
specific habitat suitability models using a maximum entropy algorithm (MaxEnt). We used a
moderate and an extreme climate scenario (RCP6.0 and RCP8.5) and three time steps: current,
2050, and 2070. Our results suggest that changes in annual precipitation, annual mean
temperature, precipitation, and temperature seasonality could reduce suitable habitat for these
mammals and therefore increase their extinction risks. However, several patches of stable
habitat are projected to persist through the late twenty-first century, and these climate change
refugia areas can be managed as an important strategy for conservation of the mammal species
and the maintenance of biodiversity in the face of ongoing climate change. In this context, we
recommend the following steps for the conservation of global mammal populations: (i) define
the spatial extent (local, regional, or continental scale) of the target mammals, (ii) identify and
prioritize climate change refugial areas following ecological niche models or other methods
based on biological data, and (iii) implement management actions by analyzing current
management tools and the strategies required (e.g., habitat restoration or assisted migration
for prioritized species) to achieve long-term conservation goals.

Keywords Mammal distribution ranges . Threatened species . Habitat suitabilitymodels .

Mammal extinction . Conservation planning . Protected areas

1 Introduction

There is growing observational evidence that global climate change is having a significant
impact on species distributions, phenology, and vegetation dynamics, and could become a
major cause for species extinction in concert with other global change drivers, such as
agricultural expansion, overexploitation, habitat destruction and fragmentation, land use
change, and invasive species (Thomas et al. 2004; Brook et al. 2008; Pacifici et al. 2015;
Franklin et al. 2016). Terrestrial plant communities (such as forests, woodlands, shrublands,
and grasslands) provide natural habitat for many animal species, and climate change-driven
shifts in vegetation distribution could have cascading effects on the distribution of wildlife
(Butt et al. 2015; Franklin et al. 2016). Mammals can serve as an indicator of climate change
impacts on wildlife populations due to the wide range of ecological niches they exploit
(Ceballos and Ehrlich 2002). Results of previous studies showed that extinction risk is greater
in large mammals than small mammals (Cardillo et al. 2005). This is driven by a combination
of extrinsic (environmental) factors and intrinsic species traits, such as small geographic range,
low population density, slow life history, low reproductive rates, and large body size (Fisher
and Owens 2004; Davidson et al. 2009). Therefore, future loss of large mammals due to
climate change acting synergistically with other extinction drivers, such as habitat loss, land
use change, poaching, and hunting, could be far more rapid than expected (Fig. 1) (Cardillo
et al. 2005).

The population density of forest vertebrates largely depends on climatic factors, elevation,
floristic composition, and net primary productivity (Galetti et al. 2009). However, the abundance
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of large mammals is primarily associated with both habitat fragmentation and hunting pressure
(Michalski and Peres 2007; Peres and Palacios 2007). Despite several studies attempting to
elucidate the effects of climate change on the distribution of largemammals (Levinsky et al. 2007;
Alamgir et al. 2015; Pokharel et al. 2016), the interactions between anthropogenic disturbances
and environmental variables remain poorly understood, especially in complex human-dominated
biomes such as tropical forests (Galetti et al. 2009). Rondinini et al. (2011) developed habitat
suitability models to assess large-scale distribution of terrestrial mammals based on their habitat
relationships, with a focus on land cover, elevation, and hydrological features variables. Their
study demonstrated the importance of fine-resolution distribution data for the development of
global conservation strategies for mammals. Levinsky et al. (2007) evaluated the potential impact
of climate change (excluding non-climatic factors such as land-use, biotic interactions, human
interference, etc.) on the distributions and species richness of 120 native terrestrial non-volant
European mammals and reported that 1 or 5–9% respectively, of European mammals risk
extinction, while 32–46 or 70–78%, respectively, may be severely threatened (lose > 30% of
their current distribution) under two IPCC future climatic scenarios (B1 and A2 scenarios). To
comprehensively assess the impacts of climate change on the distribution of mammals, it is
important that all contributing factors of vulnerability are taken into account to inform conserva-
tion actions effectively (Butt et al. 2016).

Of the four forest biomes (tropical, subtropical, temperate, and boreal), tropical forests are
the richest biologically and contain the highest number of threatened species (Corlett and
Lafrankie 1998; Brook et al. 2008; Butler and Laurance 2008). For instance, it has been
estimated that mammal species are approximately seven times more numerous (http://www.
iucnredlist.org/) within tropical biodiversity hotspots, compared with non-tropical hotspots

