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Abstract Although forest conservation activities, particularly in the tropics, offer sig-

nificant potential for mitigating carbon (C) emissions, these types of activities have faced

obstacles in the policy arena caused by the difficulty in determining key elements of the

project cycle, particularly the baseline. A baseline for forest conservation has two main

components: the projected land-use change and the corresponding carbon stocks in

applicable pools in vegetation and soil, with land-use change being the most difficult to

address analytically. In this paper we focus on developing and comparing three models,

ranging from relatively simple extrapolations of past trends in land use based on simple
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drivers such as population growth to more complex extrapolations of past trends using

spatially explicit models of land-use change driven by biophysical and socioeconomic

factors. The three models used for making baseline projections of tropical deforestation at

the regional scale are: the Forest Area Change (FAC) model, the Land Use and Carbon

Sequestration (LUCS) model, and the Geographical Modeling (GEOMOD) model. The

models were used to project deforestation in six tropical regions that featured different

ecological and socioeconomic conditions, population dynamics, and uses of the land: (1)

northern Belize; (2) Santa Cruz State, Bolivia; (3) Paraná State, Brazil; (4) Campeche,

Mexico; (5) Chiapas, Mexico; and (6) Michoacán, Mexico.A comparison of all model

outputs across all six regions shows that each model produced quite different deforestation

baselines. In general, the simplest FAC model, applied at the national administrative-unit

scale, projected the highest amount of forest loss (four out of six regions) and the LUCS

model the least amount of loss (four out of five regions). Based on simulations of GEO-

MOD, we found that readily observable physical and biological factors as well as distance

to areas of past disturbance were each about twice as important as either sociological/

demographic or economic/infrastructure factors (less observable) in explaining empirical

land-use patterns.We propose from the lessons learned, a methodology comprised of three

main steps and six tasks can be used to begin developing credible baselines. We also

propose that the baselines be projected over a 10-year period because, although projections

beyond 10 years are feasible, they are likely to be unrealistic for policy purposes. In the

first step, an historic land-use change and deforestation estimate is made by determining

the analytic domain (size of the region relative to the size of proposed project), obtaining

historic data, analyzing candidate baseline drivers, and identifying three to four major

drivers. In the second step, a baseline of where deforestation is likely to occur–a potential

land-use change (PLUC) map—is produced using a spatial model such as GEOMOD that

uses the key drivers from step one. Then rates of deforestation are projected over a 10-year

baseline period based on one of the three models. Using the PLUC maps, projected rates of

deforestation, and carbon stock estimates, baseline projections are developed that can be

used for project GHG accounting and crediting purposes: The final step proposes that, at

agreed interval (e.g., about 10 years), the baseline assumptions about baseline drivers be

re-assessed. This step reviews the viability of the 10-year baseline in light of changes in

one or more key baseline drivers (e.g., new roads, new communities, new protected area,

etc.). The potential land-use change map and estimates of rates of deforestation could be

re-done at the agreed interval, allowing the deforestation rates and changes in spatial

drivers to be incorporated into a defense of the existing baseline, or the derivation of a new

baseline projection.

Keywords Avoided deforestation � Carbon sequestration � Land-use change �
Forestry � GEOMOD � LULUCF � Tropics

1 Introduction

On a global scale, land-use change and forestry activities have historically been, and are

currently, net sources of carbon dioxide to the atmosphere. During the decade of the 1990s,

carbon dioxide (CO2) emissions to the atmosphere caused by changes in land use were

estimated to be 1.6 billion t C/year (Bolin and Sukumar 2000), with tropical deforestation
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essentially responsible for most of this source. Activities that reduce deforestation rates,

increase forestation, or improve land use efficiency offer significant potential for mitigating

greenhouse gas (GHG) emissions, thereby reducing the potential impacts of climate

change. Through projects and policies that change forest and other land management

practices, humans have the potential to change the direction and magnitude of the flux of

carbon dioxide between the land and atmosphere. At the same time these changes can

provide multiple co-benefits to meet environmental and socioeconomic goals of sustain-

able development.

Afforestation and reforestation projects are generally accepted as projects that can

generate tradable greenhouse gas (GHG) emission reductions (e.g., under the UN

Framework Convention on Climate Change (UN FCCC) Kyoto Protocol). Forest conser-

vation projects, on the other hand, have faced obstacles to acceptance due to the difficulty

in determining key elements of the project cycle. For instance, some have argued that

determining baselines for forest conservation projects is too difficult and uncertain. Others

have raised objections with respect to ‘‘leakage’’ (i.e., the off-site effects of project

activities on carbon stocks and GHG emissions) (Brown et al. 2000b). Without inclusion of

projects that are designed to avoid deforestation and improve the sustainability of agri-

culture in developing countries, a large opportunity is lost (Niles et al. 2002).

At the same time, many countries continue to be interested in developing forest con-

servation projects given the potential for such projects to slow or even reverse high rates of

deforestation that could generate credible GHG emission reductions. Given the challenge

of addressing important analytical issues related to and the continuing interest in forest

conservation projects, we look at issues related to these project types.

A fundamental and challenging component of all project activities, and avoided

deforestation projects specifically, is the determination of the extent to which project

interventions lead to GHG benefits that are additional to business-as-usual scenarios (i.e.,

the baseline scenarios). The development of a baseline is a key step in the implementation

of land use, land-use change, and forestry (LULUCF) projects to ensure accurate crediting

of their carbon impacts (OECD/IEA 2003) because GHG benefits of a project activity are

computed as the difference in carbon stocks and other GHG emissions of the project

activity and the baseline. A key issue therefore, is how to develop a baseline scenario for

avoided deforestation that reasonably represents the net emissions without the project.

There are currently no standard practices for developing baselines for avoided defor-

estation projects. A baseline has two major components: the projected land-use or land-

cover change, and the corresponding carbon stocks in live and dead vegetation and soil. Of

the two components needed for baselines, the projections of changes in land use are the

most important and yet the most difficult to address analytically (OECD/IEA 2003) be-

cause many socioeconomic and environmental factors affect the way people use land and

these are difficult to predict. And, once a project to reduce deforestation is implemented the

rate and pattern of land-use change in the project area can no longer be monitored.

Existing baseline estimates are limited by the absence of agreed standardized methods.

