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Abstract Research on climate change impacts and related adaptation to water demand is still
very limited. A review summarising the findings related to climate change impacts on water
demand is carried out in this article. A water management strategy is also proposed, which
would help with adaptation to growing pressure on water resources due to climate change and
socio-economic development. The study reveals that climate change will increase global water
demand, though this will vary widely with geographic location and climatic conditions. Water
demand in agriculture will be affected more heavily than will demands in other sectors. As
irrigation comprises the major portion of global consumptive water use, increased water
demand in irrigation may cause severe stress on water resources. Studies suggest that water
demand management or water supply management alone will not able to adapt to mounting
water stress. A combination of both water supply and water demand management strategies is
necessary in order to adapt to varying environmental and associated uncertainties. A case study
from the Haihe River basin of China is presented, to illustrate the effectiveness of water
demand management strategies used alongside water supply management in adapting to
environmental changes. It is expected that the study will help guide policy responses, with
the goal of mitigating the impacts of climate change on water resources.
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1 Introduction

Water plays a major role in economic development and food security (Ringler et al. 2011;
Anseeuw et al. 2012). However, ever-increasing water demand in recent decades, resulting
from population growth, economic development and urbanisation, has caused water scarcity
and has restricted economic development in many countries across the world (Gowing 2003;
Qadir et al. 2007; Blignaut and van Heerden 2009; Wang et al. 2013). It has been reported that
approximately 2.4 billion people, or 36 % of the global population, are already experiencing
water scarcity, and that 22 % of the world’s gross domestic product (GDP) is produced in
water-scarce regions (IFPRI 2012). The global water demand will continue to grow, making
water a critical component of socio-economic development (IWMI 2007; Anseeuw et al.
2012). It has been projected that by 2050 the world’s population will reach more than 9.6
billion people (United Nations 2013), its GDP will be almost quadruple what it is now (OECD
2012), and about 70 % of the global population will be living in urban areas with different
lifestyles and consumption patterns (FAO 2009). Food production will have to increase by
70 % in order to feed the growing population, which will cause a vast expansion of irrigated
agriculture globally (FAO 2009). Consequently, there will be a rapid growth in domestic,
irrigation and industrial water demand across the world (Mote et al. 1999; Döll 2002; Downing
et al. 2003; Rosenzweig et al. 2004; Elgaali et al. 2007; Koch and Vögele 2009; Shahid 2011;
Pohle et al. 2012; Jakimavičius and Kriaučiūnienė 2013; Price et al. 2014). It has been
predicted that global water demand will increase by 55 % by 2050, and that the greatest
increases will be in the emerging economies and developing countries that are already under
water stress (Vörösmarty et al. 2005 Butler and Memon 2006; OECD 2012; Wang et al. 2013).
As potential sources of water are limited, the growing demand for water will make water
resources scarcer in the developing regions. According to IFPRI (2012), approximately 45 %
of the global GDP and 52 % of the world’s population will be exposed to severe water scarcity
by 2050 if proper adaptation measures are not taken.

Water resources are not affected only by population and economy. There are many other
factors that have an influence on water supply and demand (Downing et al. 2003; Alvisi et al.
2003; Babel et al. 2007). Besides population and economy, climate is considered to be a
deciding major factor in the water balance of a region (Middelkoop et al. 2001; Chen and Xu
2005; Bates et al. 2008; Zhang et al. 2008; Elmahdi et al. 2009; Wang et al. 2013). Therefore,
changes in climate due to global warming could have severe implications for water resources.

Climate change will cause sharp increases in temperature, which in turn is likely to affect
evapotranspiration and atmospheric water storage, thereby potentially changing the magni-
tudes, frequencies and intensities of rainfall as well as its seasonal and inter-annual variabilities
and geographical distributions (Arnell 1999; Middelkoop et al. 2001; Chen and Xu 2005;
Akhtar et al. 2008; Bates et al. 2008; Zhang et al. 2008; Elmahdi et al. 2009; Wang et al. 2013).
Increased temperatures and variable precipitation may change regional water supplies and
demands and, consequently, aggravate the condition of water scarcity. Parry et al. (2009)
projected that the number of people at risk of hunger will increase by 10–20 % by 2050
because of climate change.

Climate change is inevitable, and it is already evident in many parts of the world (Ren et al.
2002; Fang et al. 2007; Chen and Xu 2005; Shahid 2010; Wang et al. 2010; Shahid et al.
2012). Therefore, it is very urgent to consider climate change issues in the planning and
management of water resources, in order to be able to adapt to the changing environment.
Understanding how water demand changes in response to variations in the environment is an
essential component of water resources planning, development and management (Belton and
Miller 2014; Wang et al. 2014). As the long-term outlook on environmental changes is
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uncertain, water management strategies in times of global change need to be developed within
a complex and uncertain environment (Pahl-Wostl et al. 2007). Numerous studies have been
carried out so far for the purposes of understanding the impacts of climate change on rainfall,
river discharge and availability of water resources (Shahid and Hazarika 2010; Ahamad et al.
2013; Razafindrabe et al. 2014; Wang et al. 2014). However, research on climate change
impacts on water demand is still limited. Lack of understanding has increased uncertainty in
matters of impact assessment and managing water resources in the context of global change
(Pahl-Wostl et al. 2007). Current water management practices are very likely to be inadequate
in reducing the negative impacts of climate change on water resources and ensuring a
continuous supply of water for food production, power generation, sanitation and public
health, and aquatic ecosystems (IPCC 2007). It is very urgent that more attention be given
to dealing with uncertainties related to sustainable water management resources in the context
of climate change (Wang et al. 2012a; Wang et al. 2012c).

