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Abstract Rice (Oryza) is a staple food in China, and rice yield is inherently sensitive to
climate change. It is of great regional and global importance to understand how and to what
degree climate change will impact rice yields and to determine the adaptation options
effectiveness for mitigating possible adverse impacts or for taking advantage of beneficial
changes. The objectives of this study are to assess the climate change impact, the carbon
dioxide (CO2) fertilization effect, and the adaptation strategy effectiveness on rice yields
during future periods (2011–2099) under the newly released Representative Concentration
Pathway (RCP) 4.5 scenario in the Sichuan Basin, one of the most important rice production
areas of China. For this purpose, the Crop Estimation through Resource and Environment
Synthesis (CERES)-Rice model was applied to conduct simulation, based on high-quality
meteorological, soil and agricultural experimental data. The modeling results indicated a
continuing rice reduction in the future periods. Compared to that without incorporating of
increased CO2 concentration, a CO2 fertilization effect could mitigate but still not totally offset
the negative climate change impacts on rice yields. Three adaptive measures, including
advancing planting dates, switching to current high temperature tolerant varieties, and breeding
new varieties, could effectively offset the negative climate change impacts with various
degrees. Our results will not only contribute to inform regional future agricultural adaptation
decisions in the Sichuan Basin but also gain insight into the mechanism of regional rice yield
response to global climate change and the effectiveness of widely practiced global thereby
assisting with appropriate adaptive strategies.
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1 Introduction

Increasing atmospheric carbon dioxide (CO2) concentrations, temperature, and associated
uncertainties in rainfall patterns can generate serious direct and indirect consequences on crop
production and thus on regional and global food security (Houghton et al. 2001; IPCC et al.
2013; Piao et al. 2010; Tao et al. 2008; Wheeler and Braun 2013; Xiong et al. 2008). Chinese
grain production is critical to the global food security (Yao et al. 2007) and rice (Oryza) is a
staple food in China, which accounts for 33.8 % of Chinese grain production and 18.4 % of
China’s cultivated area (National Bureau of Statistics of China, http://data.stats.gov.cn/index).
The Sichuan Basin is one of the primary rice producing areas in China, and the rice production
encompasses nearly 46 % of its own total grain production in this region (National Bureau of
Statistics of China, http://data.stats.gov.cn/index). Rice (Oryza) yield is very sensitive to
climate change (Tao et al. 2013); therefore, food security in the Sichuan Basin and beyond
will be challenged by climate change impacts in the context of likely future increases in food
demand from population growth and changes in consumption patterns. Exploring the nature
and degree of climate change impacts on rice yields in the Sichuan Basin are thus of great
significance for regional or national food security.

Adaptation is one of the key factors that will determine the severity of climate change
impacts on crop production in the future (Porter et al. 2014; Tao and Zhang 2010). During the
past few decades, adaptation in agricultural system has been gaining recognitions at both
international and regional levels. One good example is continuous emphasis of IPCC on the
various adaptation measures in mitigating climate change impacts including cultivar adjust-
ment, planting date adjustment, irrigation optimization, and fertilizer optimization (Porter et al.
2014). These adaptive options have been simulated widely at both global (Challinor et al.
2014; Deryng et al. 2011; Rosenzweig et al. 2013) and local regional levels (Babel et al. 2011;
Kim et al. 2013; Krishnan et al. 2007; Moore and Lobell 2014; Tao et al. 2014). However, how
to effectively apply adaptive measures is still a major global challenge, and many researches
have been exploring suitable adaptive measures for different regions, e.g., various adaptive
strategies have been assessed by the inter-comparison of different crop models (Rosenzweig
et al. 2014) and integrated into relevant and existing policies, programs, and activities (Raj
et al. 2014). In addition, indigenous knowledge is an effective tool for the optimum adaptive
options in each region (Lashkari et al. 2011). Challinor et al. (2009) and Tao and Zhang (2010)
have conducted such works and concluded that the most optimal adaptation strategies should
be the region-specific and variety-specific. Therefore, assessing how climate change will affect
crop yields and what adaptation options should be taken in the Sichuan Basin is necessary and
helpful for the development of global adaptive strategies.

Crop models can serve as a surrogate laboratory (Challinor et al. 2009) to simulate the
complex interactions between a range of factors that affect crop performance, including
weather, soil properties, and management practices; consequently, they are one of the most
useful tools for evaluating the potential impacts of climate change (van Ittersum et al. 2013) and
the effectiveness of adaptation options (Jones et al. 2003; Rosenzweig and Hillel 1998). During
the past few decades, the application of crop models has rapidly expanded in climate change
research (White et al. 2011) and was a major data source for the last four Intergovernmental
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Panel on Climate Change (IPCC) assessments of agriculture (Easterling et al. 2007; Gitay et al.
2001; Porter et al. 2014; Reilly et al. 1996).

The Crop Estimation through Resource and Environment Synthesis (CERES)-Rice
model, embedded in the Decision Support System for Agro-technology Transfer
(DSSAT), is one of the most successful models used to simulate the combined effects
of plant genetics, management practices, weather, and soil conditions on the growth,
development, and yield of rice plants (Timsina and Humphreys 2006). Like other
similar models, such computer-based tools also require high-quality and sufficient
input data to run the model and to simulate precise and reliable predicted results
(Hoogenboom et al. 2012). However, the application of the CERES-Rice model is
usually limited by the unavailability of necessary inputs (Hoogenboom et al. 2012;
Hunt and Boote 1998; Timsina and Humphreys 2006). As a traditional agriculturally
based country with long-term history of crop cultivation, China’s local, regional, and
national governments have all been paying great attention to the observation, collec-
tion, and documentation of crop development at various stages, which provides
detailed and precise records on weather, crop phenology, and management. These
data have been valuable for facilitating model calibration, validation, and evaluation,
thereby enhancing model performance and facilitating its application in China. With
these and other data, some researchers have used the CERES-Rice model to assess
climate change impacts on crop yields in China. Among these researchers, Jin et al.
(1995) was one of the few early researchers to introduce the CERES-Rice model into
China and to conduct early impact studies; Lin et al. (2005) used the CERES-Rice
v3.0 model, coupled with a regional climate change model (PRECIS), to simulate
climate change impacts on crop yields and the CO2 fertilization effect in China at a
national scale; Yao et al. (2007) used data from eight representative sites to evaluate
climate change impacts and CO2 fertilization effects on rice yields in the main rice
ecological zones of China with the CERES-Rice v3.5 model under the B2 climate
change scenario from the Regional Climate Model (RCM); Xiong et al (2009) used
the same crop model version and regional climate model to assess climate change
impacts and direct CO2 fertilization effects on rice yields in China on 50 km×50 km
grids instead of at a plot scale.

However, in spite of their extensive and innovative attempts, previous studies may
not make full use of high-resolution data due to the fact that they were conducted at a
large-scale level with a limited number of stations (Lin et al. 2005; Xiong et al. 2009;
Yao et al. 2007). Furthermore, previous studies have mainly focused their attempts on
climate change impacts and atmospheric CO2 fertilizer effects on rice yields, without
much consideration of simulating adaptation options (Lin et al. 2005; Xiong et al.
2001; Yao et al. 2007); the latter has been gaining increasing attention by the IPCC
(Easterling et al. 2007; Gitay et al. 2001; Porter et al. 2014) and others in the
scientific community (Reilly et al. 1996). Furthermore, previous studies have mainly
used the Special Report on Emissions Scenarios (SRES) from the IPCC in climate
change research (Lobell et al. 2006; Tao and Zhang 2010; Yao et al. 2007); however,
this approach was unable to indicate the stabilizing concentrations of greenhouse
gases by the United Nations Framework Convention on Climate Change (UNFCCC)
and the risks of human-induced climate change, as well as policy actions for mitigat-
ing the impacts of climate change on crop production (IPCC 2000; Moss et al. 2010).
A well-validated, location-specific management option for climate change adaptation
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in rice production systems under new scenarios at a regional scale in China is still
lacking. Such research is necessary because location-specific cultivars, planting time,
and management adaptations will be effective for mitigating climate change impacts
on local rice production.