For many of the existing pilot forestry-based carbon projects, estimates of changes in land

use and baselines were determined on a project-by-project approach using simple logical

arguments that assumed continuation of observed past trends for the limited project area or

a region. These projects generally did not use analytically rigorous and transparent agreed
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methods because they did not exist at the time and were not required by voluntary pro-

grams to which the projects were reported as demonstrations (Brown et al. 2000b; OECD/

IEA 2003). They also did not test alternative baseline approaches. In addition, this project-

by-project approach is likely to increase investment costs, further undermining the po-

tential for developing these kinds of projects (OECD/IEA 2003). The result is the per-

ception of LULUCF baselines as subjective projections of land-use change and hence GHG

mitigation potential with high uncertainty, high cost per unit of carbon benefit, and a lack

of transparency.

Developing regional baselines for the land-use component by project-activity type of-

fers an alternative to the project-by-project approach (also called the performance standard

approach in the World Resources Institute/World Business Council for Sustainable

Development 2003 project protocols). Regional baselines are projections of the magnitude

and in some cases spatial depiction of one or more land-use change activities (e.g., for-

estation, deforestation) over a region in which a potential mitigation project could be

located. These baselines would use regional data and transparent analytic assumptions not

derived from a specific project, to set a generic baseline for the defined class of activity.

This baseline can be either spatially resolved (e.g., a projection for specific pixels or lands),

or an average rate of change over time for the activity in that region. The concept was

pioneered by the Scolel Te project team in Chiapas State, southern Mexico, which

developed several alternative, spatially resolved, baselines projected out 50 years for about

half of the state, (Tipper and De Jong 1998; Tipper et al. 1998).

Regional baselines may have several advantages, including: reduced investment cost to

develop compared to project-specific baselines; consideration of regional factors that could

affect land-use changes; and opportunity for host country or state governments to identify

the effects of and target the type of projects supportive of their sustainable development.

Use of regional baselines is likely to result in more transparent and credible baselines.

Although regional baselines have the advantages presented here, there is potentially a

major disadvantage if they are not spatially resolved. Project developers could identify

areas where deforestation appears likely to be lower than the regional baseline thus getting

more carbon credits than were actually being generated. At the other extreme, areas that

appear to have potentially higher deforestation rates than the baseline would be avoided

because the carbon credits would be underestimated.

For the carbon stocks, most pilot projects based their baselines on estimates from the

scientific literature in combination with some field measurements in nearby areas. The use

of estimates from the literature for the carbon stocks is a reasonable first approximation for

the baseline. Unlike the land-use change component of the baseline, the carbon stocks can

be monitored over the length of the project. Thus, once a project area is selected, the

carbon stocks can be monitored at that locale, the first approximation revised, and a more

project-specific baseline can be produced. Carbon stocks and their changes in above- and

below-ground biomass, on a unit area basis, can be measured under many circumstances to

relatively high levels of accuracy and precision at a modest cost (95% confidence intervals

of less than ±10% of the mean, at an estimated cost of about <$1/t C; Brown 2002a).

In this paper we focus on developing baseline projections of changes in land use,

particularly projecting deforestation. We have identified three approaches for developing

regional baselines for changes in use of the land. The approaches use models that provide a

conceptual basis for integrating diverse measures into a self-consistent framework and for

making extrapolations across time and space. Here we report on the application of these

three models to determine baseline scenarios in land-use change for six regions in the

tropics, four of which encompass a pilot carbon-offset project.
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The methods range from relatively simple model extrapolations of past trends in land

use based on simple drivers such as population growth, to more complex extrapolations of

past trends using spatially explicit models of land-use change driven by biophysical and

socioeconomic factors. All models were used to project the baseline for changes in land

use over the same duration of 20 years out. The regions used in this work were specifically

chosen to encompass existing sites where several of us had already been actively engaged

and where data were available.

The study was designed to address an overarching research question and related questions

with policy relevance. The principal research question was: what is the most analytically

feasible and credible approach for establishing deforestation baselines? Secondary questions

include: (1) which baseline-setting method provides more credible results, by project activity

type and land use conditions? (2) What is a reasonable time frame over which a deforestation

baseline should be projected? (3) Under what changes in baseline conditions, and how often,

should baselines be reviewed and potentially revised? (4) How feasible and practical are each

of the methods? (5) What are the tradeoffs among data availability, spatial scale of analysis,

and precision of a baseline? (6) Lastly, can these results offer any potential guidance to

policymakers confronted with the task of establishing guidelines for land-use based projects

to mitigate climate change? We conclude with a discussion of lessons learned and steps that

can be undertaken to develop credible baselines.

This paper is a summary of two large projects that applied these three models to six

tropical regions (four regions supported by the US Environmental Protection Agency

[Belize, Bolivia, Brazil, and Chiapas, Mexico] and two regions supported by US Agency

for International Development-Mexico [Campeche and Michoacán, Mexico]). Details on

the descriptions of the study areas and models, with corresponding sources, are given in

Brown (2002b, 2003).

2 Methods

2.1 Description of study areas

The six study regions featured different ecological and socioeconomic conditions, popu-

lation dynamics, and uses of the land (Table 1). The six study areas included in this

analysis are sub-regions of (Fig. 1): (1) Belize encompassing the Rio Bravo Climate Action

project in northern Belize; (2) Santa Cruz state, Bolivia encompassing the Noel Kempff

Climate Action project (Brown et al. 2000a); (3) Paraná state in Brazil encompassing the

Itaqui Climate Action project in the Atlantic rainforest zone; (4) Campeche, Mexico

encompassing a planned project in the Calakmul Biosphere Reserve area; (5) Chiapas,

Mexico encompassing the Scolel Te project (Castillo-Santiago et al. 2006; De Jong et al.

2005); and (6) Michoacán, Mexico. Further details of each study area are covered in the

larger reports mentioned above.

2.2 Description of the models

Our goal was to consistently compare multiple, competing methodological approaches to

deforestation baseline setting that ranged from models that used readily available non-

spatial data for relatively large geographical areas (e.g., millions of ha), to models that

required more intensive data collection but could operate in smaller geographic areas (e.g.,

tens to hundreds of thousands of ha). Kaimowitz and Angelsen (1998), based on a review
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of 146 existing tropical deforestation models, grouped such models into three classes:

analytical, simulation (including programming), and regression models. The three models

used in this study to simulate future changes in land use are described below (further

details are given in Brown 2002b, 2003). Each of these models represents each of the class

of models proposed by Kaimowitz and Angelson, e.g., FAC is a non-spatial analytical

model, LUCS is a non-spatial simulation model, and GEOMOD is a spatial regression and

rule-based model.