Fig. 1 A schematic representation of different extinction drivers (climate change, habitat loss, deforestation, land
use change, hunting, and poaching) for threatened large mammals in tropical Asia (for details see Table A1)
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(Myers et al. 2000). Southeast Asia encompasses four biodiversity hotspots and several of the
most species-rich ecoregions (Olson and Dinerstein 1998; Myers et al. 2000). It has the highest
relative rate of deforestation of any tropical region (Hansen et al. 2013), and could lose three
quarters of its original forests and half of its biodiversity by 2100 (Sodhi et al. 2004). In
Southeast Asia, 13 mammal species have already experienced 83% habitat loss (Ceballos and
Ehrlich 2002), of great concern as this region holds the highest reservoirs of biodiversity on
earth and is home to one of the highest concentrations of endemic species (Sodhi et al. 2004).
South Asia represents approximately 10% of the world’s mammalian diversity, and includes
502 species belonging to 215 genera and 14 orders (Srinivasulu and Srinivasulu 2012).
Approximately 32 mammal species have become extinct regionally or locally in South Asia
due to habitat loss and fragmentation, and other extinction drivers such as land use change and
climate change (Fig. 1) (Srinivasulu and Srinivasulu 2012). With an annual forest loss
increment of 2101 km2 in tropical Asia (from 2000 to 2012) (Hansen et al. 2013), the region’s
mammal populations are losing their natural habitats (Srinivasulu and Srinivasulu 2012). The
extent of habitat loss in concert with global climate change is increasing the extinction risks of
the large mammals (Sala et al. 2000; Thomas et al. 2004).

Habitat suitability models or species distribution models have been widely used in ecology
to detect the climatically suitable habitat of mammals and inform conservation planning
(Guisan and Zimmermann 2000; Elith and Leathwick 2009; Franklin 2010; Rondinini et al.
2011). Despite mammals being among the most intensively studied taxa, lack of detailed large-
scale information on their potential distribution under future climate scenarios may hinder
conservation efforts (Rondinini et al. 2011). In Asia, most studies of climate change impacts on
mammal distributions focus on the local scale and do not consider the entire distribution ranges
of the species (e.g., Loucks et al. 2010; Trisurat et al. 2012; Alamgir et al. 2015; Pokharel et al.
2016). Thus, continental-scale studies in Asia are limited, despite the conservation significance
of mammal diversity in the region (Catullo et al. 2008). In this study, we have addressed this
research gap by modeling the habitat suitability of four threatened large mammals under
different climate scenarios across their entire distribution range.

The unique and globally endangered Bengal tiger (Panthera tigris tigris), Asian elephant
(Elephas maximus), Western Hoolock Gibbon (Hoolock hoolock), and vulnerable Asiatic
black bear (Ursus thibetanus) are naturally distributed in different Asian forest ecosystems
(Table 1 and Table A1 for details), and their main threats are the combined effects of habitat
loss, forest fragmentation, human interference, hunting, and global climate change (Loucks
et al. 2010; Srinivasulu and Srinivasulu 2012; Alamgir et al. 2015; IUCN 2016). These species
are already extinct locally in several countries, and the remaining disjunct populations are
declining (Sala et al. 2000; Thomas et al. 2004; IUCN 2016). They play key roles in their
forest ecosystems (e.g., grazing, predation, and seed dispersal), and are important for ecosys-
tem function, such as in relation to food chains and food webs (Franklin et al. 2016). We
focused on these threatened large mammals of Asian continent as these species are of highest

Table 1 The studied threatened mammals of tropical Asia and their conservation status (IUCN 2016)

Species Local name Family Conservation status Current population trend

Ursus thibetanus Asiatic black bear Ursidae Vulnerable Decreasing
Elephas maximus Asian elephant Elephantidae Endangered Decreasing
Hoolock hoolock Western hoolock gibbon Hylobatidae Endangered Decreasing
Panthera tigris tigris Bengal tiger Felidae Endangered Decreasing

262 Mitig Adapt Strateg Glob Change (2019) 24:259–280



conservation concern and typically targeted by international conventions (Secretariat of the
CBD 2010).

The aim of the paper was to assess the four species’ vulnerability to global climate change
and examined the importance of mean and seasonal climate, topography, land use/land cover,
and maximum green vegetation fraction of landscape variables for habitat suitability for the
mammals under different climate scenarios and for different time periods. This allowed us to
identify the potential extinction risks for each species, with implications for conservation
planning. Finally, global recommendations are presented to provide adaptive management and
conservation strategies for the studied species, and suggestions for how these methods and
analyses could be applied to other tropical regions (i.e., in Africa and Americas), using
different mammal species and forest types.

2 Materials and methods

2.1 Ecology of study species

The four mammals occupy a variety of forested habitats, grasslands, cultivated and secondary
forests across Asia (Fig. 2 and Table A1 for details). They play important ecological roles, and
help maintain ecosystem health and diversity (Franklin et al. 2016). For instance, the Asian
elephant and Bengal tiger are considered keystone species, and their presence in the forests is
an indicator of ecosystem well-being. The Asiatic black bear, Asian elephant, and Western
hoolock gibbon rely on tree flowering and fruiting, and also on the shoots, forbs, and leaves of
many plants (Corlett and Lafrankie 1998; IUCN 2016). Bengal tiger is at the apex of the food
chain and maintains the balance between prey herbivores and the vegetation upon which they
feed (IUCN 2016). Although no rigorous population estimates exist for these mammals, recent
studies suggest that the current populations of these species are declining (Table 1), which may
lead to local or regional extinction in the near future (IUCN 2016). Temperature and rainfall
variations (e.g., drought, heavy rainfall) have the potential to affect the phenology of tropical
and subtropical Asian forests through significant perturbations to the timing of fruit, seed, and
flower availability, with cascading effects on the distribution and population dynamics of large
mammals (Parmesan 2006).