This study aims to simulate climate change impacts and atmospheric CO2 fertilizer effects
on rice yields, as well as the effectiveness of three widely practiced adaptation options under
Representative Concentration Pathway (RCP) 4.5 scenario conditions in the Sichuan Basin. To
achieve this object, we first simulated climate change impacts on rice yields, and on the basis
of this impact assessment, we selected three globally widely practiced adaptation options:
altering the planting dates, switching to high temperature tolerant rice cultivars, and breeding
new rice cultivars; these adaptation strategies were evaluated with the aim of providing an
understanding of how future rice yields will respond to differences in local climate changes,
soil characteristics, crop management practices, and crop genetics and how to cope with future
climate change risks.

2 Materials and methods

2.1 Study area and stations

The Sichuan Basin is located in the eastern Sichuan province and Chongqing province
in China, covering an area of 19×104 km2 (Wu et al. 2013). It lies in the subtropical
humid climate zone, with an annual average temperature ranging from 14 to 19 °C,
which is 1 °C higher than that at the equivalent latitudes (Shao et al. 2012). Annual
cumulative daily average temperatures greater than or equal to 10 °C range from 4200
to 6100 °C, and annual sunshine hours vary from 900 to 1600 h. Rainfall is abundant,
with annual precipitation ranging from 900 to 1200 mm, and is mainly concentrated
in the rice-growing season (March to September). The main soil type of the exper-
imental field is loamy clay soil with pH 6.0–8.0, containing an abundant total N of
0.059–0.210 % (http://www.soil.csdb.cn/); therefore, it is suitable for rice cultivation.
According to the planting division in China (Cheng and Li 2007), the annual single-
crop rice cropping system, which means that rice cultivar is planted in a region once
a year, is applied in the Sichuan Basin. The favorable climate, abundant water
resources, and proper cropping system make this region one of the most important
areas for commercial crop production in China.

As indicated in an earlier chapter, the key data inputs, such as agricultural experi-
mental data (including management practices, crop phenology, and crop yield), in the
CERES-Rice model simulations were derived from Chinese agro-meteorological exper-
imental stations. However, not all sites in the Sichuan Basin can provide qualified data.
To ensure the simulation precision and reliability, we chose suitable sites that could
provide the required fine-quality data. Twelve typical sites (Table 1) were carefully
selected, which contained both agricultural experimental data and climate data, based
on three criteria: (1) it was during 1995–2010 that agricultural and climate data existed;
(2) the same representative rice variety was cultivated in a given site for at least 3 years
during the study periods; and 93) there were no anomalous yield records associated with
pest disease or extreme climate disasters and yields that increased during these 3 years.
Figure 1 shows the geographical locations of the selected sites for this study.
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2.2 CERES-Rice crop model

The DSSAT model, developed by the International Benchmark Sites Network for
Agrotechnology Transfer at the University of Hawaii (Jones et al. 2003; Tsuji and Balas
1993), is a process-based, dynamic, and mechanistic model series to simulate crop growth and
development over time, as well as the soil carbon, nitrogen, and water processes and crop
managements for agricultural production forecasts and risk assessments. It is also a variety-
specific and site-specific model operating on a daily time step. Since its appearance, this model
has been continuously being refined and modified. Compared with a former version, the latest
developed DSSAT v4.5 has improvements in bug fixes, model structure, and new capabilities

Table 1 Information for each selected site in the Sichuan Basin

Site Latitude
(N)

Longitude
(E)

Altitude
(m)

Rice cultivar Rice cropping
system

Calibrated and
validated years

Chengdu 30° 42′ 103° 54′ 506.1 Gangyou22 mid-maturation 1997–1999a

Dazhu 30° 48′ 107° 12′ 398.4 Shanyouduoxi1 mid-maturation 1995, 1999, 2000a

Dujiangyan 31° 00′ 103° 36′ 698.5 Gangyou6 mid-maturation 1997–1999a

Hanyuan 29° 59′ 103° 00′ 628 Yixiang1577 mid-maturation 2006, 2007, 2009a

Leshan 29° 36′ 103° 48′ 424.2 Dyou63 mid-maturation 1995, 1996, 1998a

Liangshan 27° 54′ 102° 18′ 1590.9 IIyou838 mid-maturation 2003, 2004, 2010a

Miyi 26° 48′ 102° 06′ 1099.2 Dyou68 mid-maturation 1998, 2000, 2006a

Mingshan 30° 06′ 103° 06′ 691.3 Gangyou527 mid-maturation 1999, 2002, 2007a

Neijiang 29° 36′ 105° 06′ 347.1 Iyou838 mid-maturation 2001, 2002a, 2003

Yibin 29° 48′ 104° 36′ 340.8 Gangyou22 mid-maturation 1995, 1996a, 1998

Jiangjin 29° 35′ 106° 28′ 259 IIyou6078 late-maturation 1999a, 2000, 2001

Youyang 28° 50′ 108° 46′ 664 IIyou58 mid-maturation 2001a, 2002, 2003

a The records of these years were used to calibrate the CERES-Rice crop model, and the others were used to
validate the CERES-Rice crop model

Fig. 1 Map indicating the site locations providing high-resolution data for crop model applications in the
Sichuan Basin. The colored area of the figure at the left represents the Sichuan Basin. The blue dots in the right
figure represent the selected site for simulations in the Sichuan Basin
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(Hoogenboom et al. 2010). DSSAT v4.5 reads the atmospheric CO2 concentrations from
external files, and a new soil evaporation routine and soil layer distribution method was added.
Currently, the DSSAT v4.5 software program comprises over 28 crop models, including the
CERES-Rice model (Jones et al. 2003). In the CERES-Rice model, the major crop growth,
consisting of phasic and morphological development, includes juvenile, floral, heading,
flowering, grain filling, maturing, and harvesting data (Sudharsan et al. 2012), which were
divided by the accumulation of growing degree-days (GDD):

GDD ¼
T−Tbase f or T base < T < Topt

Thigh−T f or T opt < T < T high

0 f or T < Tbase or T ≥ Thigh

8<
: ð1Þ

T base; T high; and T opt are the base temperature, critical high temperature, and optimum
temperature for rice growth, respectively. The GDD values decreased linearly towards zero
when T reached Topt and approached Thigh, whereas it was zero when T reached Thigh. In this
model, crop yields are considered to be a fraction of the total biomass partitioned to grain,
whereas the total crop biomass is determined by the growth duration and average growth rate
(Ritchie et al. 1998), which was governed by thermal time, or GDD (Hoogenboom et al.
2010).

Because it is one of the oldest, most advanced, and thus most widely used crop simulation
models (Jones et al. 2003) and has been validated in a wide variety of environments, ranging
from temperate to tropical regions across the world (Timsina and Humphreys 2006; Vaghefi
et al. 2013; Zhang and Tao 2013), the CERES-Rice v4.5 model was selected to conduct
simulations in this study.

2.3 Input data for the CERES-Rice model

To minimize errors in predictions and enhance model performance, the CERES-Rice model
requires high-quality and specified input data for rigorous model calibration, validation, and
evaluation (Hunt et al. 2001). The required basic input data include daily weather data, soil
data, and crop management data (Hoogenboom et al. 2012; Hunt and Boote 1998; Mahmood
et al. 2004). More detailed input data requirement and data processing are described in the
following sections.