The objective of the present study is to understand the possible impacts of climate change
on water demands and to identify possible water management strategies that can deal with
uncertainty in managing water resources in the context of climate change. The study has been
carried out through a review of the existing literature. The available literature is classified
according to its relevance to climate change impacts on water demand in various sectors, such
as agriculture, industry, domestic and environment; each classification is reviewed separately.
Existing water management strategies are also reviewed, with the goal of proposing a water
management system that can adapt to changes in climate and socio-economic functioning.
Finally, a case study of China’s Haihe River basin is presented, in order to show the efficacy of
a proposed water management system in adapting to environmental changes. It is expected that
the study will help development and planning authorities as well as policymakers to improve
their understanding of climate change impacts on water resources, and will also assist them in
adopting policy responses.

2 Research methodology

2.1 Climate change impacts on water demand

A short but systematic review is carried out here, in order to summarise the knowledge
gathered by researchers in different parts of the world regarding climate change impacts on
water resources. For this purpose, relevant studies from recent years are identified and
thoroughly reviewed, in order to assist in understanding the direct and indirect impacts of
changing patterns of temperature and rainfall on water demand within the sectors of agricul-
ture, industry, domestic affairs and ecology. In some cases, published data are reanalysed for
the purpose of better understanding the changes reported on.

A total of 140 papers were preliminarily selected for screening. The quality of the papers
was assessed based on the methods they used for analysing data and interpreting the results.
Only those studies that were carried out using field data and reliable methods were selected.
Studies based on a qualitative analysis of the information were excluded. At the end of this
process, 76 papers were selected to assist in understanding the impacts of climate change on
water demand. The papers were classified according to their relevance to climate change
impacts within various sectors, and each classification was summarised separately. Finally, the
summarised results are interpreted here for the purpose of understanding the impacts of climate
change on water demand within the sectors of agriculture, industry, domestic affairs and
ecology. Similarly, strategies that are used for the management of water resources are
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reviewed. Based on this analysis of the literature, a management strategy for adapting to ever-
increasing water demand is proposed.

Changes in water demand depend on many factors, including population growth, economic
development, climate change, lifestyle changes, technological advances, etc. It has become
increasingly clear that the pressing problems in this field have to be tackled from an integrated
perspective, taking into account environmental, human and technological factors as well as
their interdependence (Pahl-Wostl 2007). However, the present study concentrates only on the
influence of climate change on water demand. It is very clear that climate change will affect
both water availability and water demand, and therefore it is necessary to consider both
together when proposing adaptation measures. In the present study, adaptation measures are
proposed in light of the considerations that potential sources of water are limited and will
become scarcer as a result of climate change.

2.2 Water management strategies for adaptation to changing environments

Environmental conditions that become warmer and drier due to climate change will further
aggravate the water crisis in many regions of the world that are already facing water shortages
due to growth in the economy and in population. Increased water demand might increase
conflicts between different water uses, including in-stream needs for retaining ecosystem
sustainability. Managing water resources will become a major challenge and an important
priority across the world, as the growing and conflicting demand for water will appear as a
major threat to economic development (Abu-Taleb 2000; Leipprand et al. 2008; Wang et al.
2012b). Therefore, adaptation through water management practices is essential in order to
mitigate the negative impacts of climate change.

Water management strategies can be divided into three broad classes, namely, supply side
management, demand side management and business-as-usual management (Wang et al.
2012a; Wang et al. 2014). Water supply management focuses on increasing the amount of
water available, in order to keep pace with increases in water demand; this is to ensure
adequate water availability and acceptable water quality. It is the most traditional approach
to water resources management. Supply-side approaches include changes in structures, oper-
ating rules and institutional arrangements; increasing flood defences; building weirs and locks
to facilitate navigation; and modifying or expanding infrastructure for water collection and
distribution.

Water demand management (WDM) refers to any technical, economic, administrative,
financial or social approaches to reducing the quantity or quality of water required to
accomplish a specific task (Brooks 2006; Butler and Memon 2006; Wang et al. 2011; Wang
et al. 2012c). In light of economic development, population growth and climate change, needs
for efficient water demand management increased significantly (Global Water Partner 2012).
On the other hand, business-as-usual management refers to managing water resources without
considering possible future circumstances that may have a negative impact on these resources.
The business-as-usual approach to water management is not suitable in the context of climate
change, as it is very certain that fresh water will be scarcer in the future. It has been projected
that 4.8 billion people, or more than half of the world’s population, as well as approximately
half of global grain production, will be at risk due to water stress by 2050 if status quo or
business-as-usual management is practised (Global Water Partner 2012).