2.2.1 Forest area change (FAC)

This model was first formulated in the framework of the FAO Forest Resources

Assessment Project implemented during 1990–1994 (Food and Agriculture Organization;

FAO 1993; Sciotti 1991), and revised in 1998 (Sciotti 2000). The deforestation model was

developed to overcome the lack of multi-temporal information on forest cover in tropical

countries. The goal was to develop a modeling approach that could produce the required

forest area change information for all countries. The basis was multi-date observations for

a limited number of countries, in combination with another set of correlated variables for

which data were available for all countries. In building this model it was assumed that the

overall pattern of expansion of non-forest area over time (deforestation) would be de-

scribed by a logistic curve of two key variables, with different parameters for different

ecological zones within a country. The model uses historical data on forest cover and

associated population density. Using these data, two key variables were developed, gen-

erally expressed at a sub-national level: the dependent variable—ratio of non-forest area to

total area, and the independent variable—population density. Then, using projections of

human population growth for the area in question, the model simulates the change in forest

cover over time.

Advantages of this model for baseline setting include minimal data requirements,

potentially reducing costs of its use, and its applicability to large regions (e.g., millions of

ha). Disadvantages include its lack of spatial resolution, reliance on only two major

variables to project complex deforestation patterns and processes, and its inability to be

used at smaller geographic scales relevant to sequestration projects if key data variables are

not available.

2.2.2 Land use carbon sequestration (LUCS)

This model was developed to estimate land-use change in rural areas that depend largely

upon low-productivity agriculture for subsistence and fuel wood for energy (Faeth et al.

1994). The model assumes that land-use change is primarily driven by changes in popu-

lation and land management. As the population grows, more land is required to supply food

and livelihoods, and in some cases, fuel wood. While demand for food and income grows,

the land’s ability to meet that demand may increase or decrease depending on changes in

productivity and other activities. The key parameters used in this model are: the rate of

population growth and the year it is expected to stabilize; the initial area of principal land

uses, including: permanent agriculture, shifting agriculture, agroforestry, and native closed

and open forests, plantations and secondary forests; and required agricultural land as a

Fig. 1 Location of sites used in the study. (A) State of Paraná in Brazil, (B) Santa Cruz Department in
Bolivia, (C) northern Belize, (D) Michoacán, Mexico, (E) Chiapas, Mexico, and (F) Campeche, Mexico.
‘‘Project area’’ refers to the area of the pilot carbon sequestration projects in these regions

b
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function of population, agricultural land required per person, fraction of food imported and

agricultural land required for export production. The main driving force after initialization

is change in population in the modeled area.

Advantages of this model for baseline setting include its applicability to many scales

and its ability to model many types of land-use change activities (not just deforestation).

Disadvantages include its lack of spatial resolution, its model code and structure are not

readily understandable by the operator, and the assumptions that are needed for many

poorly known parameters.

2.2.3 Geographical modeling (GEOMOD)

This model was developed to try to replicate spatially explicit land-use change in Costa

Rica and was subsequently applied in SE Asia and Africa to estimate carbon releases from

tropical deforestation over time (Dale 1994; Hall et al. 1995; Pontius et al. 2001). It uses

spatially distributed data to simulate landscape dynamics in a geographical information

system (GIS) (Hall et al. 2000, 2006; IDRISI Project 2003). There are two components to

this model: the rate of land-use change and where the change will occur. To derive the rate

of land-use change, an extrapolation of past rates is generally used, based on interpreted

satellite imagery for two or more points in time for the area under study. To simulate where

deforestation will occur, the model uses numerous spatial data layers of biophysical and

socioeconomic factors (e.g., elevation, slope, soils, and distance from rivers, roads and

already established settlements) to explain the pattern of deforestation. The model is

calibrated by assigning weights to map cells based on analysis of the importance of each of

these driving factors and combination of factors.

The GEOMOD model has an internal validation procedure—the kappa index for-

location, an index that measures the improvement by the model over what just a random

selection would achieve (Pontius 2000, 2002). Use of GEOMOD quantifies some of what

has been termed ‘‘counterfactual uncertainty’’ (Kerr 2001; Moura Costa 2001) inherent in

all models used to estimate the business-as-usual baseline. The kappa-for-location statistic

represents a standardized procedure of assessment of some aspects of this ‘‘counterfactual

uncertainty’’ because it quantifies model performance compared to random allocation of

change. Like other models, however, it still must make projections based on assumptions

with associated uncertainties. The difference between GEOMOD and other models is that

GEOMOD tests the validity of the assumptions.

Potential advantages of GEOMOD include its capability of spatial resolution at any

scale for which data are available because it is raster-based (and thus gives deforestation

estimates for any pixel or geographic scale requested within the analytic domain, for an

entire region). Additionally, incorporation of the kappa for-location statistic allows eval-

uation of model performance versus chance. Potential disadvantages include its large data

requirements, the need to experiment with a large number of variables to identify those

providing the most explanatory power for predicting deforestation, and the potential cost of

data acquisition and analysis.

2.3 Scale of simulations

The geographic scale selected as the baseline modeling domain for each model has a

significant effect on estimates of the initial percent of forest area in each of the six regions

(Table 2). The large-region wide FAC model tends to result in lower percent forest cover
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estimates than the more highly resolved GEOMOD and LUCS models, and thus generates

substantially higher baselines of forest area from which project activities of slowing forest

loss rates would be calculated. For example, the percent initial forest cover in Paraná,

Brazil; Santa Cruz, Bolivia; and Campeche, Mexico is considerably lower for the FAC

model than for the other two because the FAC model was applied to the total area of these

three states. Expanding the size of the modeling domain due to data resolution limitations

adds in lower-carbon-density disturbed forest and agricultural lands not included in the

geographically more constrained modeling domains of LUCS and GEOMOD (which have

a higher percent of forest lands). The FAC estimates of initial forest cover average about

62% of GEOMOD and LUCS estimates for the six regions. Thus the simple selection of

level of data aggregation used produced an almost 40% difference in the initial forest area

that could affect baseline projections. These differences in forest cover between the six

regions illustrate the contrasting situations in level of development and subsequent pres-

sures on the forested landscape.

The FAC model was simulated at the entire state level and for the entire country of

Belize (Table 2). For all study areas in Mexico, the lack of reliable historical data of forest

cover prevented a locally parameterized version of the FAC model from being developed;

instead a general model was used with effects of local ecofloristic zones incorporated. The

LUCS model, on the other hand, can simulate land-use changes within smaller sub-national

units depending at what scale population data are provided. For most of the study areas, the

LUCS model encompassed the same area as that used by GEOMOD; the exception was

Campeche where LUCS simulated one large municipality only (Calakmul representing

more than 75% of the total area simulated by GEOMOD) (Table 2). GEOMOD simulated

land-cover change at a scale where boundaries were defined to reflect biophysical,

socioeconomic, and cultural or other relevant factors for all study areas.