2.2 Species distribution and environmental data

We obtained occurrence records for the four mammals from the terrestrial mammals’ data of
the IUCN Red List (IUCN 2014), and the Global Biodiversity Information Facility (GBIF,
<http://www.gbif.org/>). We compiled the datasets and cleaned the occurrence records by
removing overlapping locations or spurious points after reviewing the literature for each
species (e.g., Khan 2008). Finally, we used 398, 160, 52, and 75 records for Asiatic black
bear, Asian elephant, Western hoolock gibbon, and Bengal tiger, respectively, to model the
distributions (Fig. 2).

The direct effects of human activities such as large-scale industrial logging, habitat
destruction and fragmentation, illegal logging, and overexploitation are the primary contem-
porary drivers of tropical forest biodiversity loss along with the indirect effects of anthropo-
genic climate change (Hansen et al. 2013; Pacifici et al. 2015). Therefore, it is important to
include habitat destruction variables along with climate variables in the modeling. Land use
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(description of land in terms of its socio-economic purpose, e.g., agriculture, forestry, residen-
tial, etc.) and land cover (physical and biological cover of earth’s surface, e.g., forests,
agricultural areas, wetlands, water bodies, etc.) variables are expected to change over shorter
timescales. For instance, Sohl (2014) used land use/land cover (LULC) projections data
produced for the conterminous USA, with annual LULC maps from 1992 to 2100 for four
Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios
(SRES) for a bird distribution modeling. Although reliable projections of LULC are not
available for tropical Asia, future values of climate change are predicted for the next several
decades by general circulation models (GCM) (Hijmans et al. 2005). Stanton et al. (2012)
suggested that combining the important static variables in the model along with the dynamic
climate variables showed better result than excluding them (static variables). In this study, we
modeled the distribution of threatened large mammals using climatic variables only, and
combining the unchanging or static environmental variables with the projected climate
variables.

We initially considered 19 bioclimatic variables (11 temperature and 8 precipitation met-
rics) from the WorldClim database (Hijmans et al. 2005). All the bioclimatic layers were 1 km
resolution. In addition, we also included three other static environmental variables: elevation
(ELV) (Hijmans et al. 2005), land use/land cover (LULC) (Arino et al. 2012), and annual
maximum green vegetation fraction (MGVF) (Broxton et al. 2014) in a different model to
compare the model variations. As there is no robust dataset on LULC for tropical Asia, we
included LULC variable from the default Global Land Cover Map for 2009 data (300 m
resolution; 21 LULC classes) (Arino et al. 2012). The 1 km MODIS-based MGVF data are

Fig. 2 The current distribution ranges of the threatened large mammals in different landscapes across Asian
continent: (1) Asiatic black bear (Ursus thibetanus), (2) Asian elephant (Elephas maximus), (3) Western hoolock
gibbon (Hoolock hoolock), and (4) Bengal tiger (Panthera tigris tigris) (for details see Table A1) (Source: IUCN
2014)
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based on 12 years (2001–2012) of normalized difference vegetation index (NDVI) data
(Broxton et al. 2014). Vegetation cover influences the land-atmosphere exchanges of water,
energy, momentum, and carbon, and is widely used in global models along with many other
applications such as studies of land cover change (Broxton et al. 2014; Dai et al. 2003). MGVF
describes the vegetation abundance, i.e., green vegetation fraction (vs. non vegetated area) for
each land cover class for each year (Broxton et al. 2014). We assume including the LULC and
MGVF variables in the model may capture the deforestation scenarios in the study region.

We selected two of the four representative concentration pathway (RCP) scenarios:
RCP6.0, a stabilization-without-overshoot pathway to 6 W m−2 by 2100, corresponds to a
peak in greenhouse gases by 2060 and RCP8.5, a rising radiative forcing pathway resulting in
8.5 W m−2 by 2100, which reflects high levels of energy demand and greenhouse gas
emissions without climate change policies (Moss et al. 2010). We used data for current
conditions (the average for 1950–2000) and projected climate data for the time periods of
2050 (the average for 2041–2060) and 2070 (the average for 2061–2080) from the HadGEM2-
ES global circulation model (Hijmans et al. 2005).