Institutions that govern water allocation play the most important role in determining overall
climate and socio-economic impacts on water availability, as well as costs and benefits of
different management options, in service of determining appropriate water management
strategies (Kundzewicz et al. 2007). Both water supply and water demand management
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strategies have their own set of economic, environmental, and political advantages and
disadvantages. However, potential sources of water are limited and are insufficient to meet
increasing demand within a changing environment. Furthermore, financial resources in many
developing countries are insufficient for making the water system investments that are required
for supply augmentation. Water demand management, on the other hand, can reduce water
demand, to a certain extent, without hampering economic development and without putting
significant constraints on society. Therefore, either water supply or water demand management
strategies alone will not be sufficient for adaptation to changing scenarios. Experience suggests
that meeting the challenge of water scarcity requires both a supply management strategy,
involving the highly selective development and exploitation of new water supplies (conven-
tional and non-conventional), and a vigorous demand management strategy, involving com-
prehensive reforms and actions taken to optimise the use of existing supplies (Global Water
Partner 2012). The appropriate mix of supply and demand management will vary
depending on the level of development, governance structure and degree of water scarcity
in each country.

Furthermore, a sustainable water management system should be able to deal with maximum
uncertainty, arising not only from climate change but also from socio-economic development
and emerging model projections. Uncertainty regarding needs for future water management
manifests itself in several ways, such as natural variability or changes in water supply and
demand that are due to climate change or other external pressures, socio-economic uncer-
tainties or variability in socio-economic development, and uncertainty due to changing
projections of water supply and demand (ten Brinke et al. 2010). Pahl-Wostl et al. (2007)
distinguish among different types of uncertainty: uncertainty due to lack of knowledge,
uncertainty due to difficulty understanding the system itself, uncertainty that is inherent in
system behaviour and uncertainty that arises from the diversity of rules and underlying mental
models determining stakeholder perceptions and actions. All types of uncertainty must be
considered when addressing a management problem. Robust strategies that perform well under
a wide range of uncertain but possible future circumstances should be chosen (Pahl-Wostl et al.
2007; van der Voorn et al. 2012).

Generally, a management system including a single operational strategy will be less capable
of handling uncertainty, as compared to a system that relies on several alternative strategies.
Therefore, a combination of water supply and water demand strategies is more sustainable than
either strategy alone in adapting to increasing water demand within the contexts of climate
change, population growth and economic development, as well as associated uncertainties.
However, it should be implemented in different manners in different geographical conditions
(Magini et al. 2008).

This paper proposes a water resource management system that combines both water
demand and water supply management strategies in dealing with changes in the environment.
The basic framework of the system is shown in Fig. 1. The system follows the adaptive
management concept, proposed by Pahl-Wostl et al. (2007), of improving management
policies and practices by learning from the outcomes of management strategies. The adaptive
management cycle consists of five phases, namely, pre-assessment, goal formulation, policy
development (option) implementation and monitoring. Understanding possible future scenar-
ios within the context of environmental changes is essential for the formulation and imple-
mentation of adaptive water management strategies (van der Voorn et al. 2012). In the first, or
pre-assessment, phase of the proposed system, forecasting models are employed to predict
future changes in water supply and demand due to climate change as well as due to population
growth and economic development. Model outputs are used in the second phase for goal
formulation and policy development, including in the areas of improvement of water use
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efficiency and development of new water sources. In the third phase, practical measures are
taken to implement the water supply and water demand management policies for the purpose
of adapting to changing scenarios of water supply–demand balance. Improvement of the
system’s ability to adapt to changes in the environment is continuously monitored through a
cyclic process.

According to Pahl-Wostl et al. (2007), an adaptive system should be able to process new
information as it becomes available to the system, and should also be able to change itself
based on the processing of new information. The proposed system will continuously monitor
changes in the environment and will improve management policies and practices by learning
from the outcomes of previously employed management strategies. Therefore, the system will
be able to adapt to changes and will be prepared for future changes of an uncertain nature.

3 Climate change and water demand

It is widely accepted that water demand will increase due to changes in temperature regimes
and precipitation amount and distribution. A number of studies have been carried out to
estimate the influences of climate variables on water demand (Graeser 1958; Maidment et al.
1985; Jain et al. 2001; Bougadis et al. 2005; Ghiassi et al. 2008; Zhou et al. 2000; Khatri and
Vairavomoorty 2009; Caiado 2010). Various methods for understanding the impacts of climate
variables such as rainfall, air temperature, sunshine duration, relative humidity, wind speed,
etc. on daily, weekly, monthly, seasonal and annual water demands have been proposed,
including linear regression (Graeser 1958), the Box and Jenkins model (Maidment et al. 1985),
the use of artificial neural networks (Jain et al. 2001; Bougadis et al. 2005; Ghiassi et al. 2008;
Adamowski 2008; Khatri and Vairavomoorty 2009), the use of system dynamics (Wang et al.
2011; Wang et al. 2013) and other methods (Alvisi et al. 2003; Altukaynak et al. 2005). The
results of these analyses reveal that climatic conditions and water use are significantly
correlated. A summarisation and interpretation of the results obtained by various authors
regarding climate change impacts on water demand in various sectors are discussed below.