The main reason areas simulated differ among the models is related to the spatial scale

of available data required for each model. For example, the FAC and LUCS models rely on

available data that are generally reported at sub-national political units (e.g., population

data at the municipality level, or forest cover data at the state level), within which data are

not further subdivided. Consequently the FAC and LUCS models are limited in their

application to the corresponding scales of the available data (e.g., municipalities for

population data). On the other hand, GEOMOD can model at any scale desired for which

Table 2 Areas of land encompassed by each model for each region (in million ha), estimated initial percent
forest cover, and average percent cover by model, (FAC = Forest Area Change model; GEOMOD = Geo-
graphic Model; and LUCS = Land Use and Carbon Sequestration model)

Study area FAC
initial
forest
cover

FAC
initial %
forest
cover

GEOMOD
initial
forest
cover

GEOMOD
initial %
forest cover

LUCS
initial
forest
cover

LUCS
initial %
forest
cover

Belize 2.2 74 0.46 80 – –

Santa Cruz, Bolivia 36.4 55 3.7 85 3.7 85

Paraná, Brazil 19.9 8.9 0.19 74 0.19 74

Campeche, Mexico 4.2 78 1.7 97 1.3 95

Chiapas, Mexico 7.4 70 2.5 59 2.5 59

Michoacán, Mexico 6.0 42 0.60 45 0.60 41

Average 55 73 71
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satellite imagery can be acquired, and is limited rather by the availability of spatial da-

tabases of interest, particularly socioeconomic databases, and the processing capacity of

the computer running the model.

As mentioned above, several of the study areas encompass pilot projects or planned

pilot projects. For the Santa Cruz, Bolivia and Campeche, Mexico areas, the existing or

proposed large pilot projects were about 640,000 ha and 323,000 ha in area, respectively.

The analytic domain for GEOMOD and LUCS models is about 5–6 times the pilot project

areas, whereas the domain for the FAC model is about 13–60 times the project area. For the

smaller projects in Belize (about 15,000 ha) and Paraná, Brazil (about 5,000), the analytic

domain for GEOMOD and LUCS models is about 30–38 times the project area, and for

FAC model the domain is about 146 (Belize) and almost 4,000 (Brazil) times larger.

Although Chiapas contains a pilot project, it consists of several hundred very small

landowners scattered throughout the analytic domain for all models.

3 Results and discussion

3.1 Comparison of projected baselines for deforestation

To make a meaningful comparison of the land-use change component of the baseline, the

results from each modeling approach were expressed as the cumulative percent of the

initial forest cover lost or deforested over time for a 20-year period for each of the six study

areas (Fig. 2). (The results presented here for GEOMOD are only the rate projections, the

spatial component will be presented later.) It is clear from this analysis that there is little

similarity in the deforestation projections produced by the different models for a given

region. The maximum projected cumulative loss in forest cover over the 20-year period

ranges from 14% to 52% of the initial forest cover. The FAC model projected the maxi-

mum deforestation in four of the six areas (Table 3). The minimum projected loss over the

20-year period ranges from a gain of 7% to a loss of 21%, and the LUCS model projects

the minimum loss in four out of the five cases. The highest projected loss in forest cover is

about two times the lowest projected loss for Chiapas and Michoacán, and as high as 36–70

times the lowest for Santa Cruz and Campeche.

For Belize, only two models were used because LUCS was not applicable. Deforesta-

tion in northern Belize is caused by Mennonite farmers who convert the forests to

mechanized agriculture rather than to subsistence agriculture, and LUCS could not readily

model this type of commercial agricultural conversion. Depending on the model and

population scenario (e.g., the FAC models results are based on projected high and low rates

of population growth for the whole country), the cumulative amount of forest lost over the

20-year period ranges from about 10% to 50% of that present at the start of the simulations.

In the Santa Cruz, Bolivia case, the amount of forest loss estimated by LUCS and

GEOMOD is considerably lower (less than 2% of the initial forest cover lost after 20 years)

than that projected by the FAC model (about 14% of the initial forest cover lost). The

LUCS and GEOMOD models were applied to the same region (3.7 million ha) adjacent to

the Noel Kempff project area, whereas the FAC model was applied to the whole state of

Santa Cruz, an area of about 36 million ha. The high rate of forest loss projected by the

FAC model is a result of the influence of high population growth rates in large cities and

towns throughout the state, particularly the main city of Santa Cruz de la Sierra (see

Fig. 1B)—that produces a high deforestation estimate in the model, even though popula-
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tion growth currently is occurring within and radiating from the urban areas, and is not yet

evident in the far reaches of the department. In contrast, the low rates projected by LUCS

were caused by the simulation of local-scale conditions where only a scattering of small
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Fig. 2 Cumulative % of initial forest area deforested for each study area by each of the three models.
FAC = Forest Area Change model, LUCS = Land Use and Carbon Sequestration model, and
GEOMOD = Geographic Model. The high and low scenarios of the FAC model for Belize represent
high- and low-population growth projections

Table 3 Minimum and maximum baseline projected cumulative loss of forest cover over 20-year period
from base year, as % of initial forest cover, for the six study areas and model producing each value

Study area Minimum loss of forest Maximum loss of forest Minimum as % of maximum

Cumulative loss
%

Model Cumulative loss
%

Model

Belize 10 FAC 45 FAC 22

Santa Cruz 0.2 LUCS 14 FAC 1.4

Paranáa �7.0 LUCS 14 FAC –

Campeche 0.7 LUCS 25 FAC 2.8

Chiapas 22 LUCS 52 GEOMOD 42.3

Michoacán 21 GEOMOD 36 LUCS 58.3

Average 46

a The negative minimum value for Paraná represents a gain in forest cover
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communities occur and population growth is low. The low forest cover change rates

projected by GEOMOD (rates based on analysis and projection of spread of deforestation

from the capital, Santa Cruz de la Sierra, in 100 km rings using satellite images from 1975

through 1995; Hall et al. 2006) reflect the projected slow rates of population spread, and

corresponding forest clearing, in progressive waves in the zones farthest from the

departmental capital city of Santa Cruz.