2.3 Exploratory data analysis

As this study aimed to understand which variables were driving distributions, we applied
Spearman’s rank correlation to test for collinearity between variables at each level. Dormann
et al. (2013) suggest that a threshold of 0.7 is the most common in ecology (i.e., if a pair of
variables has a correlation coefficient > 0.7, then they should be considered proxies of one
another). We applied this general rule and removed 13 of the variables (Table A2). We used
nine predictor variables for habitat suitability modeling: annual mean temperature; mean
diurnal range; isothermality; temperature seasonality; annual precipitation; precipitation sea-
sonality; elevation; land use/land cover; and annual maximum green vegetation fraction. The
elevation variable is important because the mammals occupy different topographic features of
the landscapes. We used the land use/land cover and maximum green vegetation fraction (the
average data of 2001–2012) variables to predict current distributions of the species. However,
there are no models for the future estimates of these two variables for each climate scenarios;
we projected the distributions to 2050 and 2070, with and without these ‘fixed’ variables.

2.4 Habitat suitability models

We built the models of the relationship between each species’ occurrences and the climatic
conditions using the niche modeling software MaxEnt version 3.3.3 k (Phillips et al. 2006;
Phillips and Dudík 2008). The MaxEnt (maximum entropy) algorithm has been shown to
perform well, even with low sample sizes, and has the advantages over other species
distribution models in that it is designed to operate without data on true absences (Phillips
et al. 2004; Elith et al. 2006; Phillips and Dudík 2008). To improve the robustness of the model
extrapolation, we created a bias file layer and defined MaxEnt Background selection by
limiting the sampling locations from where they were selected (Phillips et al. 2009). This
limits the background point to areas that we assume were surveyed for the mammals, and
provides MaxEnt with a background file with the same bias as the presence locations (Phillips
et al. 2009). We generated the MaxEnt models from a cross-validation on the data and setting
the default background points to 10,000, regularization multiplier to 1, and maximum itera-
tions to 500. We also used the jackknife test to measure the variable importance to the models.
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We validated the models using the threshold-independent area under the receiver operating
curve (AUC) metric (value ranges between 0 and 1.0) that describes the fit of the model to the
test data and gives strong model discrimination ability for predicting changes in species
distribution under future climate scenarios (Phillips et al. 2006; Phillips and Dudík 2008).
An AUC value greater than 0.75 indicates that the model has good discrimination ability in
accurately identifying the potential distribution of a species (Elith et al. 2011). We used the ten
percentile training presence logistic threshold to define the minimum probability of suitable
habitat (Phillips et al. 2006) and account for sampling error: we defined suitable habitat to
include 90% of the data used to develop the model.

We generated the MaxEnt models for the threatened mammals in two different settings: (a)
incorporating the bioclimatic variables only as predictor variables, and (b) including the three
other environmental variables (i.e., elevation, land use/land cover, and annual maximum green
vegetation fraction) along with bioclimatic variables. As the mammals have wide distributions
across different ecosystems in Asia, variations in topographic heterogeneity, deforestation
scenarios, and land use change are likely to have a significant influence on the distributions,
even for a given set of climatic conditions (Hansen et al. 2013; Wilson et al. 2013).

3 Results

Overall, the MaxEnt models performed well in predicting habitat suitability for the threatened
mammals across Asia. Mean AUC values across all models (for models that includes climatic
variables only: 0.80 ± 0.05; and models including all variables: 0.82 ± 0.04) fell within the
range of good performance (Table A3).

There were some similarities found in the relative contributions of the predictor variables
that influence the spatial distribution of the large mammals in the study region (Fig. 3). The
key bioclimatic predictor variable for the Asiatic black bear, Asian elephant, and Bengal tiger
was annual precipitation (BIO12) for both models, i.e., models with climatic variables only
and with all variables. In contrast, the key variable for the Western hoolock gibbon was mean
diurnal range (BIO2) (Fig. 3). Precipitation and temperature seasonality coupled with annual
mean temperature and elevation features may also influence the distribution of Asiatic black
bear as they were important variables in the model. The important contribution of temperature
seasonality along with annual mean temperature, maximum green vegetation fraction, and
elevation or topographical variables in the model indicates that variation in these variables may
influence the distribution of Asian elephant in the region (Fig. 3). The relative contribution of
annual precipitation, precipitation seasonality, elevation, and isothermality were important in
both models for the Western hoolock gibbon (Fig. 3). Annual mean temperature, land use/land
cover change, and precipitation seasonality variables were also important for the distribution of
Bengal tiger.