Population growthClimate change Economic development

Demand forecasting Supply forecasting

Supply-demand balance

Water Demand Management

Option analysis

Water Supply Management

Implementation

Increase in water use efficiency Provide new water supplies

Fig. 1 The framework of a water management system that can adapt to a changing environment
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3.1 Irrigation water demand

A number of studies have been carried out for the purpose of understanding the impacts of
climate change on irrigation water demand in various geographical and climatic regions (Harte
et al. 1995; Herrington 1996; Brumbelow and Georgakakos 2001; Döll 2002; Izaurralde et al.
2003; Downing et al. 2003; Rosenzweig et al. 2004; Yano et al. 2005; Fischer et al. 2007
Mikhwanazi 2006; Rodriguez Diaz et al. 2007; de Silva et al. 2007; Elgaali et al. 2007; Yano
et al. 2007; Shahid 2011; Safeeq and Fares 2012; Jampanil et al. 2012; Ashour and Al-Najar
2013; Wada et al. 2013). Generally speaking, different versions of the Penman-Monteith
equation and of water balance models were used for the assessment of climate change impacts
on irrigation demand. According to the Penman-Monteith model (FAO-PM), the change in
evapotranspiration due to the change in temperature can be calculated as

ET0 ¼
0:408 Rn−Gð Þ þ γ

900

T þ 273
u2 e2 − e2ð Þ

Δþ γ 1þ 0:34u2ð Þ ð1Þ

where ET0 is the reference evapotranspiration (mm/d), Rn is the net radiation over the grass
(MJ×m−2×d−1), G is the soil heat flux density (MJ×m−2×d−1),Δ is the slope of the saturation
vapor pressure curve at themean daily air temperature (kPa/°C),γ is the psychrometric constant
(kPa/°C), u2 is the wind speed measured at 2 m above the ground (m/s), e0 is the saturated
vapour pressure of the air (kPa), and ea is the mean actual vapour pressure of the air (kPa).

On the other hand, water balance models estimate how irrigation demand changes when
both temperature and rainfall change. The irrigation demand of crop land can be calculated
using the water balance model below

IN ¼ ETc−PeþΔW þ G ð2Þ

where IN is the net water demand of the crop (mm), ETc is the reference crop evapotranspi-
ration (mm), Pe is the effective precipitation (mm), G is the groundwater recharge during the
growth of the crop (mm), and ΔW is the soil moisture storage capacity (mm).

Studies by different authors that are based on the above-mentioned methods reveal that
changes in local weather, particularly changes in temperature and precipitation, affect the soil-
water balance and hence irrigation needs. Herrington (1996) showed that an increase in
temperature of 1.1 °C in the United Kingdom (UK) would cause an increase of 35 % in water
used for lawn sprinkling. The study also showed that, due to an increase in temperature and a
decrease in summer rainfall, irrigation demand in the UK could increase by 20 % in 2020 and
30% in 2050. Harte et al. (1995) reported that a 3 °C rise in soil temperature would entail a 25 %
decrease in soil moisture, which consequently would increase irrigation needs. Fischer et al.
(2007) investigated potential changes in global and regional agricultural irrigation water demand
that could occur in socio-economic scenario A2r; they suggested that climate change would
cause a global increase in irrigation water requirements nearly as large as the changes projected
as a result of socio-economic development in this century. Rodriguez Diaz et al. (2007) studied
the climate change impacts on irrigation water requirements in the Guadalquivir river basin of
Spain and estimated an average increase in demand of between 15% and 20% by 2050. de Silva
et al. (2007) reported an average increase in paddy irrigation requirements of 13 % to 23% in Sri
Lanka, depending on climate change scenarios. Elgaali et al. (2007) predicted an increase in
irrigation water demands in the Arkansas River basin of southeastern Colorado. Yano et al.
(2007) showed that a water deficit could occur in the Mediterranean environment of Turkey, as
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precipitation might not adequately compensate for an increased evaporative demand due to a rise
in temperature. Shahid (2011) reported an increase in daily irrigation demand in northwest
Bangladesh due to climate change. Jampanil et al. (2012) estimated a 13.3 % increase in
agricultural water demand in Thailand due to climate change. Ashour and Al-Najar (2013)
reported that a temperature increase of 1–2 °C would cause an increase in annual average
evapotranspiration of 45–91 mm relative to current climate conditions, leading to an increase in
irrigation requirements of 3.28–6.68 % in the Gaza Strip, Palestine. Increased irrigation demand
has also been reported in other parts of the world by Brumbelow and Georgakakos (2001), Döll
(2002), Izaurralde et al. (2003), Rosenzweig et al. (2004), Yano et al. (2005), Mikhwanazi
(2006), Yano et al. (2007), Safeeq and Fares (2012), Schewe et al. (2012) andWada et al. (2013).