2.3.1 Climate scenario data

Climate scenarios represent plausible future climate conditions (Moss et al. 2010). They
contain daily solar radiation, daily maximum and minimum air temperature, and precip-
itation. Such projected weather data were used to drive the model to simulate complex
interactions among climate change, environments, soil, crop genotype, and human
adaptation options.

In the Fifth Assessment Report of the IPCC, the RCPs containing four RCP radiative forcing
levels (RCP8.5, RCP6.0, RCP4.5, and RCP2.6) were announced. In terms of energy and
industry CO2 emissions, RCP2.6 (van Vuuren et al. 2011) represents the pathway below the
10th percentile of mitigation scenarios and is too optimistic to achieve; RCP8.5 (Riahi et al.
2011) represents the 90th percentile of the reference emissions range, not considering major new
improvements in agricultural efficiencies; RCP4.5 (Thomson et al. 2011) and RCP6.0 (Masui
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et al. 2011) are bothmedium stabilization scenarios, but RCP6.0 could not be achieved unless the
developed world cuts 50 % of the per capita meat consumption from 1980 levels, which seems
unlikely under current cultural trends. Therefore, RCP4.5 was selected to generate climate
projections for this study and to explore the long-term climate system responses to stabilizing
anthropogenic components of radiative forcing. Future CO2 emissions and concentrations for
each forcing level are presented in Fig. 2.

In this study, future climate variables were obtained from climate projections of the
HadGEM2 Earth System Model (HadGEM2-ES), provided by the Inter-Sectoral Impact
Model Intercomparison Project (ISI-MIP) at the Potsdam Institute for Climate Impact Re-
search. HadGEM2-ES is a coupled atmospheric-ocean general circulation model (AOGCM)
and was provided in phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Jones
et al. 2011). In this study, HadGEM2-ES was bias-corrected with a quantile mapping method
(Hempel et al. 2013) and downscaled with an atmospheric resolution of 0.5°×0.5° with 38
vertical levels.

Table 2 and Figs. 3 and 4 present the changes in the future critical climate variable values in
Sichuan Basin, including the average change in daily maximum and minimum air temperature,
precipitation and solar radiation, annual extreme high temperature days, and an effective
cumulative temperature greater than or equal to 10 °C. For the daily average temperature,
the general circulation model (GCM) projected a continuous increase in the future periods with
a main increase occurring in summer (July to August). Therefore, incidences of extreme high
temperature events in terms of daily maximum air temperature more than 35 °C (Xie et al.
2009; Zhang et al. 2010) increased obviously during the rice-growing season (March to
September). The annual precipitation was also projected to increase and concentrate from
May to September and peak in July, coinciding with the rice-growing seasons (Fig. 5).

2.3.2 Meteorological data

The minimum weather inputs required to calibrate and validate the CERES-Rice model
included the daily precipitation, daily maximum and minimum air temperature, and daily solar
radiation. The observed weather data in the selected years, including the maximum and
minimum air temperature, precipitation, and hours of sunshine, were downloaded from the
China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/) that is collected
and operated by the China Meteorological Administration (CMA). The observed weather data
for the five selected stations (Chengdu, Dujiangyan, Leshan, Yibin, and Youyang) were from

Fig. 2 Changes of the global a carbon dioxide (CO2) concentration and b emission for each Representative
Concentration Pathway (RCP) scenario (2.6, 4.5, 6.0, and 8.5) during 1980–2100
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the local meteorological stations, whereas the weather data from the other stations (Dazhu,
Hanyuan, Liangshan, Miyi, Mingshan, Neijiang, and Jiangjin) were derived from their closest
meteorological station (the latitude and longitude difference between them did not exceed 1°)
due to the absence of records. Daily solar radiation for each station was calculated by the
Angstrom equation (Wang et al. 2008) based on the daily sunshine hours. The projected
weather data, including historic climate data (1981–2010) and the future climate data (2020s
(2011–2040), 2050s (2041–2070s), and 2080s (2071–2099)), were derived from the
HadGEM2-ES model and from the closet grid data for each station.

2.3.3 Soil data

Crop model inputs related to soil properties for each station included general surface informa-
tion and characteristics for each soil layer (Wilkens et al. 2004). For general surface informa-
tion, the inputs included color, drainage, slope, runoff potential, and a fertility factor. For the
characteristics of each soil layer, the inputs contained organic carbon, water pH, cation
exchange capacity, total nitrogen, and the percentage of the soil grain diameter. It assumed
that the percentage of stones was 100 % minus the percentages of clay and silt (Tsuji et al.
1994). A soil characteristics database (including color, water pH, cation exchange capacity,
total nitrogen, and the percentage of calculated/edited soil grain diameter) was obtained from

Fig. 3 Changes of annual cumulative daily average air temperatures that are greater than or equal to 10 °C in the
2020s (2011–2040), 2050s (2041–2070), and 2080s (2071–2099) under the Representative Concentration
Pathway (RCP) 4.5 scenario in the Sichuan Basin. CD Chengdu, DZ Dazhu, DJY Dujiangyan, HY Hanyuan,
LS Leshan, LIS Liangshan, MY Miyi, MS Mingshan, NJ Neijiang, YB Yibin, JJ Jiangjin, YY Youyang

Table 2 Changes for temperature, precipitation and solar radiation in the 2020s (2011–2040), 2050s (2041–
2070), and 2080s (2071–2099), projected by selected the Regional Climate Model (RCM) under the Represen-
tative Concentration Pathway (RCP) 4.5 scenario

Periods Temperature (°C) Extreme high
temperature (d·a−1)

Precipitation
(mm·day−1)

Solar radiation
(MJ·m−2·d−1)

2020s +1.1 +6.7 −4.9 % +0.5

2050s +2.3 +19.3 −2.7 % +2.4

2080s +3.0 +26.6 +1.1 % +3.0

Average +2.1 +17.5 −2.2 % +2.0

Baseline 20.0 132.8 7.9 15.4
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the Chinese Soil Scientific Database (http://www.soil.csdb.cn/) and the Sichuan Soil Genus
Records (Meng et al. 1994). The soil properties for each site in the Sichuan Basin were
presented as Appendix.

2.3.4 Field agricultural experimental data

The field agricultural experimental data were obtained from the Chinese agro-meteorological
experimental stations, which were maintained by the CMA (Tao et al. 2014). They were
observed and collected from rice field experiments by well-trained agricultural technicians
based on a standardized observation criterion and a prescribed method (China Meteorological
Administration 1993). The observations were generally conducted every other day in the
afternoon but every day in the morning during flowering periods. These experimental data
included detailed and precise information about rice physiological data (e.g., sowing, emer-
gence, transplanting, panicle initiation, flowering, and physiological maturity dates), manage-
ment practices (e.g., plant population, planting and harvesting dates, row spacing, fertilizer
application amounts and dates, and pesticide use), and rice yields and yield components (e.g.,

Fig. 5 The monthly
precipitation’s temporal
distribution during rice-growing
season in the Sichuan Basin under
baseline periods and future climate
scenario

Chengdu  Dazhu    Dujiangyan Hanyuan Leshan  Liangshan 

Miyi     Mingshan Neijiang    Yibin    Jiangjin Youyang

Fig. 4 Simulation vs. observation values of a flowering duration b maturing duration and c rice yields for the
selected experimental data set. The solid lines represent the 1:1 relationship and the broken lines refer the error
with ±15 %
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biomass, byproduct dry weight, pod per panicle, grain unit dry weight). Every phonological
event has a clear definition, and each variable related to growth stages and yield was rigorously
measured and calculated (China Meteorological Administration 1993).