The model simulations for Paraná, Brazil produce the most contrasting results of all six

areas. For the Brazil LUCS simulation, the population dynamics of water buffalo were used

instead of human population because buffalo livestock management was the main driving

force behind deforestation, and during the past decade or so the population of water buffalo

has been declining at about 4% per year. LUCS projects a gain of forest of about 7% of the

initial amount and GEOMOD projects a net loss of only 0.1% with reforestation of abandoned

pasture areas keeping pace with new deforestation. In contrast, the FAC model projects a

continuing loss so that after 20 years, another 14% of the forest is gone. The results from the

FAC model are based on the population–forest cover relationship for the whole state of

Paraná, a state that encompasses a high, more temperate plateau, and where the forest clearing

has been extensive in the past from urban growth and development (Fig. 1A). The lowland

coastal area modeled by LUCS and GEOMOD encompasses municipalities that show little to

no growth in population and consequently little deforestation over the recent past.

For Campeche, the FAC model projected that 25% of the forests would be deforested

over the 20-year period, compared to 11.5% projected by GEOMOD and the 0.7% pro-

jected by LUCS. Somewhat like the Bolivia area, the FAC simulation is influenced by the

concentration of human populations and infrastructure, and resulting forest conversion, in

the west and northwest section of the region with conversion in the rest of the region more

scattered (Fig. 1F). Even though the GEOMOD simulation of the total area produced

results that were about half those based on FAC, we did find that for the two municipalities

closest to the west and northwest of the GEOMOD area, the projected cumulative defor-

estation was similar to that projected by FAC.

The GEOMOD model projected Chiapas to have the highest rates of forest loss com-

pared to all other regions, with 52% of the initial forest gone after 20 year. In this case,

GEOMOD projected deforestation based on projected population growth from official

sources and one remote sensing image because of the unavailability of existing imagery

products for two points in time. Even though the area simulated by the FAC model was

almost three times larger than that used by LUCS, both gave practically the same results

and projected that about 20% of the forest would be gone within the 20-year period.

Because of the high and relatively evenly distributed density of human population and

subsequent use of the land across the entire region of Michoacán, the three models pro-

jected amounts of forest loss over the 20-year period that were more similar to each other,

ranging from a low of 21% (GEOMOD and FAC) to a high of 35% (LUCS), or less than a

two-fold difference. The tendency for convergence of results from the three models in

Michoacán implies that no particular concentration of human activity dominates defor-

estation patterns. This is similar to the situation for Chiapas.

A comparison of all model outputs across all six regions shows that depending upon

which model is used, we obtain quite different results—largely driven by how population

change is modeled. In general, the FAC model projects the highest amount of forest loss

(four out of six) and the LUCS model projects the lowest amount of forest loss (four out of

five cases). Both of these models rely heavily on population dynamics, with the FAC

model using published projections and LUCS model using population change based on a

hypothesized growth rate. When GEOMOD made projections of forest loss linked to
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population projections rather than from remote sensing products, as in the case of Chiapas,

a high rate of deforestation also resulted because population growth in the region is

exponential. As described above, the FAC model is applied at the national administrative-

unit scale where population data needed to simulate the model are generally available.

However, when the national administrative unit encompasses more than one biophysical-

socioeconomic zone, as in the case of Paraná, Brazil (lowland sparsely populated coastal

zone and populated cool plateau; Table 1), or where the pattern of deforestation has a

discernable frontier or wave, as in the case of Santa Cruz and Campeche, the FAC model

gives higher rates of deforestation in remote areas than the other two models caused by the

influence of the highly concentrated population in cities and towns far removed from the

area of interest. On the other hand, when human populations and their infrastructure are

widely dispersed across the landscape, regardless of whether different biophysical-socio-

economic zones occur, as in the case of Chiapas and Michoacán, all three models produce

results that have narrower range of variation, particularly in the near-term (about 10 years).

3.2 Evaluation of the models for projecting rates of deforestation

At the outset of this work, the questions we were attempting to answer by comparing three

different models were (1) what is the most analytically feasible, and credible, approach for

establishing deforestation baselines and (2) were the models feasible and practical to use

for this purpose? To address these questions, we evaluated the models against a set of five

criteria and 13 indicators (Brown 2003). The five criteria and corresponding indicators

were: (1) transparency with indicators of understandability and replicability; (2) accuracy

and precision with indicators related to model calibration, validation, and uncertainty in

data bases; (3) applicability with indicators related to ability to deal with multiple scales

and multiple land uses; (4) compatible with international standards (i.e., standard defini-

tions of forest); and (5) cost-effective with indicators related to intensity and availability of

data needs, time to simulate models, and knowledge and skills needed to run the models.

For each indicator, a score (from 1—lowest to 5—highest) was assigned, then averaged for

each criterion, and summed for all criteria for a maximum of 25 points. The overall

evaluation gave the GEOMOD model the highest score (22.6), and little difference in the

scores between the FAC (18.6) and LUCS (17.5) models. However, for some criteria, the

order of the evaluation was different from the overall trend, for example:

• For transparency, the GEOMOD and FAC models scored the highest and LUCS scored

the lowest because its model code and structure are not readily understandable by the

operator.

• The data bases needed for all three models tend to have a high degree of uncertainty

associated with them, either because they depend on interpretation of remote sensing

imagery (GEOMOD), on national statistics (FAC and LUCS), or on assumptions for

many parameters that are poorly known (LUCS).

• The GEOMOD and LUCS models are the most applicable for modeling land-use

change as they can be applied to any scale and to many changes in land uses; the FAC

model was built to simulate only deforestation at sub-national political units with

population growth as the single driver.

• The FAC model is compatible with international requirements because it has been

officially used and accepted by FAO to estimate deforestation for year 1990 and 1995

for all developing countries and the model was built on a clear and internationally

accepted definition of forest.
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• The FAC model scored the highest on cost-effectiveness indicators, whereas the other

two models require more data, time and effort to simulate.

3.3 Main factors explaining the empirical pattern of land-use change

Whereas all the models estimate the rate of deforestation, GEOMOD is the only one of the

three specifically developed to project where deforestation is likely to occur in the future.

Spatially explicit models like GEOMOD can project the location and pattern over time of

estimated deforestation—of interest to land managers, government agencies, and local and

international sequestration project developers or evaluators. For example, GEOMOD

analyzed a total of 29 spatially distributed factors to determine which ones explain the

historical pattern of human settlement and deforestation in each of the six regions. Sig-

nificance is based on the percent of each class of each factor already deforested at time one,

the calibration period. From these percentages a weighted map of potential land-use

change (PLUC) is produced that supplies the model with information on which forested

cells to select for future deforestation. We analyzed these PLUC maps using principal

components analysis (PCA) to compare the importance of factors across the six regions.