Based on the findings of the above studies, it can be concluded that irrigation water demand
will certainly increase due to increases in evapotranspiration and reductions in soil moisture
that occur under warmer climatic conditions. Irrigation water withdrawals account for almost
70 % of global water withdrawals and 90 % of global consumptive water use (Shiklomanov
and Rodda 2003). Therefore, increased demand for irrigation will certainly intensify water
competition among different sectors.

3.2 Industrial water demand

Industrial water demand includes water needs for fabrication, processing, washing, dilution
and cooling. However, the majority of water withdrawn by industry is used for the cooling
process (Koch and Vögele 2009). For example, about 43 % of water demand in the European
Union (EU) is for cooling water for power authorities (EUREAU 2009). A thermal power
plant generally draws cool water from a river and discharges hot water back to the river. It has
been estimated that an average of 95 l of water is required to produce 1 kWh of electricity
(Heiner 2010). Major changes in industrial water consumption will occur due to changes in the
amount of water needed for cooling. Demand for cooling water in the once-through cooling
system has been calculated by different authors (Koch and Vögele 2009; Rübbelke and Vögele
2011; Khan et al. 2012), using the following equation

Q ¼ KW ˙ h ˙ 3:6 ˙
1− ηe
ηe

˙ 1− að Þ˙
1

p˙c˙AS
ð3Þ

where Q is the cooling water demand (m3), KW is the installed capacity (kW), h is the
operation hours (h), 3.6 is the factor used to convert kWh to megajoules, ηt is the total
efficiency (%), ηe is the electric efficiency (%), α is the share of waste heat not discharged by
cooling water (%), c is the specific heat capacity of water (MJ/t.K), ρ is the water density
(t/m3), and AS is the permissible temperature increase of the cooling water (k).

The maximum permissible water withdrawal in industry can be calculated as (Koch and
Vögele 2009; Rübbelke and Vögele 2011)

Qmax ¼
KWmax˙λ˙ h˙ 3:6˙ 1−αð Þ 1ηtð Þ

4:2˙ηe˙ASmax
ð4Þ

where Qmax is the maximum permissible water withdrawal (m3), ASmax is the maximum
permissible temperature increase (K), and the other notations are the same as in Equation 3.

Compared to studies of climate change impacts on irrigation and domestic water demand,
studies of climate change impacts on industrial water demand are very few. Among these, the
studies by Mote et al. (1999), Protopapas et al. (2000), Downing et al. (2003), Koch and
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Vögele (2009), Zachariadis (2010), Rübbelke and Vögele (2011), Jessberger et al. (2011),
Averyt et al. (2011), Linnerud et al. (2011), Förster and Lilliestam (2010), Khan et al. (2012)
and Jampanil et al. (2012) are most notable. It has been reported that if the maximum allowable
heating temperature is 28 °C and the intake water temperature is 18ºC, 1 m3 of water is needed
to dissipate 42 MJ of heat. If the intake water temperature increases to 23 °C and the maximum
allowable temperature remains at 28ºC, 2 m3 of water is needed to dissipate 42 MJ of heat
(Koch and Vögele 2009; Rübbelke and Vögele 2011; Khan et al. 2012). Förster and Lilliestam
(2010) reported that production losses calculated at 87 GWh/a on average during baseline
years would increase to an average of 1,350 GWh/a in the +5° scenario. Mote et al. (1999) and
Downing et al. (2003) reported a small increase in industrial water demand due to climate
change. Koch and Vögele (2009) and Downing et al. (2003) also projected an indirect but
small (less than 5 % by the year 2050) secondary effect on water demand due to an increased
summer energy demand for space cooling. Averyt et al. (2011) reported that water demands for
industrial cooling and thermoelectric power production are likely to increase with warmer air
and water temperatures. Jampanil et al. (2012) estimated an indirect increase in industrial water
demand of 0.2 % in Thailand by the mid-twenty-first century. Jessberger et al. (2011) projected
a change in industrial water usage ranging between −5.58 % and +11.64 % in 2025 (relative to
the base year 2012) in the upper Danube River basin.

It can be stated, in summarising the above studies, that cooling water demand depends
chiefly on local climate conditions, and especially on water temperatures. As there is a direct
relationship between cooling water demand and temperature, water demand in power plants
and manufacturing facilities will increase due to increases in temperature. Supplementary
water supplies will be required in order to compensate for decreased efficiencies of cooling
systems due to these rises in temperature. However, the impact of climate change on water
demand in industry will be rather small compared to its impact on water demand in agriculture.