Crop management practices at these experimental stations were generally better than those
of local farmers. Adequate water supplies, nitrogen, and the application of pesticides and
herbicides protected these crops from the effects of drought, insects, diseases, and weeds; the
management practices at most stations did not change much during the study period, except for
a change in varieties (Tao et al. 2006). Therefore, these long-term and high-quality data, in
conjunction with other data (flowering dates, maturing dates and yield), could provide high-
quality data for the rigorous calibration and verification of a CERES-Rice model, which would
enhance modeling performance and the reliability of simulated results.

2.3.5 Genetic coefficients

The genetic coefficients are sets of adjustable parameters that describe the interaction between
a genotype and environment and characterize the growth and development of crop varieties or
hybrids differing in maturity dates (Tsuji and Balas 1993). They are mathematically used in
quantity to summarize how a particular cultivar responds to external factors, including climate
change, variations in CO2 concentrations, and management practices such as adaptation
options (Román-Paoli et al. 2000).

The genotype coefficients used for the growth and development of rice cultivars were
presented in Table 3. The P coefficients enable the model to predict events such as flowering
and maturity dates, and the G coefficients predict the potential grain yield of a specific cultivar
(Tsuji and Balas 1993).

2.4 Model calibration, validation, and evaluation

For credible results, all crop models should be rigorously calibrated, validated, and evaluated
for the varieties and environments of interest (Timsina and Humphreys 2006). Model calibra-
tion is a process of adjusting a set of model parameters to the local experimental field
conditions (Wajid et al. 2013). In this study, the final coefficient values for a specific cultivar
were necessary, and they were obtained until close matches were achieved between the

Table 3 The genetic coefficients for rice cultivar and their definitions in the Crop Estimation through Resource
and Environment Synthesis (CERES)-Rice model

Coefficients Definitions

P1 The growing degree-days (°C-days) above a base temperature of 9 °C in basic vegetative phase

P20 The critical photoperiod or the longest day length measured in hours,
during which development occurred at a maximum rate

P2R The extent of delay in panicle initiation, expressed in °C-days

P5 The time period in °C-days from the beginning of grain filling to physiological
maturity with a base temperature of 9 °C in grain filling phase

G1 The potential spikelet numbers per panicle

G2 The single grain weight

G3 The tillering coefficients relative to IR64 cultivars

G4 The temperature tolerance coefficient
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simulated and observed phenology and yield. Such a calibration process is also the
model parameterization process. Model validation assesses the ability of a successfully
calibrated model to simulate the selected cultivars through a comparison between the
simulation and observed data at plot scale (Wilkens et al. 2004). Evaluation is an
overall assessment of crop model performance in a study region, which depends
largely on the great confidence in model capacity for estimating the results that agree
well with the observed ones.

One year of observed data from each site were used to calibrate, and two other years
of independent data (Table 1) were used to validate the crop model, both of which
included the anthesis and maturity duration for the development coefficients and the final
grain yield for the growth coefficients. When calibrated and validated, 100 kg/ha N were
incorporated into soil at the depth of 15 mm as the basal manure and 200 kg/ha N were
applied as topdressing. For irrigated regions, 100 mm water were applied before and after
transplanting periods divided into two times. In addition, rice cultivars were transplanted
at the depth of 1.5 cm, and the row spacing was 25×25 cm. To ensure simulation
precision, the selected cultivars should be planted for at least 3 years at one site during
the selected years, and there must be a yield increment and no apparent impact from
diseases and extreme climate during these years.

Parameterization or calibration was conducted using the Generalized Likelihood Uncer-
tainty Estimation (GLUE), a Bayesian Monte Carlo parameter estimation technique (He et al.
2010), to closely match the simulated and observed data. The estimation process of the GLUE
program is fast and can be used with any number of genetic coefficients. In contrast, estimating
coefficients with filed experiments and measurements is time-consuming and is restricted to
the parameter number (Román-Paoli et al. 2000). In this study, approximately 10,000 runs
were conducted using GLUE with the following summarized steps: (1) initializing the rice
genetic coefficients of a specific cultivar; (2) running the GLUE module with original genetic
coefficients and producing parameter values (anthesis duration, maturity duration, and yield),
as well as a set of new genetic coefficient values; and (3) calculating the deviation between the
simulated and observed values. If the error was acceptable, then the process was complete; if
not, step 3 was repeated.

During calibration and validation, the errors between the simulated values for rice anthesis
duration, maturity duration, and the observed ones were estimated using the predicted devi-
ation (PD) to evaluate the model performance for each station. For evaluation, we use the
normalized root mean square error (NRMSE) to assess the model performance for the Sichuan
Basin.

PD ¼ Si−Oið Þ=Oi ð2Þ

NRMSE ¼ 1

n

Xn

i¼1

Si−Oið Þ2
" #1=2

=Oi ð3Þ

Here, Si and Oi are the predicted and observed parameter values, respectively; Oi is the
observed mean value, n is the validated year number, and i is each observation. The simulation
is considered perfect when the NRMSE is less than 10 %, good with an NRMSE between 10
and 20 %, fair with an NRMSE between 20 and 30 % and poor with an NRMSE more than
30 % (Rinaldia et al. 2003).
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2.5 Model application

The simulation of rice yields is generally based on calibration of the model param-
eters of the selected cultivars under current weather conditions and its subsequent
application under future climate change scenarios. In an agricultural system, plant
growth and development depend on the integrated responses of various eco-
physiological processes with a combination of environmental conditions, such as
temperature, CO2 concentrations, nutrients, water, and agronomic management. It is
impossible, however, to accurately examine all of these variables and their interactions
and to assess their respective potential effects on agricultural production. Therefore,
the evaluation of climate change impacts and adaptation options in this study were
conducted based on the general assumption that all variables, such as cultivar varie-
ties, soil, and agricultural management, were held constant while leaving each of these
three factors, i.e., climate change, CO2 concentrations, and adaptation options, as the
only independent variables. This approach has been widely adopted in crop simulation
research (IPCC 2001).

2.5.1 Evaluation of climate change impacts

Assuming that the rice area, agro-technology level, cultivar, crop management, and
irrigation conditions remain the same as in the present, the impacts of climate change
on rice phenologies and yields were evaluated by comparing the CERES-Rice model
outputs (rice phenologies and yields) over three time periods (2020s, 2050s, and
2080s) under the RCP4.5 scenario with those under the baseline (1981–2010). To
eliminate the mutual effect among different dependent climate variables on rice yields,
the stepwise multiple regression method, which is helpful to identify the major
variables affecting the dependent variables and in ranking them for importance
(Armstrong and Hilton 2010), was applied in the latter analysis. In this study,
temperature and CO2 concentrations were mainly taken into account to simulate
climate change impacts on rice growth. Considering the sensitivity of rice growth to
high temperatures, the daily average air temperature and maximum air temperature
were analyzed to evaluate the relationship between temperature and rice yields. The
impact of increased atmospheric CO2 concentrations on rice yields was simulated by
running the crop model for all stations with different CO2 concentrations of the
baseline and three future periods (2020s, 2050s, and 2080s) under RCP4.5 scenario,
which were derived from the RCP Database v2.0.5 (http://tntcat.iiasa.ac.at:8787/
RcpDb/dsd?Action=htmlpage&page=compare).