The PCA-derived values indicate how much of the land-use variation at time one is

explained by each factor compared to all others analyzed for that region but does not

necessarily provide a measure of their statistical significance (Table 4).

Not all factors were used in all regions due to data availability constraints (Table 4). An

importance factor was calculated to estimate how many factors in each variable category

(physical, biological, distance to areas of past disturbance, sociological/demographic, and

economic/infrastructure) ranked among the top three in a study region. A comparison of the

importance factors reveals that physical (factors 7–19) with 9 out of 23 (0.39) and biological

factors (factors 20–21) with 0.50, as well as distance to areas of past disturbance (factors 22–

25) with 0.38, were each about twice as important as either sociological/demographic (factors

26–28) with 0.20 or economic/infrastructure factors (factors 1–6) with 0.24, in explaining

empirical land use patterns. Elevation (factor 7) ranked among the top three factors in all five

regions where it was analyzed, and slope, an elevation derivative, was among the top three in

Chiapas. Distance to roads (factors 3–5) were highly significant in half of the regions,

principally Paraná, Chiapas and Belize, and distance to already deforested areas (factors 23–

25), which was also highly significant in three regions, explains between 11% and 17% of the

variation in deforestation in Santa Cruz, Belize, and Campeche. Distance to assumed market

areas, and or community services (factors 1–2), was ranked among the top three factors only

in Belize. Land tenure (factor 26) ranked high in both regions where it could be analyzed,

Belize and Chiapas, but ranked among the top three in only the latter. Distance to water

sources (factors 13–17) was not nearly as important as we assumed, except for Campeche and

Michoacán, where rainfall averages between 750 mm/year and 800 mm/year, significantly

lower than the other regions analyzed.

3.4 Strength of factors in projecting future land-use change: which factors, and how

many are needed?

The percent of cells projected correctly based on a comparison of GEOMOD’s simulated

time-2 map with the actual time-2 validation map ranges from 90% to 99.8% for all sites

except Chiapas, where only 72% were correctly modeled (Table 4). However, it is possible
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to get a high percent correct when little change is occurring between two time periods, as in

Santa Cruz and Paraná. Also, a certain percent of the cells will be modeled correctly based

simply on random assignment, or chance alone, due to persistence of large areas of either

agriculture when population is high or forest when it is not. The kappa-for-location sta-

tistic, which varies between 0 (no better than a random model) and 1 (a perfect simulation),

takes this into account, and provides a better metric of how well the model performed than

just percent correct. For Belize, Paraná, Campeche, and Michoacán, the kappa-for-location

is greater than 0.5 suggesting that the GEOMOD improved significantly over a random

assignment of newly deforested cells. For Santa Cruz, the lower kappa combined suggests

that model enhancements could be made, thus illustrating the importance of validation as a

means of building the best model possible to achieve the most robust projections (Hall

et al. 2006).

The individual importance of factors in explaining patterns of land use for a past time

period does not necessarily portend their ability to predict a future landscape. This

underlines the importance of validation in the modeling process. The predictive strength of

empirical patterns is enhanced or diminished in combination with other factors and must be

tested for before projecting into the future. All the factors analyzed for Santa Cruz, Belize,

and Paraná, not just the top three, were required to derive the best possible fit (kappa-for-

location) between the simulated and actual time-2 maps. In Campeche seven (2, 3, 6, 7, 17,

27, 29) of the 11 factors analyzed were necessary to improve more than 50% over a

random model, and those seven did not even include any of the PCA top three. In Chiapas,

a combination of only five (3, 24, 20, 27, 28) of the seven yielded the best fit possible, and

in Michoacán only two factors, slope (factor 8) and distance to water sources (factor 16),

were required to produce an 88% improvement over a random model. This is not surprising

in a region where steep slopes are being developed as the best land is already in production.

In both Chiapas and Michoacán, only one factor of the final ‘‘best’’ predictive set had

ranked among the top three in the PCA analysis of past pattern—distance to roads (factor

3) and distance to year-round and seasonal water sources (factor 16), respectively.

Even though a large initial list of driving factors were included in the spatial modeling,

the factors providing the best fit in validation could be reduced to a few key ones. Tar-

geting a few key factors per activity type and region could offer potential for streamlining

and standardizing the PLUC map upon which simulation of the future without project

landscape is based, thereby reducing data requirements, and costs of spatial baseline

analysis. For instance, we found that in five out of six regions, distance to roads (factor 3)

was included in the final set of factors, and in four out of six regions the following were

required: distance to towns (factor 2), elevation (factor 7), distance to areas of some kind of

earlier human use (factors 23, 24, and 25) and distance to water (factors 13, 14, 16, and 17).

Distance to roads, though important elsewhere, did not enhance validation in Michoacán;

this could be due to the high density of both roads and deforested areas in the region.

Fig. 3 Maps showing the location of potential deforestation in each region analyzed, based on GEOMOD’s
calculation of each cell’s potential suitability for human use. Suitability is derived through analysis of the
important biophysical/socio-demographic/economic factors determining where people have chosen to settle
in the past. Suitability values are ranked into quartiles to facilitate visualization of the areas of most likely
future deforestation pressure, independent of the rate of change experienced in the region. The bottom
quartile is considered as having no potential of being deforested

c
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3.5 Potentiality for deforestation

We created a final map of potential land-use change (PLUC) (Fig. 3) in GEOMOD based

on the factors for each region that yielded the best ‘‘goodness of fit’’ (Table 4) between the

simulated and actual time-2 land-use map as measured by the kappa-for-location statistic.

The PLUC map, indicating each cell’s likelihood for future development, was derived by

summing the percent developed for all factors yielding the best kappa-for-location in

validation. The model simulates the distribution of potential future deforestation by

selecting the highest value cells (those most likely to be deforested) in these maps in

descending order up to the amount of area projected to be lost over a 20-year period. We

then aggregated these values into three quartiles to visualize those areas of most likely

(red) and least likely (blue) for future deforestation pressure (Fig. 3).

These mapped cells with varying potentiality of deforestation essentially provide esti-

mated timing (or order) and location of deforestation differentially across a landscape over

the period of projection. Thus they also essentially provide a spatially resolved estimate of

their relative departure with respect to a business-as-usual baseline of all lands evaluated

regarding their potential for deforestation-avoidance projects—i.e., carbon benefits in

avoided deforestation projects are estimated and measured as a positive departure from a

baseline. Lands assigned low probability of deforestation over 20 years would have rela-

tively low departure from the baseline, and lands with high probability of conversion

would have higher departure—if project activities prevent forest conversion.