3.3 Domestic water demand

Domestic water demand includes water needs for all residential purposes, including in-house
water use for drinking, preparing food, bathing, washing clothes and dishes, flushing toilets,
etc., as well as outdoor water use for gardening, lawn watering, etc. (Alvisi et al. 2003; Alaa
and Nisai 2004; Garcia et al. 2004; Blokker et al. 2009; Wang et al. 2011). Domestic water
demand is usually calculated using the climatic elasticity of water use. Impacts of temperature
on water demand are estimated using the temperature elasticity of water use,

et ¼ −ΔQ=ΔT ð5Þ

where ΔQ is the percentage change in water demand and ΔT is the percentage change in
temperature. Similarly, the impact of precipitation on water demand is estimated using the
precipitation elasticity of water demand,

et ¼ −ΔQ=ΔP ð6Þ

where ΔQ is the percentage change in water demand and ΔP is the percentage change in
precipitation.

A number of studies focusing on climate change impacts on domestic water demand have
been carried out (Mote et al. 1999; Protopapas et al. 2000; Downing et al. 2003; Gutzler and
Nims 2005; Neale et al. 2007; Zachariadis 2010; Polebitski et al. 2011; Karamouz et al. 2011
Jampanil et al. 2012; Price et al. 2014). Frederick (1997) studied urban water use in four
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mountainous counties of Utah and suggested that a 1 % rise in temperature would cause an
increase in residential water demand of between 0.02 % and 3.8 %, and that a 1 % decrease in
precipitation would cause an increase in residential water demand of between 0.02 % and
0.31 %. A statistical analysis of water use in New York City showed that, above 25 °C, daily
per capita water use increases by 11 l per 1 °C (Protopapas et al. 2000). Neale et al. (2007)
studied climate change impacts on residential water demand in the Okanagan Basin of British
Columbia, and reported that residential water demand increases by 0.0031 to 0.0111 ML for
every 1 °C increase in monthly mean daily maximum temperature. Gutzler and Nims (2005)
studied the effects of inter-annual climate variability on water demand in Albuquerque, New
Mexico, and reported that over 60 % of year-to-year changes in summer residential demand is
accounted for by inter-annual temperature and precipitation changes. Zachariadis (2010)
studied residential water scarcity due to climate change in Cyprus and predicted that by
2030 climate change would aggravate the already-existing water scarcity in Cyprus. Price
et al. (2014) examined the influence of climatic variables on annual residential water use in the
city of Phoenix, Arizona, and reported that temperature, precipitation, and/or drought condi-
tions all have a significant impact on residential water use. On the other hand, Karamouz et al.
(2011) projected no appreciable change in average domestic water demand in the city of
Tehran due to climate change. Mote et al. (1999) and Downing et al. (2003) also projected that
any increases in household water demand due to climate change are likely to be rather small,
i.e., less than 5 % by the 2050s. Jampanil et al. (2012) estimated an indirect increase in
domestic water demand of only 0.3 % in Thailand due to climate change. An increase in water
demand due to a rise in temperatures was also predicted by Kenney et al. (2008), Harlana et al.
(2009), Polebitski et al. (2011) and Lott et al. (2013).

An analysis of the results of the above-mentioned studies reveals that domestic water
demand will increase as a result of increased evapotranspiration caused by higher tempera-
tures. However, changes in domestic water demand may not be significant in some regions,
due to an increase in precipitation. Overall changes in domestic water demand will depend on
how well increased rainfall balances water losses from increased evapotranspiration due to
higher temperatures (Wiley and Palmer 2008).

3.4 Ecological water demand

Ecological water demand includes water demand for environmental and ecological system
protection purposes. Usually, when supplies become scarcer, major adjustments in water use
are required in order to maintain the minimum in-stream flows needed for the protection of
endangered species and of the recreational benefits of an area. Ecological water demands are
calculated by adding in-stream and out-stream water demands. There is no well-accepted
method of estimating in-stream ecological water demand.

Out-stream water demand for environmental protection is usually calculated as

ETc ¼ αD ð7Þ

where ETc is the out-stream water demand for environmental protection (mm), α is a parameter
(mm/hPa), and D is the aerial saturation deficiency (hPa). A comprehensive factor reflecting
temperature change and air humidity can be obtained as

e ¼ e0 – ea ð8Þ
where ea is the mean actual vapour pressure of the air (kPa) and e0 is the saturated vapour
pressure of the air (kPa), which can be defined as
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e0 ¼ e1:10
8:5t
273þt ð9Þ

where t is air temperature and e1 = 6.11 hPa.
The equations above show a direct relationship between out-stream water demand and air

temperature. Therefore, increased temperatures will cause an increase in out-stream water
demand. Mote et al. (1999) and Downing et al. (2003) predicted that increased temperatures
would cause an increase in gardening water demand. They also predicted that there might be
an increase in seasonal water demands associated with recreational uses such as swimming,
boating and fishing.