Both MaxEnt models (for ‘climate variables’ and ‘all variables’) revealed a consistent
pattern of predicted habitat suitability for all four mammals, i.e., range contraction of their
natural habitat (Figs. 4, 5, 6, and 7 and Fig. A1–4). Our models predicted that climatically
suitable habitat conditions for the threatened large mammals will decline across Asia. How-
ever, Western hoolock gibbon is likely to gain climatically suitable habitat outside of its current
natural habitats. The projected impacts of climate change on the habitats of Asiatic black bear
are severe under both RCP scenarios, with a 38% decline by 2070 under RCP8.5 for the model
with climate variables only, and 40% for the model with all variables (Fig. 8). The model with
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climate variables only indicates a decline of up to 59% of suitable climate space for the Asian
elephant by 2070 under RCP8.5. However, the model with all variables indicates a relatively
low percentage (5%) of decline in habitat suitability for Asian elephant. This may be due to the
wide variety of ecosystems (grasslands, tropical evergreen, semi-evergreen, dry and moist
deciduous, dry thorn forests) the Asian elephant occupies, with an elevation ranging from sea
level to 3000 m across tropical Asia (Table A1). The habitat suitability of Bengal tigers will
decline up to 14% across Asia by 2070 under RCP8.5 indicated by the model with climatic
variables. However, the model with all variables indicates that Bengal tigers may gain some
climate space (1%) by 2070 under RCP8.5, with relatively low declines in habitat suitability
by 2050 and 2070 under RCP6.0. In contrast to the other three mammals, Wester hoolock
gibbon will gain suitable climatic conditions in all climatic scenarios for both models: up to
12% by 2070 under RCP8.5 for the model with climatic variables and up to 20% for the other
model (Fig. 8). All models revealed the likely range contraction of climatically suitable natural
habitats of the threatened large mammals. However, climatically suitable range expansion
outside of their natural habitats may provide potential for species migration.

4 Discussion

Our results suggest that global climate change could severely impact the distributions of
threatened large mammals across Asia, with contraction and shifts in climatically suitable
habitat conditions. The projected changes in annual precipitation and annual mean temperature
and changes in seasonal climate (precipitation and temperature regimes) could be the key
regulatory factors for the mammals’ distributions in tropical Asia. In addition to increasing
climate stress, land use change and other anthropogenic factors may drive the distribution of

Fig. 3 Summary of the bioclimatic and environmental variables used in the habitat suitability models and their
percent contribution to each model: a models with only bioclimatic variables as predictors and b models with all
variables. Annual precipitation (BIO12) was the most regulatory variable found in both models that influence the
habitat suitability of all the mammals
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Fig. 4 The potential habitat suitability for Asiatic black bear (Ursus thibetanus) across its entire distributions in
Asia: a species occurrences across Asia and mapped current habitat suitability for bear and b–e the four projected
habitat suitability for bear in different scenarios. The models indicate that the likely habitat suitability for bear will
decline under both climate scenarios (RCP6.0 and RCP8.5) by 2050 and 2070. Changes in annual precipitation,
precipitation and temperature seasonality, and annual mean temperature may influence the distribution of Asiatic
black bear
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Fig. 5 The predicted habitat suitability for Asian elephant (Elephas maximus) across its entire distributions in
Asia: a species occurrences across Asia and mapped current habitat suitability for elephant and b–e the four
projected habitat suitability for elephant in different scenarios. The models indicate that the Asian elephant are
likely to face extinction risk under both climate scenarios (RCP6.0 and RCP8.5) by 2050 and 2070. The key
bioclimatic variables that influence the distribution of Asian elephant are annual precipitation, temperature
seasonality, and annual mean temperature
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Fig. 6 The projected habitat suitability for Western hoolock gibbon (Hoolock hoolock) across Asia: a species
occurrences across Asia and mapped current habitat suitability for gibbon and b–e the four projected habitat
suitability for gibbon in different scenarios. The models indicate that the habitat suitability of gibbon is likely to
contract under both climate scenarios (RCP6.0 and RCP8.5) by 2050 and 2070. However, there is a shift in the
distribution for gibbon outside of its native ranges where assisted migration of the species can reduce the species
extinction risks. The key bioclimatic variables that influence the distribution of gibbon are mean diurnal range,
annual precipitation, isothermality, and precipitation seasonality
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Fig. 7 The potential habitat suitability for Bengal tiger (Panthera tigris tigris) across Asia: a species occurrences
across Asia and mapped current habitat suitability for tiger and b–e the four projected habitat suitability for tiger
in different scenarios. The models indicate that the habitat suitability of tiger is likely to contract under both
climate scenarios (RCP6.0 and RCP8.5) by 2050 and 2070. However, there is a shift in the distribution for tiger
outside of its native ranges. The key bioclimatic variables that influence the distribution of tiger are annual
precipitation, annual mean temperature, and precipitation seasonality
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mammals and lead them to become extinct, either locally or regionally in Asia (Thomas et al.
2004; Hansen et al. 2013; Franklin et al. 2016). Visconti et al. (2016) found that the extinction
risks of terrestrial carnivore species increases for 8–23% depending on assumptions about
species responses to climate change, which is consistent with our findings.