2.5.2 Evaluation of adaptation options

The Fifth Assessment Report of the IPCC (IPCC 2014) suggested several adaptation strategies
to address projected climatic change; these included altering the planting dates, switching to
more suitable current available crop varieties, breeding new cultivars, irrigating, increasing the
effectiveness of pest and disease control, and improving crop management practices. However,
some of the adaptation strategies are beyond the capacity of the CERES-Rice model to
simulate, and it is also beyond the scope of this paper to simulate all of the adaptation
strategies. In this study, we selected the three most commonly practiced adaptation measures
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to evaluate their effectiveness in mitigating the negative impacts of climate change on rice
production, i.e., changing the planting date, switching to high temperature tolerant rice
cultivars, and breeding new rice cultivars. The former two measures represent a typical
household-level autonomous adaptation measure, whereas the latter usually represents a
typical planned adaptation sponsored mainly by governments and research communities
(Porter et al. 2014).

To adjust rice planting dates, we assessed the effectiveness of shifting planting
dates on rice yields by advancing and delaying the planting date by 40 days at a 5-
day interval and compared the simulated results with those of the current planting
dates for the selected stations. The best planting date was then determined for each
rice cultivar as the one with an increased rice yield and the minimum yield stability
(ΔSD) value, which is an important indicator of rice production and is affected by
climate change (Jiang et al. 2013).

ΔSD ¼ μc � σμc
μa

����
���� ð4Þ

σμc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2μc þ σ2

μb

q
ð5Þ

σμc ¼ σaffiffiffiffiffi
na

p ;σμb ¼ σbffiffiffiffiffi
nb

p ð6Þ

Here, σa and σb are the standard deviations of the annual rice yield in the baseline and
future climate periods, respectively, and μa and μb are the average values of annual rice yield in
the baseline and future climate periods, respectively. μc=μb−μa is the difference in the annual
rice yield between the baseline and future climate periods. na and nb are the lengths of the
computed years.

Switching rice cultivars from other stations to the selected ones, a similar condition in
temperature and solar radiation between them needed to be guaranteed for successful adapta-
tion (Cheng and Li 2007). Therefore, high-yielding rice cultivars with a high temperature
tolerance at other sites that were located in the same climate as the selected sites were imported
to simulate this approach’s effectiveness in mitigating the impacts of high temperature on rice
yields.

For breeding new cultivars at the selected stations based on current rice varieties, a
sensitivity one-factor-at-a-time (OAT) method (Morris 1991) was first used to select the most
sensitive genetic coefficients for each rice variety. The relative sensitivity (RS) (Liu et al. 2008)
was estimated and used to evaluate the relative degree between each coefficient and rice yield.

RS ¼ y x ¼ Δxð Þ−y xð Þð Þ
.
y xð Þ

� �.
Δx

.
x

� ���� ��� ð7Þ

Here, x is a rice genetic coefficient, Δx is the increment of a genetic coefficient, and y(x)
and y(x+Δx) are rice yields before and after altering the coefficients, respectively. The most
sensitive coefficient obtained by the OAT method was then used for improving the current
available rice cultivars at the selected stations by changing their values in a relative fixed step
size while keeping other variables constant.
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3 Results and discussion

3.1 Model performance

Table 4 shows the estimated genetic coefficients for each rice cultivar, and Fig. 4 presents an
evaluation of the model performance. It shows that the NRMSE of flowering duration
(13.3 %), maturity duration (11.4 %), and grain yields (15.3 %) were all greater than 10 %
but less than 20 %, indicating good model performance based on the evaluation standard of
model simulation (Rinaldia et al. 2003). Moreover, the simulated and observed values
distributed relatively uniformly around a one-to-one line within ±15 % PD for most values
in validation (Fig. 4), suggesting that the CERES-Rice model performed well and could be
applied in the Sichuan Basin.

3.2 Impacts of climate change on rice production

The following evaluation was based on a comparison between RCP4.5 climate change
scenario data (2011–2099) and baseline (1981–2010) data.

3.2.1 Impacts of climate change on rice phenologies

The predicted results indicated in Fig. 6 showed that the average flowering duration would be
shortened by 6.6 days during 2011–2099, with a maximum decrease of 12.1 days occurring at
the Liangshan site and a minimum decrease of 1.7 days at the Neijiang site. At the same time,
the average duration to maturation would decrease by 14.4 days during 2011–2099, with a
maximum decrease of 34.1 days at the Hanyuan site and a minimum decrease of 3.6 days at
the Jiangjin site. For all future periods, the average shortened flowering period was 3.9, 6.1,
and 9.9 days in the 2020s, 2050s, and 2080s, respectively, whereas the maturity dates
advanced by 8.6, 14.9, and 19.7 days in the 2020s, 2050s, and 2080s compared to those of
the baseline, respectively.

Table 4 The calculated genetic coefficient values for each rice variety using the Crop Estimation through
Resource and Environment Synthesis (CERES)-Rice crop model in the Sichuan Basin

Sites Cultivar P1 P2R P5 P20 G1 G2 G3 G4

Chengdu Gangyou22 646.1 56.2 365.9 11.9 59.6 0.0220 0.82 1.022

Dazhu Shanyouduoxi1 230.3 192.7 496.6 11.6 73.4 0.0250 0.77 1.077

Dujiangyan Gangyou6 624.2 74.2 373.3 14.0 57.0 0.0201 0.81 0.986

Hanyuan Yixiang1577 608.4 70.8 396.4 13.2 120.0 0.0300 0.73 1.222

Leshan Dyou63 400.1 99.0 471.2 13.3 60.7 0.0230 0.84 1.003

Liangshan IIyou838 546.2 59.4 410.6 11.6 81.1 0.0180 0.68 1.228

Miyi Dyou68 451.4 32.9 337.9 11.3 118.6 0.0240 0.60 1.030

Mingshan Gangyou527 615.6 123.5 337.8 12.2 59.7 0.0190 0.97 0.917

Neijiang Iyou838 224.1 216.3 464.4 12.3 68.4 0.0210 0.43 0.926

Yibin Gangyou22 508.2 30.4 552.5 13.3 50.5 0.0190 0.69 1.090

Jiangjin IIyou6078 457.2 94.0 367.0 11.8 117.4 0.0300 0.57 1.190

Youyang IIyou58 460.4 63.3 566.2 12.9 77.8 0.0240 0.33 0.884
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Generally, the physiological maturity of rice could be determined by leaf senescence, grain
color, and grain weight (Shi et al. 2015). However, these traits could not contain the specific
physiological status of heat stress during physiological maturity at the same time. Therefore,
the GDD has been incorporated into the CERES-Rice model to divide the rice growth stages
into different phases, e.g., the anthesis and maturity phase. In this study, rice anthesis and
maturity duration shortened during future climate change from increased temperature stress,
which was in accordance with the conclusion of Challinor et al. (2007), Rani et al. (2013),
Zhang et al. (2013) and Shi et al. (2015). Zhang et al. (2013) simulated the impacts of climate
change and variability on rice phenology by using five crop models (CERES-Rice,
ORYZA2000, RCM, Beta Model, and SIMRIW), concluding that the rice-growing season
was shortened by about 0.45–5.78 days in most of study regions except northeastern China
where rice-growing season prolonged due to the impacts of increased extreme temperature; Shi
et al. (2015) found an obvious advance in physiological maturity for rice under post-anthesis
heat stress by using the original RiceGrow model. A plausible mechanism was that the
phenological stages of rice were completed earlier with a prescriptive accumulated GDD from
increasing high temperatures, therefore, leading to a decrease in the growth duration (Jones
et al. 2003; Rani and Maragatham 2013).