In the study regions where human populations and their infrastructure are widely dis-

persed across the landscape (e.g., Chiapas and Michoacán, yellow color on maps in Fig. 3),

high potentiality for deforestation is generally scattered in relatively small parcels with few

areas that have low potentiality. In contrast, areas with large blocks of forest with both high

and low potentiality for deforestation are located in those study regions where human

populations and infrastructure are not widely scattered and where a deforestation frontier is

evident (e.g., Belize, Campeche, and Bolivia; Fig. 3).

Four of the study regions (Belize, Bolivia, Brazil, and Chiapas) have pilot carbon

sequestration projects embedded within them (see Fig. 1A, C, E) and it can be seen that

large blocks within these study regions have low and medium potentiality for deforestation,

and only smaller areas with high potentiality, so targeting project sites to high potentiality

areas is important for demonstrating departure from the baseline for greenhouse gas mit-

igation programs. The GEOMOD approach was used in developing final baselines for three

of the pilot projects (Belize, Bolivia, and Brazil) and took into account the patterns shown

in Fig. 3.

3.6 Carbon emissions baseline

In the analyses presented so far, the focus has been on developing the land-use change

component of the baseline. However, carbon sequestration projects need to develop a

baseline of carbon emissions or removals by projecting the rate of land-use change over a

given time period combined with carbon stock data. The benefit of using spatially explicit

models to project where the change will occur is that it provides a means for matching

change locations with the corresponding carbon stocks. This is particularly advantageous

in areas where forest types vary across a project landscape (e.g. flooded forests and upland

forests, degraded and mature forests, etc.). The ‘‘location’’ tells us which forest type is

being cleared.
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The application of this approach to an example pilot project—the Noel Kempff pilot

project in Bolivia—is shown in Fig. 4 (Brown 2002b). The carbon baseline for the Bolivian

pilot project is not a monotonic increasing curve, but rather it is an irregular pattern of high

emissions some years and lower emissions other years (Fig. 4). This irregular pattern is

caused by two main factors: (1) the deforestation is modeled within a larger landscape and

in any given year, the total amount of forest projected to be lost does not occur all within

the project boundaries because not all the most suitable land exists there, and (2) the pilot

project areas had six different forest strata with a corresponding range of carbon stocks,

and in any given year forest with higher or lower carbon stocks could be cleared. Thus in

this example, the rate of deforestation and identification of lands suitable for conversion

are established in the regional context. But the actual baseline is developed at the project

scale, where the area cleared within the project area is matched to the carbon stocks

measured in the same area—thus the carbon baseline is project specific.

If the baseline projection for the Noel Kempff pilot project was based on the other two

models and used in combination with an area-weighted carbon stock for the project area

(147.6 Mg C/ha; Brown 2002a), the projected baseline would be a monotonically

increasing curve with a total carbon emissions of 11.54 Tg for the FAC model and

0.183 Tg for the LUCS model over the 20-year period (applying the percent deforestation

rate to the area of the project). The total emissions from GEOMOD (summed annual

emissions from Fig. 4) would be 1.05 Tg C over the same 20-year period.

If the carbon benefits of stopping deforestation are estimated as the difference between

the baseline emissions and the ‘‘with-project’’ emissions (essentially zero) as is typically

done (Brown et al. 2000a, b) then the benefits from using GEOMOD would be 1.05 Tg for

the 20 years, with either an order of magnitude less using LUCS or order of magnitude

more using FAC. Thus, clearly the choice of model to make the projections can have a

major effect on the potential carbon benefits.
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Fig. 4 Carbon baseline of annual net carbon emissions for a pilot carbon sequestration project—Noel
Kempff project in Bolivia
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3.7 Strategy for generating deforestation baselines

A large opportunity to mitigate GHG emissions is lost without the inclusion of projects

designed to avoid deforestation and improve the sustainability of agriculture in developing

countries (Klooster and Masera 2000; Niles et al. 2002). Sathaye et al. (2006) estimate that

under quite moderate carbon price scenarios, by 2100, the global cumulative carbon

benefits from avoided deforestation is 51–78% of all potential in the land use sector. Many

developing countries continue to be interested in forest conservation projects because of

their potential to slow or even reverse high rates of deforestation and to conserve biodi-

versity and other natural resources. In this section, we propose, based on the work pre-

sented here and the lessons learned, a common methodology to advance the development

of credible baselines for deforestation. This approach also may be generally applicable to

other climate change mitigation activities involving land-use change, like afforestation,

reforestation, and restoration of degraded forests, but we have not assessed them here.

For an avoided deforestation project to produce credible carbon benefits, the baseline

needs to demonstrate that the area was under threat of deforestation. Large areas of tropical

forests are often not under threat for deforestation and would therefore not be eligible for

such a project. An analysis of deforestation threats using spatial models is suited to this

task. For the six areas analyzed here, we have generated maps showing the areas of most

immediate threat scaled from high to low potentiality for deforestation (Fig. 3). Projects

intended to stop deforestation would have a measurable difference on carbon emissions in

areas of high to medium potentiality. An additional advantage of using potential land-use

change (PLUC) maps as shown in Fig. 3 is that other development criteria could be

overlain on the map to help select areas that meet multiple goals. For example, maps of

ranges of threatened or endangered species, maps of poverty indicators or maps of critical

watersheds could be overlain on the PLUC maps, and the intersection of other development

goals with the highest threat for deforestation could be identified.

The temporal dimension for avoided deforestation baselines is a significant analytic and

policy issue—how far into the future can, and should, the baseline be projected? Rates and

patterns of land-use change are subject to biophysical factors regulating human use of the

land that change marginally over time, but socioeconomic and political factors are more

dynamic and less predictable through time. Thus, the farther business-as-usual baseline

scenarios are projected into the future, the less reliable they are likely to be. We suggest

that a 10-year period is a reasonable time frame for projecting baselines forward based on

the following: (a) historical data are often collected over the decadal time frame (e.g.,

population data), and may indicate future projections over the same time period given the

dynamics of development and growth in most countries; (b) for certain regions in our

analyses there tends to be some convergence among the model projections during the first

10-year period; and (c) from a policy perspective, a decade is two Kyoto commitment

periods (of 5 years), and roughly two political election cycles (averaging 4–6 years gen-

erally, varying by political system). We propose a projection timeframe for land-use

changes and associated carbon benefits equal to the proposed project length (currently set

at 20–60 years under the guidelines developed for the CDM), but a baseline locked in for

only the first 10-year period, and then reviewed and adjusted if needed throughout the

project duration. Any revisions to a baseline are likely to affect the carbon credits ascribed

to the project in the subsequent time period because the projected rate of deforestation

could change. New projects implemented in a region during the second 10-year period

would of course use the revised baseline.
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Combining the baseline duration issues with the work presented here, we propose a

methodology for developing a baseline projection for an avoided deforestation project that

involves three major steps comprising six tasks (below):

Step 1: Develop historic land-use change and deforestation estimate:
Task 1: Determine analytic domain and obtain historic data:

• Delineate the approximate regional analytic domain scale:

• About 5–7 times the area of large projects (e.g., greater than several hundreds of

thousand ha; magnitude and thresholds recommended will vary with regional

conditions), or 20–40 times the area of smaller projects (e.g., tens of thousands of

ha or less; will vary by regional conditions).