Only a few studies have been carried out focusing on climate change impacts on in-stream
water demand (Zhong et al. 2008; Hu et al. 2012; Barron et al. 2012; Piniewski et al. 2012;
Spears et al. 2013). Piniewski et al. (2012) reported that climate change impacts on ecological
water demand would be greater than impacts caused by other regional changes. Zhong et al.
(2008) predicted that climate change would cause annual changes in eco-environmental water
demand. A study by Barron et al. (2012) on climate change impact on water-dependent
ecosystems in southwestern Australia showed that, in the context of climate change, more
water will be required to keep the ecosystem healthy. Spears et al. (2013) reported a potential
increase of in-stream water demand due to increases in ecosystem demands and recreational
uses within climate change scenarios. They also reported that the water demands of
endangered species and of other fish and wildlife could increase along with ecosystem
impacts due to warmer air and water temperatures, as well as with resulting hydrologic
impacts, e.g., runoff timing. Hu et al. (2012) also reported changes in stream flow and ecology
in the North China Plain due to climate variability.

The studies above indicate that changes in the quantity, quality, and timing of runoff,
stemming from greenhouse gas warming, would affect in-stream water uses for the mainte-
nance of ecosystems. These changes might also affect in-stream water demands, directly or
indirectly. Furthermore, an increase in air temperature would also lead to an increase in water
temperature, which in turn would have a direct impact on cyanobacteria growth and water
demand.

Finally, it can be concluded without any doubt that climate change will increase water
demand. Increases in water demand within agriculture will primarily be due to higher irrigation
demand caused by warmer and drier conditions. In industry, increases will be due to increases
in cooling water demand for power generation under higher atmospheric temperatures. On the
other hand, in domestic and ecological sectors, water demand will increase due to increases in
temperature. Overall, water demand will increase more significantly within agriculture than it
will within other sectors.

4 Adaptive water resources management in the Haihe River basin of China

The Haihe River basin, as one of the fastest-developing regions in China, is facing a huge
challenge in managing its water resources to support its economic development under the
pressures of both climate change and population growth (Allan et al. 2013). Following the
economic development of the late 1980s, the urban areas of the basin expanded greatly. With
the influx of migrants from various regions of the country, especially from rural areas, the
population of the basin increased rapidly. Huge industrial growth also occurred in the basin
after the early 1980s (Yang et al. 2010; Ji et al. 2012). Population growth and economic
development in the Haihe River basin during the time period 1980–2004 is shown in Fig. 2.
Rapid population growth and economic development caused changes in water demand in the
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basin, which are shown in Fig. 3. It can be seen from the figure that water demand, especially
in domestic and industrial sectors, increased rapidly in the eighties and early nineties.
Traditionally, the Haihe River basin has been one of the most water-scarce river basins in
China. Water is usually transferred from the Yellow River to the Haihe River in order to
mitigate water crises. The annual amount of water transferred from the Yellow River increased
rapidly in the eighties, in order to meet the water demand of the growing economy in the Haihe
River basin; in 1989, the amount reached 65×108 m3 (Wang et al. 2013). Meeting an ever-
increasing water demand through augmentation of the water supply became very difficult, as
the resultant pressure on the Yellow River ecosystem raised concern. Water demand manage-
ment, along with water supply management, was emphasised, in order to manage the
increasing water demand in the Haihe River basin (Wang et al. 2012c). The government
introduced a series of national water strategy actions. Initiatives to increase water use efficien-
cy in industry and irrigation were created; these imposed water prices and water quotas (Pang
and Zhang 2001; Yang 2002; Wu et al. 2007; Yang et al. 2010; Wang et al. 2013).

Agricultural areas declined significantly in response to the increase in water prices (Wu
2010; Xiao and Shen 2008; Yang et al. 2010). At the same time, water use efficiency in
agriculture increased, due to the adoption of new irrigation technology. According to Pang and
Zhang (2001) and Yang (2002), by the year 2000, water use per unit of land in the Haihe River
basin had decreased by 20 %. Therefore, the governmental initiatives of adopting new
irrigation technology and of turning paddy fields into other less water-intensive operations
were successful in reducing agricultural water consumption in the Haihe River basin (Ji et al.
2005; Wu et al. 2007; Ji et al. 2012; Wang et al. 2013).

Fig. 2 Population growth and economic development in the Haihe River basin during the time period 1980–2004

Fig. 3 Changes in water consumption in the Haihe River basin during the time period 1980–2008
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It was also possible to keep industrial water demand stable, despite the industrial growth in
the basin (Wang et al. 2013). The Haihe River basin achieved high efficiency in industrial
water consumption by adjusting industrial structures and arrangements, limiting high levels of
water consumption in production, adopting water-saving technology and gradually increasing
the proportion of new technology industries that use less water (United Nations 2005). This
caused the average water consumption quantum for every RMB 10,000 output value to
decrease from 160 m3 in the early 1990s to 51 m3 in 2004. In Beijing, a water quota, along
with high rates for exceeding the water quota, led to a 37 % reduction in industrial water use in
the 1980s (Bhatia and Falkenmark 1992). Tianjin was able to increase its rate of industrial
output per cubic metre of water from $18.5/m3 in 1981 to $45.5/m3 in 1988, a reduction of
14 % per year in average industrial water consumption per unit of industrial output (Bhatia
et al. 1995). Consequently, water consumption in the industrial sector stabilised, even with the
continuous industrialisation in the basin. It can be concluded from the above analysis that
water demand management strategies have successfully reduced the total water demand of the
Haihe River basin.