3.2.2 Impacts of temperature, precipitation, and solar radiation on rice yields

Predicted changes in rice yields not considering the direct CO2 fertilizer effect between
baseline and future climate periods for all the stations are shown in Fig. 7. The rice yield
across all sites indicated a continually decreasing trend during all periods. The lowest and
highest reduction occurred at the Liangshan and Jiangjin site, respectively, with decreases of

Fig. 6 Changes of rice a flowering duration and b maturing duration compared with those of baseline in the
2020s (2011–2040), 2050s (2041–2070) and 2080s (2071–2099) under RCP 4.5 scenario in the Sichuan Basin
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2.6 and 24.8 %. The reductions in rice yields over all the future periods were projected to be
4.4, 7.9, and 14.2 % in the 2020s, 2050s, and 2080s, respectively, with the most serious
decrease occurring in the 2080s. However, not all the stations would experience yield
reductions in the future. The Liangshan and Neijiang sites are such exceptions; they exhibited
a 0.1 and 1.1 % increase in yield in the 2020s and 2050s, respectively.

The mechanism behind the relative contributions of various climatic variables to changes in
rice phenology and yield could be further explored based on stepwise multiple regression
analysis between climate impact factors (daily average air temperatures, solar radiation, and
precipitation) and rice yields (yield=−338.86Tav−0.98Prec+15885.869, P=0.00<0.01, Tav,
Prec: the daily average air temperature and precipitation, respectively). The daily average air
temperature was the most dominant factor that influenced rice yields negatively to a large
extent, which is consistent with findings by Kim et al. (2013) and Krishnan et al.(2007). In
contrast, precipitation and solar radiation at a regional scale exhibited no discernible impact on
rice yields, probably as a combined result of the abundant rainfall during the rice-growing
season and the insensitivity of mid-season rice to light (Cheng and Li 2007).

Temperature can influence rice yields mainly by affecting the average growth rates and
growth durations through the two following pathways (Ritchie et al. 1998): (1) the average
growth rates are decided by rice net photosynthesis (difference between photosynthesis and
respiration), which would change depending on the current temperature relative to an optimum
(Chartzoulakis and Psarras 2005; Fredeen and Sage 1999), whereas high temperatures at
nighttime would increase respiration and then biomass consumption (Hatfield et al. 2011;
Lobell and Gourdji 2012) without any benefit for photosynthesis. Furthermore, a warming
climate would lead to spikelet sterility, lower yields, and even the risk of complete crop failure
when the temperature was close to an extreme high temperature, especially for the time period

Fig. 7 Changes of rice yields compared with those under baseline in the 2020s (2011–2040), 2050s (2041–
2070), and 2080s (2071–2099) under the Representative Concentration Pathway (RCP) 4.5 scenario in the
Sichuan Basin
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before and during the flowering stage (Jagadish et al. 2014; Lansigan et al. 2000; Lobell and
Gourdji 2012). Therefore, an increase in the average air temperature and annual extreme high
temperature days during rice-growing season would reduce the rice growth rates by decreasing
the net photosynthesis; (2) growth durations, which determine the time of biomass accumu-
lation, include anthesis and maturity, which decreased in duration during high temperatures
under future climate change according to previous conclusions about anthesis and maturity, as
shown in Fig. 6. Therefore, rice yields in the study region would decline due to a decrease in
the growth rate and shortening of the growth durations, both of which resulted from the
elevated temperatures under a future warming climate. This conclusion was consistent with
that by Krishnan et al. (2007) and Bocchiola et al. (2015). Krishnan et al. (2007) predicted a
reduction of 7.2 and 6.7 %, for every 1 °C increase in temperature by using ORYZA1 and
INFOCROP rice models, respectively; Bocchiola et al. (2015) suggested that the decrease in
rice yields projected by PolyCrop model under most future climate scenarios in the Po valley
of Italy was mainly due to increasing summer temperature through the crop model.

In contrast to the obtained results of most other stations, rice yields at the Liangshan site in
the 2020s and at the Neijiang site in the 2050s increased. According to a stepwise multiple
regression analysis between rice yields and climate data at the Liangshan and Neijiang site on a
plot level, the main effective factor of both stations was precipitation (P=0.004<0.01; P=
0.005<0.01), leading to negative impacts on rice yields. Therefore, yields at the two sites
increased from a precipitation decrease by 7.2 % during the 2020s at the Liangshan site and
1.1 % during the 2050s at the Neijiang site during future climate periods. Two reasons may
account for this negative relationship. The first was probably that the amount of precipitation
(904 mm) during rice growth in the Sichuan Basin exceeded the requirement of single-crop
rice cultivars (Fang et al. 1998); therefore, excessive precipitation would damage rice devel-
opment and result in reductions in rice yields. The second may be related to high temporal
variability in the precipitation distribution, which indicated that more than 50 % of the rainfall
was concentrated during flowering periods and 10 % or less occurred during the periods
between planting and heading duration (Fig. 5). Therefore, flooding during the flowering
periods would easily occur, which would exert negative impacts on rice yields. Therefore, a
decrease in the precipitation by less than 10 % may not affect the rice water requirements
significantly; in contrast, a decrease in precipitation may increase rice yields by reducing the
risk of excess rainfall to rice production in the 2020s and 2080s at these two sites. Such a
negative relationship between precipitation and rice yields is consistent with the conclusion
obtained by Buan et al. (1996), who indicated that the predicted rain-fed rice yield declined by
10 % in response to precipitation increases, probably due to the already abundant seasonal
rainfall there.

3.2.3 Impacts of the CO2 fertilization effect on rice yield

An increase in ambient CO2 concentrations, causing high temperature and radiation variance,
would also impact the rice yield through a direct fertilizer effect, as indicated by variations in
rice yields in Table 5. When considering the CO2 fertilizer effect, the margin of rice reduction
decreased by 2.1, 5.8, and 6.9 % in the 2020s, 2050s, and 2080s, respectively, compared with
those of the baseline. However, the average rice yield across all stations still declined by 2.3,
2.1, and 7.3 % in the 2020s, 2050s, and 2080s, respectively. Therefore, this indicated that the
increase in CO2 concentration under future climate scenarios was able to mitigate the reduction
in rice yields to some extent but was still not able to offset the negative effect of climate change
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on rice yields. This finding was consistent with the conclusion by Lin et al. (2005), Xiong et al.
(2009), and Krishnan et al. (2007). Krishnan et al. (2007) used INFOCROP and ORYZA1 rice
models and projected an increase in rice yields by 25.92 and 18.57 %, respectively, when
considering the effects of increased CO2 concentration alone. However, rice yields would
decrease when the temperature increase was more than 3 °C.

Three plausible interpretations based on plant physiology for rice yield increases were that
elevated CO2 concentrations could: (1) enhance photosynthesis by constraining photorespira-
tion (Widodo et al. 2003) and advancing light use efficiency due to a greater leaf area index
(Ewert 2004); (2) increase the utilization rate of water by reducing the stomata conduction and
consequent transpiration (Tubiello and Ewert 2002), and thus contribute to biomass accumu-
lation and tillering consequently (Bazzaz et al. 1989).

3.3 Adaptation options simulation

As the impacts simulation indicated earlier, the risk of rice production due to elevated
temperatures would occur under the RCP4.5 scenario, and the most adversely impacted rice
yields of 22.1 and 38.6 % occurred at the Chengdu and Jiangjin sites, respectively, during the
2080s. Therefore, these two sites were selected to investigate the effectiveness of three
adaptation options in the 2080s, including adjusting the planting date, switching to high
temperature tolerant varieties, and breeding new rice cultivars.