• Obtain historic data on land use and socioeconomic characteristics for the past c.

10 years or so, ideally including two recent remote sensing imagery data sets at least

5 years apart, and identify potential major baseline drivers.

Task 2: Analyze candidate historic baseline drivers and identify major drivers:

• Analyze satellite imagery to produce maps of land use or obtain existing digital,

satellite imagery-based, land-use maps for location of deforestation. Analyze

candidate baseline drivers (e.g., see Table 4 for key ones) to find the three to four key

drivers that best describe patterns of historic land-use change. Weight these drivers

according to their importance in the time one or calibration period. Select those that

produce upon simulation the best match with a time two or validation period map.

Step 2: Generate baseline projection for deforestation
Task 4: Use key drivers to project potential land-use change (PLUC):

• Use the three to four key drivers of land-use change to generate a potential land-use

change (PLUC) map, or a map of areas projected to have high to low risk for

deforestation. A number of spatial models, such as GEOMOD or others locally

available (e.g., Castillo-Santiago et al., 2006; De Jong et al., 2005) can be used to

create the PLUC. Potential deforestation can be divided into quartiles, from high risk

to low risk.

Task 5: Project rates of deforestation using the PLUC map:

A 10-year baseline projection for project GHG accounting and crediting purposes is

suggested as baseline projections beyond a 10-year period are not likely to be realistic

because rates of land-use change are subject to many factors that are difficult to predict

over the long-term.

• Project rates of land-use change over a 10-year period. Initially for this step, it would

make sense to employ change detection of satellite imagery, such as used by

GEOMOD in five out of six cases, because such images would already be on hand as

part of the data base for the PLUC map. However, if at least two such images are not

available (two images will give a linear projection only, but for a 10-year period this

may be adequate) and the pattern of existing deforestation is dispersed across the

landscape, then the simpler FAC model could be used.

• Assess the relative carbon impacts of the mitigation actions in the proposed project

case area and activities, by land parcel. Each parcel combines land and socioeco-

nomic characteristics with proposed mitigation activity, overlain on projected high

potential for deforestation (and thus relatively high carbon impact of project

activities), to low potential (thus low carbon impact, as these lands are unlikely to be

converted). For example, one might apply the total estimated rate of deforestation,

expressed as a percent of the initial forest cover, to areas in the potential project area

mapped as high potential, some discounted rate to the medium potential (how to
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discount would likely be a policy decision), and assume no deforestation in areas

with low potential. This step would result in a projection of the baseline rate and

location of deforestation.

Task 6: Combine PLUC map with projected rates of deforestation and carbon stock

estimates and make baseline projections

• Estimate the carbon stocks in the forests being cleared from measurements in the

potential project area or from the literature depending on the status of project

development. If it is only a feasibility study, then literature data or limited field

studies would suffice, but if the project is beyond a feasibility stage, more detailed

measurements and analyses of the carbon stocks would be needed (e.g., see Brown

2002a).

• Combine the rate of forest loss over the 10-year period with carbon stock data to

produce the deforestation baseline as shown in Fig. 4 for example. If a potential

avoided deforestation project was at an implementation stage, the GEOMOD model

could be used to simulate where the land is likely to change in the project area using

the rate data, and to subsequently to match these with the corresponding carbon stock

data.

• For reporting of estimated GHG benefits, the project could submit its baseline driver

assumptions to a GHG registry or marketing programs for review for reasonableness,

and some form of certification of these assumptions, the baseline they produce, and

hence the estimated project GHG benefits.

Step 3: At agreed interval (e.g., +10 years), review and re-assess baseline:

• Because a 10-year baseline might be considered to be short and interest is in longer-

term projects, it could be envisaged that the spatial PLUC map and estimates of rates

of land-use change would be redone on a 10-year cycle. This would allow for the

rates and changes in spatial drivers (e.g., new roads, new communities, new

protected area, etc.) to be incorporated into the derivation of the new PLUC map and

for adjustments in the estimation of the rate of land-use change and carbon stocks.

Greenhouse gas mitigation programs or market investors in GHG offsets are likely to

require periodic review of the reasonableness of the project baseline under changing

market, commodity product, population, other socioeconomic factors, natural disaster, or

other circumstances in the project’s region. An agreed period for review, say 10 years out,

would provide certainty to investors that the baseline would be in place for at least that

time, yet would allow baseline updating if conditions warrant.

Operationally, the analysis of baseline conditions and assumptions about the values of

baseline drivers could be proposed by a project, and reviewed and certified by a greenhouse

gas registry program for 10 years. After 10 or an agreed number of years, the baseline

conditions and drivers would be reviewed by the project and program, and proposed

unchanged for another 10 years. An agreed set of baseline conditions and drivers could be

identified in advance that, if they change by an agreed percentage or amount, would

automatically trigger a required revision to a baseline. If no such changes trigger a revision,

then the original baseline driver values would be re-certified for the next period. Candidate

conditions and triggers for revision might vary by the key baseline drivers for a given

mitigation activity and region.

The steps and tasks outlined above clearly represent fairly substantial modeling and

analysis effort that begs the question as to how such effort could be supported. We propose

that such an effort could be supported by traditional overseas development assistance and

performed by relevant agencies within a country, particularly if other land-use changes
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were also modeled and analyzed. Not only would such analyses provide regional baselines

for GHG mitigation projects, and well position countries to participate in the nascent

carbon market, but they would also provide information to assist in the identification of

other carbon sequestration opportunities. The approach outlined above could also help a

country identify its potential GHG emission liabilities into the future and provide an

opportunity for the country to plan alternative development pathways.
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