4.1 The influences of climatic variability on mammals’ distribution

Climatic regimes in the Asian tropics are highly diverse and can be divided into three zones:
the marginal tropics (mean temperature of the coldest month < 18 °C; low seasonal temper-
atures may limit the growth of plants); the monsoon tropics (mean rainfall of the driest month
< 50 mm; water availability limits plant growth); and the aseasonal tropics (temperature and
water supply are adequate for growth year round) (Corlett and Lafrankie 1998). Climate
change is already impacting vegetation in this region through an influence on phenology
(Corlett and Lafrankie 1998). The Asiatic black bear, Asian elephant, and Western hoolock
gibbon occupy a large variety of ecosystems across Asia and rely on periodically available
plant resources for their survival (Corlett and Lafrankie 1998; IUCN 2016).

The habitat of the Asiatic black bear includes both broad-leaved and coniferous forests and
they mostly occur in the marginal and monsoon tropics (Corlett and Lafrankie 1998). The bear
moves to different habitats and elevations seasonally for tracking changes in food abundance
and relies on fruit at different times of the year (Izumiyama and Shiraishi 2004). Seasonal low
temperatures drive annual fruiting phenology in the Indo-Malayan subtropics and variations in
temperature and precipitation seasonality, coupled with annual precipitation, annual mean
temperature, and elevation features, are important for Asiatic black bear distribution (Corlett
1998). Asian elephant browse a wide variety of ecosystems and in South India, 70% of their

Fig. 8 The climatically suitable habitat conditions for the threatened mammals by 2050 and 2070 under RCP6.0
and RCP8.5: a models with bioclimatic variables only and b models with all variables. Results of both models
suggest that the habitat suitability of Asiatic black bear (Ursus thibetanus), Asian elephant (Elephas maximus),
and Bengal tiger (Panthera tigris tigris) will decline across Asia except Western hoolock gibbon (Hoolock
hoolock) which will likely to gain climatically suitable habitat outside of its natural habitats
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diet comes from dry season browsing, while in the wet season grasses make up about 55% of
their diet (Sukumar 1992). Although the annual diet of Asian elephant is dominated by grass
(84%), dry deciduous forest species also contribute a considerable amount (Baskaran 1998).
Variation in seasonal temperature, annual mean temperature, and annual precipitation such as
drought or heavy rains can lead the plants to flower and fruit drop, with therefore potentially
significant effects on elephant populations (Gunarathne and Perera 2014). As the elephants
mostly rely on crops and grass rather than wild fruits, other factors such as roads, poaching,
and conflicts with humans may also be important for their distribution.

The Western hoolock gibbon is a frugivorous species found in the tropical evergreen, semi-
evergreen, mixed deciduous, and subtropical broad leaf forests of India, Bangladesh, and
Myanmar (IUCN 2016). Ting et al. (2008) revealed that fruit production in tropical regions
was related most strongly to evapotranspiration. Therefore, seasonal changes in climate (e.g.,
mean diurnal range, annual precipitation, precipitation seasonality, isothermality) leading to
variations in evapotranspiration could affect fruiting phenology, with potential effects for the
gibbon species (Butt et al. 2015).

The loss of highly suitable habitat for Bengal tiger is associated with flooding resulting
from heavy rainfall in Nepal’s Chitwan district (Carter et al. 2013), and is consistent with our
modeling results. Increasing annual mean temperatures and variation in precipitation season-
ality, such as drought or heavy rain, are likely to affect the phenology of tropical evergreen, dry
deciduous, moist deciduous, mangrove, subtropical, temperate uplands, and alluvial grasslands
across India, Bangladesh, Nepal, and Bhutan. This may affect the population of prey herbi-
vores and thereby the Bengal tiger, with disruption to ecosystem food webs.

4.2 Modeling approach and limitations

Our modeled responses to global changes may be overoptimistic for the studied mam-
mals in tropical Asia because we did not account for all threats to mammals, especially
hunting, poaching, and human-wildlife conflicts which are major threats to the species
considered here. In addition, we used the static LULC and MGVF variables as reliable
projections are not available for tropical Asia. However, assessing the biodiversity
consequences of climate change is complicated due to the uncertainty of the degree,
rate, and nature of projected climate change (IPCC 2007), and the interaction of climate
change effects with biotic factors (competition, trophic relationships, dispersal abilities,
etc.) and stressors (land use, habitat fragmentation, etc.) (Wiegand et al. 2005). In
contrast, predicting spatially explicit maps for LULC change is difficult as deforestation
may spread unexpectedly to areas that are currently pristine, and forests may be allowed
to regrow in previously cleared areas (Asner et al. 2010). We acknowledge that our
correlative approach of modeling based on dynamic bioclimatic and static LULC vari-
ables for the studied species are not a representative subset of all mammals in tropical
Asia. However, it can form a basis for the mammal studies in tropical Asian region.
Although human land use remains the main driver of present day species extinction and
habitat loss (Hoffmann et al. 2010), our models suggest that climate change is projected
to become equally or more important in the coming decades for mammals distribution in
tropical Asia (Fig. 5). It is difficult to rely on a single scientific approach for the
conservation policy and management of the threatened mammals in tropical Asia given
the underlying assumptions of that approach are under debate. Additional research is
needed to assess the optimum combination of covariates (e.g., LULC change, climate
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change, biotic factors, and other variables such as hunting, poaching, and human-wildlife
conflicts) using different methods (rather than relying on one single method) and how
covariate choice impacts results.