In spite of a decrease in total water consumption, water shortage is still a problem in the
Haihe River basin. On average, about 44.7×108 m3 of water still needs to be transferred every
year from the Yellow River to the Haihe River (Wang et al. 2012d). However, reduced water
demand in the Haihe River basin, due to strict water demand management strategies, has
reduced the need for water transfer from the Yellow River. The lower part of the Yellow River
dried up several times in recent years (Wang et al. 2012d). Due to a reduction in river flow, the
ability to make huge water transfers from the Yellow River, in the context of a changing
environment, became uncertain. Reduction in total water demand after the adoption of water
demand management strategies has made the water management system in the Haihe River
basin more robust and better able to handle uncertainties in the changing environment.

Therefore, it can be concluded that the adoption of water demand management strategies
along with water supply management strategies is necessary in order to adapt to environmental
changes. Although both water supply and water demand management are equally important, in
consideration of the available options for achieving water resource sustainability in the
contexts of population growth, economic development and climate change, as well as of the
fact that sources of water are limited, it is recommended that more emphasis be given to water
demand management.

It can be learnt from this study that climate change will be a major threat to water resources
which are already under stress due to huge population growths and economic booms.
Temperature increases due to climate change will increase water demand in all sectors of
water use. However, the impact will be much higher in agricultural and domestic sectors.
Water supply management or water demand management alone will not be able to meet the
growing demand, considering that sources of water are limited. A management system that
considers both water demand and water supply management strategies, one that can adapt to
the changing environment and to related uncertainties, should be employed. The system
should be cyclic, so that it can improve management policies and practices by learning from
the outcomes of previously employed management strategies.

5 Discussion and Conclusions

The sustainable management of water resources in the context of a changing environment is a
growing concern among policymakers. It is certain that climate change will increase water
demand and will put global freshwater resources under pressure. As climate change is
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inevitable, the sustainable management of water resources is essential in order to adapt to
changing scenarios. A review has been carried out in this paper, summarising the possible
impacts of climate change on water demands as well as identifying the best water management
strategy for mitigating the negative impacts of climate and socio-economic changes on
growing water demands and of consequent water stress.

The study reveals that there will likely be an increase in water demand in all sectors due to
climate change. Water demand is likely to increase in agriculture primarily due to an increase
in irrigation demand, while in industry it will increase in order to meet an increasing need for
cooling water, and in domestic and ecological sectors it will increase due to higher water needs
resulting from higher temperatures. However, the impact of climate change on water demand
is projected to be more significant in agriculture than it will be in other sectors. The world’s
population is expected to reach more than 9.6 billion people by 2050, and food production
must be increased by 70 % in order to feed the growing population (United Nations 2013; FAO
2009). It can be anticipated from present trends that a major part of the supplementary food
will come from irrigated agriculture. This means that increased irrigation demand due to
climate change might have severe implications for water resources, especially in regions
already under water stress.

Business-as-usual strategies manage water resources without considering possible future
circumstances; therefore, they will not be able to adapt to the negative impacts posed by
climate change. It will not be possible to meet the increasing demand using supply augmen-
tations alone, as potential sources of water are limited. Water demand management alone
will also be unable to reduce demand that has increased due to climate change and
socio-economic development. Therefore, the present study proposes a framework for a
water management system that combines water demand and water supply management
strategies, with an aim of creating a system that is more able to adapt to changing
states of water balance, due not only to climate change but also to rapid growths in
populations and economies. Furthermore, having multiple strategy options available is likely to
improve the capability of a water management system to deal with the uncertainties in a
changing environment.

Future studies can be carried out in order to gain more insight into climate change impacts
on water demand. The impacts of other climatic variables such as sunshine duration, relative
humidity, wind speed, etc. on water demand can be studied for the purpose of gaining more
insight into changing states of water balance. Most of the studies that have been carried out so
far have focused on future water demand without considering the impact of uncertainties.
Further research can be carried out which would quantify the uncertainty of water demand due
to climate change. Changes in water balance depend on the combined effects of many factors.
Therefore, the impacts of climate change must be considered in combination with potential
future socio-economic impacts, including future changes in infrastructure, land use, technol-
ogy and human behaviour. Extreme weather events (such as drought or flood) will have
considerable impacts on future water demand; therefore, the impacts of extreme events and
resulting changes on water demand are very important to understand. Finally, as both water
demand and water supply management strategies are essential components of any adaption to
future scenarios, more research focusing on the field implementations of these strategies within
different geographical regions is necessary.
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