3.3.1 Adjusting rice planting dates

The predicted yields and stabilities at the Chengdu and Jiangjin sites in the 2080s are presented
in Fig. 8, indicating non-linear variation. Rice yields increased when planting dates advanced
earlier than current dates at the Chengdu and Jiangjin sites, as did the yield stability, which

Table 5 Relative changes (in %) of future rice yields simulated with and without the carbon dioxide (CO2)
fertilization effect for each site in the Sichuan Basin

Site 2020s 2050s 2080s

Without With CO2 fertilizer
effect

Without With CO2 fertilizer
effect

Without With CO2 fertilizer
effect

Chengdu −7.9 −6.3 1.7 −17.7 −5.0 12.7 −22.1 1.4 23.5

Dazhu −7.9 −5.8 2.1 −9.2 4.7 13.9 −16.4 −1.0 15.4

Dujiangyan −0.9 0.5 1.5 −3.1 2.4 5.5 −6.1 3.0 9.1

Hanyuan 0.1 3.2 3.0 −1.6 4.9 6.5 −6.5 4.1 10.6

Leshan −6.0 −4.0 2.0 −12.3 −1.2 11.1 −17.5 1.9 19.4

Liangshan −1.6 0.4 2.0 1.1 9.1 8.1 −9.3 −2.3 7.1

Miyi −5.5 −3.9 1.6 −1.0 43.5 44.5 −10.0 21.3 31.3

Mingshan −10.1 −8.5 1.6 −25.7 −11.7 14.0 −38.6 −11.4 27.3

Neijiang −3.3 −0.9 2.4 −9.0 −0.3 8.7 −11.7 4.2 15.9

Yibin −3.8 −1.7 2.0 −1.6 8.4 9.9 −3.7 5.7 9.4

Jiangjin −6.5 −3.5 2.9 −15.7 −1.3 14.4 −19.9 6.9 26.8

Youyang −1.0 1.2 2.2 −1.5 5.5 7.0 −14.3 −9.0 5.3

All −4.4 −2.3 2.1 −7.9 −2.1 5.8 −14.2 −7.3 6.9
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exhibited a steady level. Considering the integrated effect of advancing the planting date on
rice yields and its stabilities, the optimum planting date for rice cultivars would be to advance
the planting date 40 days earlier at the Chengdu site and 30 days earlier at the Jiangjin site with
the most significant yield increases of 24.3 and 56.5 %, respectively, compared with those of
current planting dates.

High temperatures during rice flowering would easily cause rice reduction but
would have less impact on rice production during other stages of rice growth
(Lansigan et al. 2000). Before adjustment, the flowering date was July 30th at the
Chengdu site and July 15th at the Jiangjin site. Both of these sites were expected to
experience extreme high temperatures during flowering periods because their maxi-
mum daily air temperatures were 35.1 and 35.4 °C, respectively. After advancing the
planting dates by 40 days at the Chengdu site and 30 days at the Jiangjin site, their
flowering dates were set to July 12th and June 20th. Then, the maximum air
temperature was 33.4 and 33.5 °C (Fig. 9), respectively, and the rice cultivar could
avoid extreme high temperatures during its flowering periods. Furthermore, the
lengthened maturity duration (19.6 % at the Chengdu site and 6.3 % at the Jiangjin
site) would increase the rice yields as a result of the extended cumulative time for dry
matter (Saseendran et al. 2000). Therefore, the initiative of avoiding extreme high
temperatures during flowering periods and prolonged growth durations resulting from
planting date advancement would increase rice yields and improve its stability at
selected stations in the 2080s.

Adjusting rice planting dates has been widely evaluated and identified around the world
(Byjesh et al. 2010; Deryng et al. 2011; Kapetanaki and Rosenzweig 1997; Lashkari et al.

Fig. 8 Change of rice yields and stabilities in the 2080s (2071–2099) under the Representative Concentration
Pathway (RCP) 4.5 scenario at the Chengdu and Jiangjin site. The plus and minus in horizontal ordinate
represent earlier and later days than current planting dates, respectively
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2011; Mati 2000; Moradi et al. 2013; Moriondo et al. 2010; Singh et al. 2013; Srivastava et al.
2015; Tingem and Rivington 2008; Travasso et al. 2009). The predictions obtained above,
indicating that early planting increased rice yields in the mid-season cultivars under future
climate change in the RCP4.5 scenario during the 2080s, are consistent with many previous
studies. Kim et al. (2013) simulated rice yields with planting dates at 30, 20, and 10 days
before and after current planting dates in a temperate climate in Asia and concluded that yields
would reach a peak at 30 days earlier than planting for the mid-season cultivar in 2050 and
2100. Krishnan et al. (2007) examined rice yield changes by adjusting the planting date to
June 1, June 15, July 1, July 15, and August 1, compared to the typical planting date of
June 15, at two stations (Cuttack and Jorhat) with ORYZA1 and INFOCROPmodels under the
GFDL, GISS, and UKMO scenarios in eastern India. They indicated that planting 30 days
earlier could increase rice yields to the maximum extent at all stations and under all scenarios.
Babel et al. (2011) explored rice yields in northeast Thailand by gradually shifting planting
dates at an interval of 10 days from 30 days before and after the original planting dates in the
2020s, 2050s and 2080s under the regional climate model. They showed that delaying the
planting date by 30 days during the 2020s and 2050s, 20 days during 2080s was optimal for
three sites, which was in contrast with the predictions in this paper. However, it was consistent
in that the adjustment of planting dates could contribute to avoiding high temperatures during
the critical growth stage of rice. Therefore, either advancing or delaying the planting date
would both increase rice yields during the key growth stage of rice, which would be completed
before the onset of extreme high temperatures.

3.3.2 Switching to high temperature tolerant rice cultivars

The impact simulation indicated that the rice cultivar “Iyou838” has a shorter growing season
and a lower yield decrease compared with other cultivars. We further simulated the effects of
transplanting the Iyou838 cultivar from the Neijiang site to the Chengdu and Jiangjin sites
while holding fertilizer, irrigation, and planting dates constant for the current simulations. The
predicted yields of new cultivars at the Chengdu and Jiangjin sites were 7776 and 4486 kg/ha,

Fig. 9 Changes of maximum air
temperature during flowering
periods in the 2080s (2071–2099)
under the Representative
Concentration Pathway (RCP 4.5)
scenario at the Chengdu and
Jiangjin sites
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respectively, increasing by 22.1 and 14.2 % compared to that of current varieties
(6369 and 3927 kg/ha). It indicated that such an adaptive measure can effectively
mitigate the high temperature impacts on rice yields. Krishnan et al. (2007),
Wassmann et al. (2009), and Challinor et al.(2009) obtained a similar result. A
possible reason explaining such increases in rice yield is that switching to the selected
Iyou838 rice cultivar with a shorter growing season can avoid the extreme high
temperatures during the flowering period (Fig. 10). This trait is also a reflection of
high temperature tolerance in rice cultivars (Wassmann et al. 2009). The maximum air
temperature during flowering periods at the Chengdu and Jiangjin sites were 34.9 and
33.6 °C, respectively, lower than those of former rice varieties (35.1 and 35.0 °C);
switching to more high temperature tolerant varieties can thus attribute to rice yield
increases. Therefore, the Iyou838 rice variety could be planted at the Chengdu and
Jiangjin sites to convert higher temperature stress to favorable thermal resources for
rice growth, thereby increasing rice yields under future climate scenarios.

3.3.3 Breeding new rice cultivars

In the CERES-Rice model, genotype coefficients were used as an important input to
simulate the growth and development of rice cultivars; thus, it was generally assumed
that we can simulate the adaptive effectiveness of breeding new rice cultivars by a
way of altering the genotype coefficient values of a simulated rice variety. Table 6
indicates the sensitivities of rice yields to different genetic coefficients at the Chengdu
and Jiangjin sites. The most sensitive coefficients were P1 (the GDD above a base
temperature of 9 °C) at the Chengdu site and P1, G1 (the potential spikelet numbers
per panicle), and G2 (the single grain weight) at the Jiangjin site. Therefore, these
parameters of interest were altered by 5 % from their current values within the given
value ranges in the CERES-Rice model under a condition of holding other coefficient
values constant. Then, the changed parameter values were used to simulate rice yields
of improved cultivars in the 2080s with the CERES-Rice model.