4.3 Extinction risks of the mammals

The current population trend of these threatened large mammals is negative, and there are
multiple pathways (e.g., habitat loss, fragmentation, human interference, poaching, hunting,
and global climate change) to extinctions for these species (Davidson et al. 2009; IUCN 2016).
Although no rigorous population estimates exist for Asiatic black bear for the whole continent,
a study in Bangladesh suggests that the distributions of this species is highly fragmented/
patchy and it is ‘Critically Endangered’ according to IUCN (2000) guidelines (Garshelis et al.
2008; Islam et al. 2010). Sport hunting and trading of Asiatic black bears in Japan, South
Korea, China, Vietnam, and several other countries is increasing the extinction risk for this
species (IUCN 2016). One estimate for the global population size of Asian elephant was 41–
52,000, of which more than 50% occurred in India (Choudhury et al. 2008). However, a more
recent study reported a significant decrease in the population of Asian elephant in India
(Puyravaud et al. 2017), and Alamgir et al. (2015) reported that there is likely to be a 38%
loss in suitable habitat in Bangladesh for the remaining Asian elephant populations (300–350)
in the near future.

The scenarios for Western hoolock gibbon populations (approximately 300) are extreme in
Bangladesh, with 100% habitat loss and therefore possible extinction by 2070 under RCP8.5
(Alamgir et al. 2015). Sanderson et al. (2010) reported a 41% decline in population and
occupied area for Bengal tiger in India. It has been estimated that tiger habitat and tiger
populations in the Sundarbans are likely to reach a critical threshold at sea level rise between
24 and 28 cm above the year 2000 baseline; beyond 28 cm, the remaining tiger habitat in
Bangladesh’s Sundarbans would decline by 96%, and the number of breeding individuals
would be reduced to fewer than 20 (Loucks et al. 2010). Horev et al. (2012) reported that the
entire population of Bengal tigers in India is likely to go extinct in 21.5 years as six tigers are
being poached annually. The number of extinct mammal species in South Asian countries is
greatest for Bangladesh (11 species), followed by Afghanistan (7), Pakistan (5), Bhutan (3),
Nepal (3), India (2), and Sri Lanka (1) (Srinivasulu and Srinivasulu 2012). Extinction rates are
usually high in large mammals due to the interaction between small geographic ranges and
slow reproductive rates (Cardillo et al. 2005; Davidson et al. 2009), and our results also
suggest that there will be declines in the suitable habitat for the threatened large mammals of
Asia, which may lead to local or regional extinction with the current rates of population
decrease.

4.4 Implications for conservation planning

The habitat of the threatened large mammals occurs in a variety of land management regimes
(e.g., protected areas, reserved forests, multiple land-use areas) across tropical Asia (Carter
et al. 2013; IUCN 2016). The habitat preferences differ among mammal species. For instance,
Bengal tigers prefer habitats with more grasslands and higher landscape connectivity in
Chitwan district of Nepal (Carter et al. 2013), whereas Asian elephants prefer areas close to
a permanent source of fresh water as they need 80–200 l of water a day for drinking and
bathing (Shoshani and Eisenberg 1982). Results from previous studies suggest that the area of
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highly suitable habitat for Bengal tigers has decreased inside the park over 20 years in the
Chitwan district of Nepal, while outside the park habitat suitability increased, especially from
1999 to 2009 (Carter et al. 2013). The distribution range of all these large mammals across
tropical Asia is not limited to protected areas (PAs) and areas outside PAs are subject to
development projects that may be a problem for the conservation of these mammals
(Sathyakumar 2006).

The findings of our study inform the suitability of habitats for these threatened large
mammals in different climatic scenarios inside and outside the PAs and can inform conserva-
tion planning. Our models predict more than 50% of climatically suitable habitat conditions for
all species will occur outside of their natural habitats (Fig. 4, 5, 6, and 7 and Fig. A1–4).
Different efforts to reduce habitat degradation outside PAs, and to increase the number and/or
area of PAs considering the habitat range of these species, would be highly beneficial for
species conservation (IUCN 2016). For instance, China, India, and several other countries
have already established a number of PAs within the range of Asiatic black bears (Chape et al.
2003). In addition, establishing travel corridors between existing PAs could also be an option
to account for the projected shifts in the distributions of mammal habitat under global climate
change, and facilitate species’ movement (Chape et al. 2003). The future distributions of the
Asian elephant and Bengal tiger depend upon the conservation of large areas of suitable habitat
by securing additional habitat, as their distribution is now highly clumped in disjunct areas
(Walston et al. 2010; Puyravaud et al. 2017).