Fig. 10 Distributions of the
maximum air temperature during
rice flowering periods for each rice
cultivar at the Chengdu and
Jiangjin sites
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Yields as a function of changing cultivar coefficients indicated a continuous increasing
trend for the new cultivar in the 2080s at the Chengdu and Jiangjin sites (Fig. 11). Rice yields
peaked by an increase of 21.5 % at the Chengdu site when P1 was 839.9 and 25.4 % at the
Jiangjin site when P1 was 868.7. Furthermore, rice yields already reached a peak when G1 and
G2 were at current values at the Jiangjin site. In conclusion, increasing the requirement of rice
cultivars for thermal resources during its basic vegetative growth could effectively contribute
to yield increases, which is similar to the results obtained by Krishnan et al. (2007) and
Wassmann et al. (2009). Furthermore, improving cultivar tolerance to high temperatures is
continuously identified as an adaptation strategy for many crops globally (Porter et al. 2014).

Table 6 The sensitivity of rice yields to genetic coefficients for each rice variety at the Chengdu and Jiangjin
sites

Sites Cultivars P1 P2R P5 P20 G1 G2 G3 G4

Chengdu Gangyou22 0.78 0.4 0.14 0.76 0.68 0.68 0.19 0.03

Jiangjin Eryou6078 0.49 0.08 0.07 0.02 0.49 0.49 0.16 0.32

Fig. 11 Yields of four new rice cultivars as a function of cultivar parameter changes in the 2080s (2071–2099)
under the Representative Concentration Pathway (RCP) 4.5 scenario at the Chengdu and Jiangjin sites. Treatment
14 at the Chengdu site and treatment 11, 12, and 9 at the Jiangjin site are based on current coefficient values. The
rice yield peaked in treatment 20 at the Chengdu site and in treatment 29, 12, and 9 at the Jiangjin site
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Therefore, breeding high temperature tolerant cultivars is an effective measure that can reduce
the negative impacts of climate change on rice yields and should be widely applied under
future climate warming conditions.

Except for these three globally widely practiced adaptive measures, sufficient irrigation and
altering cropping systems may also be effective methods for adapting rice cultivars to future
climate change. For irrigation, the obvious temporal differences of precipitation presented in
Fig. 5 would easily cause drought during the early growth stage of rice cultivars. Therefore,
irrigation should be adopted as a useful adaptation strategy to mitigate the adverse effects of
high temperatures on rice production. For changing cropping systems, the annual cumulative
temperature of greater than or equal to 10 °C, which is crucial for rice growth (Liu et al. 2010),
increased by 1007 and 1001 °C at the Chengdu and Jiangjin sites, respectively, in the 2080s
(Fig. 3). Therefore, elevating the multiple-crop index to sufficiently utilize thermal resources
was another effective measure to increase yields and reduce the negative impacts of high
temperatures on rice production for a single rice cropping system.

4 Uncertainties and limitations

Like other studies simulating climate change impacts and adaptive measures using crop
models, this study also suffers from several potential uncertainties and limitations due to
multiple sources (Asseng 2013); these include the climate assessment in climate models,
variations in different crop models, and the discrepancy in scale between the climate model
outputs and the crop model inputs.

The first uncertainty, resulting from the climate assessment, was due to different emission
scenarios and climate models. The plausible emission scenarios, which were raised to project
future climate change through climate models, embodied the uncertainty of climate change
impacts on yields due to the uncertainty of government policy, new technology, and energy
development impacts on greenhouse gas emissions. Furthermore, different climate models
(Masutomi et al. 2009) would also produce different climate change outcomes. The impacts of
climate change on yields depend on the numbers of general circulation models (GCMs) used
to a large extent, and the uncertainties could be evaluated by using projections from multiple
climate models (Collins 2007; Masutomi et al. 2009).

The second uncertainty from crop models was mainly due to the structure of crop models,
the calibration of genetic coefficients, and the responses of crops to climate change. (1)
Process-based crop models are the most common and powerful tool to estimate the impact
of climate change on crop production while considering the interaction among soil, water,
crop, climate, and managements. However, interactions between these climate and non-climate
factors confounded the evaluated results and also contained uncertainties due to man-made
factors. Some researchers have assessed the uncertainty of crop models by using more than one
crop model, and they performed well (Challinor and Wheeler 2008; Matthews and Wassmann
2003). (2) The localization of models was the premise of model application. However, crop
models could not account for all of the factors in the field that may influence crop yield.
Without considering crop diseases, weeds, the spatial variability of soils and management
implementation, large differences in yields would occur when comparing the simulations with
observation. (3) Furthermore, the CO2 fertilization effect, high stress, and high-temperature-
by-CO2 interactions also still remain uncertain in the crop model simulations. Leakey et al.
(2009) concluded that crop models overestimated the impact of the CO2 fertilization effect on
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crop yields, whereas others held the opposite views (Tubiello et al. 2007). Porter et al. (2014)
concluded that temperature responses were well analyzed for temperatures up to the optimum
temperature for crop growth, but the impacts of high temperature beyond the optimum
temperature on development were not clear. Therefore, further theoretical and experimental
research to qualify and reduce uncertainties in the CO2 fertilization effect and high stress is
necessary. Furthermore, the effect of technological developments on crops was not considered
in the simulations; nevertheless, it had a positive effect on yields that was greater than the
negative impacts from climate change (Ewert et al. 2005), which is also an uncertainty.

The third uncertainty derives from a discrepancy in scale between the climate model
outputs and crop models inputs. Generally, the impacts of climate change on crop production
at a regional level were assessed by simulating at the plot scale first, using downscaled climate
models and crop models. However, the latest research has shown that significant factors of
crop production at the plot level include soil properties and management measures, whereas it
was the climate factor that significantly affect crop production at a regional level (Bakker et al.
2005; Challinor et al. 2009). Therefore, some uncertainties in the cultivars and management
measures would exist when a crop model is applied from the plot scale to regional simulations.
Some methods, e.g., sampling input variability in geographic or probability space (Hansen and
Jones 2000) and developing crop models that match the GCM grids (Challinor et al. 2004),
were determined to have good performance in mitigating the uncertainties of scale.

5 Conclusions

The simulation results indicated that high temperatures would shorten rice growth
durations and reduce rice yields significantly. The CO2 fertilization effect could lead to
an overall increase in rice yields but could not offset the negative impacts of elevated
temperatures. To cope up with the adverse impacts of climate change on rice yields, three
most widely practiced adaptive strategies, i.e., changing planting dates, switching to
higher temperature tolerant varieties, and breeding new rice varieties, were evaluated,
and the results indicated that they are all effective in mitigating the negative climate
impacts, though with various degrees.

However, some uncertainties inherently exist in the model simulations, easily causing
an inconsistency between the predicted variables and observed data in the study region.
Therefore, some measures, such as improving the temperature and CO2 relationships and
incorporating multi-model ensembles into the simulations, were recommended to be
further researched to reduce and quantify the uncertainties of simulations, respectively.

In spite of these uncertainties, the CERES-Rice model demonstrated a promising potential
to investigate the effect of climate change on rice yields under future periods, and our
simulation results could aid policymaking at the regional level and global adaptation strategy
development. To mitigate the climate change impacts more efficiently, planting dates advance
and rice varieties that tolerating high temperature and requiring more thermal resources were
recommended for farmers in coping with climatic risks, and further researches about more
global adaptive measures and their integrations are also expected.
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