Habitat suitability models that predict the impact of climate change on species distributions
frequently contrast scenarios of unconstrained and no dispersal with the caveat that, in reality,
most species will show a range of dispersal distances which fall between these two assump-
tions (Broennimann et al. 2006). Therefore, the importance of dispersal in enabling species to
keep pace with changing climates could be a useful tool for conservation planning. However,
the quantitative descriptions of dispersal for the studied species were not included in the
models due to the lack of robust data. The shifts in the distribution of the threatened large
mammals’ suitable climate space revealed in this study could be used to inform assisted
migration as a management strategy for aiding species in reaching newly suitable locations as
climate changes (Hällfors et al. 2016). However, poaching, hunting, and human-wildlife
conflicts also increase the extinction risks of mammals. Although these variables were not
included in our models, the conservation needs of the threatened large mammals may vary
depending on the intensity of these variables. For instance, if poaching is worse in some areas,
then different conservation measures would be needed, such as improved legislation and law
enforcement regarding poaching, hunting, and human-wildlife conflicts. Monitoring of con-
servation interventions as part of adaptive management, and reliable estimation of population
size and trends, are also required for the success of mammal conservation (IUCN 2016). In
addition, increasing connectivity of suitable habitats between PAs that are too small to
maintain viable populations in isolation, as well as conservation outside PAs, would be
beneficial for mammal conservation in tropical Asia (Trisurat et al. 2012).

4.5 Global strategy recommendations for the management of mammal populations
in a changing climate

Our study predicted climatically suitable habitat conditions for all species both within
and outside of their natural habitats across Asia (Fig. 4, 5, 6, and 7 and Fig. A1–4).
Analysis of habitat maps from current to 2070 indicate that several patches of stable
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habitat are projected to persist through the late twenty-first century for all species,
suggesting that these areas could function as climate change refugia (locations where
taxa survive periods of regionally adverse climate) in the future. However, habitat loss
leading to fragmentation in tropical Asia, as well as increasing pressure from human
activities, will present conservation challenges for large mammals (e.g., Li et al. 2016).
Managing climate change refugia can be an important strategy for the conservation of
mammal species and maintaining biodiversity under ongoing climate change (Gavin
et al. 2014; Morelli et al. 2016). Our models suggest that refugia and nearby non-
refugia habitats could be reconnected (by protecting or enhancing connectivity corridors
and restoring or protecting nearby non-refugial habitats) to improve long-term access to
refuges (Morelli et al. 2016). Despite the conservation appeal of buffer regions, climate
change refugia are not necessarily long-term solutions (Magris et al. 2014). They
function best when coupled with contingency plans, such as tracking geographic shifts
in refugial habitats to keep pace with climate change, or maintaining captive propagation,
or zoos for future re-introduction (Morelli et al. 2016). However, adaptive management
strategies incorporating climate change refugia might be worthwhile for highly valued
targets, such as iconic or endemic large mammals (e.g., Asian elephant, Bengal tiger,
Western hoolock gibbon, and Asiatic black bear). Challenges currently include questions
about the scale at which climate change refugia should be identified and managed,
uncertainty about the duration of their effectiveness, and lack of clarity over how to
incorporate the requirements of multiple mammal species or other resources that will
respond to climate change in different ways. Effective climate adaptation strategies must
encompass targets that are spatially diverse, temporally dynamic, and multi-faceted
(Morelli et al. 2016). We recommend the following steps for the management of refugia
and conservation of the threatened global mammal populations: (i) define the spatial
extent (local, regional, or continental scale) of the target mammals, (ii) identify and
prioritize climate change refugial areas following ecological niche models or other
methods based on biological data, and (iii) implement management actions by analyzing
current management tools and the strategies required (e.g., habitat restoration or assisted
migration for prioritized species) to achieve long-term conservation goals (Morelli et al.
2016). Future research should focus on exploring the opportunities and challenges for
effective implementation of climate change refugia.

5 Conclusions

Most studies on mammal habitat suitability in Asian countries focus on the local scale
and do not consider the entire distribution ranges of the species. This can hinder
conservation efforts. However, habitat suitability models can assess the vulnerability of
threatened Asian mammals with patchy distributions in different ecosystems and in areas
that have undergone extensive disturbance. Our models revealed the likely range con-
traction of climatically suitable natural habitats of the threated large mammals across
Asia. However, the projected suitable conditions both within and outside of the natural
habitats of the mammals could function as climate change refugia in the future. The
findings of our models can inform conservation planning for these threatened large
mammals under global climate change. Managing climate change refugia can be an
important adaptation strategy for the conservation of global mammal populations under
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ongoing climate change. We recommend that proper habitat management of the existing
protected areas, and increasing the number and connectivity of protected areas, could
reduce the extinction risks of these threatened mammals. Future research should focus on
the spatial prediction of these mammals within and outside of protected areas, looking
for previously unrecorded populations, prey density, poaching incidents, dispersal capa-
bilities of species, and conflicts with humans, updating models, and planning for
conservation.
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