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Abstract
Whilst the topic of representations is one of the key topics in philosophy of mind, it 
has only occasionally been noted that representations and representational features 
may be gradual. Apart from vague allusions, little has been said on what represen-
tational gradation amounts to and why it could be explanatorily useful. The aim 
of this paper is to provide a novel take on gradation of representational features 
within the neuroscientific framework of predictive processing. More specifically, we 
provide a gradual account of two features of structural representations: structural 
similarity and decoupling. We argue that structural similarity can be analysed in 
terms of two dimensions: number of preserved relations and state space granularity. 
Both dimensions can take on different values and hence render structural similarity 
gradual. We further argue that decoupling is gradual in two ways. First, we show 
that different brain areas are involved in decoupled cognitive processes to a greater 
or lesser degree depending on the cause (internal or external) of their activity. Sec-
ond, and more importantly, we show that the degree of decoupling can be further 
regulated in some brain areas through precision weighting of prediction error. We 
lastly argue that gradation of decoupling (via precision weighting) and gradation 
of structural similarity (via state space granularity) are conducive to behavioural 
success.
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space granularity · Precision weighting of prediction error
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1  Introduction

The topic of representations is one of the most debated topics in philosophy of cogni-
tive science. Despite the fact that the representational debate has been around for a 
long time there is only little agreement on what exactly representations are, how they 
gain their contents, whether representations even exist and, if they exist, whether they 
play a functional role in cognitive processing (Ramsey, 2007; Gładziejewski, 2016; 
Dolega, 2017; O’Brien & Opie, 2004; Hutto & Myin, 2012). The latter query casts 
into doubt whether it is necessary to evoke the notion of representation to understand 
different aspects of action, planning, and cognition (Ramsey, 2007; Hutto & Myin, 
2012).

Here, we use the claim that genuine representations exist as a background assump-
tion. We argue that an important part of what makes representations explanatorily 
relevant are the degrees to which representational features (i.e., features of repre-
sentations – more on this in the following section) are expressed. We will call this 
the “gradual features hypothesis”. A similar proposal, i.e., “representational grada-
tion”, has been implicitly present in the representation debate for some time (see 
for example Clark & Toribio, 1994). However, both the empirical grounding of this 
idea as well as the consequences of adopting a gradual hypothesis remain greatly 
underspecified.

Our thesis that representational features come in degrees will be explored within 
the framework of predictive processing (PP from now on). Embedding our thesis in 
this neuroscientific framework will enable us to connect the “gradual features hypoth-
esis” to relevant theoretical and empirical work. In developing our proposal, we eval-
uate two features of (structural) representations, structural similarity and decoupling. 
We argue that structural similarity can be cast in terms of the number of exploitable 
internal relations and state space granularity. We show that both of these dimensions 
can occupy multiple values which in turn implies that structural similarity is a graded 
notion. We further argue that decoupling is gradual in two ways. First, we show that 
different brain areas are involved in decoupled cognitive processes to a greater or 
lesser degree depending on the cause (internal or external) of their activity. Second, 
and more importantly, we show that the degree of decoupling can be further regulated 
in some brain areas through precision weighting of prediction error. Lastly, we argue 
that regulating the degree to which each representational feature is expressed impor-
tantly contributes to successful behavioural performance. Conversely, inflexible or 
inappropriate (for the situation) regulation of representational features underlies sub-
optimal behavioural performance such as echopraxia, overgeneralisation in category 
learning in children, and hallucinations under the influence of psychedelics.

The paper is structured as follows. First, we introduce the framework of PP and 
some of its key principles that are relevant for our thesis. Second, we present two 
conflicting accounts of the existence of representations and their arguments. Third, 
the concept of structural representation is introduced and two of its core features 
are discussed, structural similarity and decoupling. Then, we briefly discuss three 
existing accounts of gradual representations, which we build on in several ways in 
our “gradual features hypothesis”. Finally, we present our main thesis, i.e., that rep-
resentational features are gradual and need to be regulated. We discuss what makes 
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representational features gradual and then we suggest what PP mechanisms might be 
involved in modulating the gradation of these features. Following this, we argue that 
behavioural success of cognitive systems depends on the gradation of representa-
tional features. We round off with concluding remarks and present some avenues for 
future research. We suggest that our “gradual features hypothesis” may be relevant 
both for existing representationalist as well as for non-representationalist accounts.

2  Predictive processing in a nutshell

2.1  The problem of underdetermination in perception

Our brains are continuously presented with a stream of sensory observations which 
is ambiguous and noisy. For one sensory input there are multiple possible underly-
ing causes, a problem that has been called “perceptual underdetermination” (e.g., 
Orlandi, 2016). The brain also needs to integrate sensory observations from multiple 
modalities as well as cope with internal noise that is present in biological systems 
(Rescorla, 2016). In other words, the brain is confronted with the causal inference 
problem: it must infer the causes generating the noisy and ambiguous sensory obser-
vations across modalities. In cognitive science the process of causal inference has 
been cast as Bayesian inference, i.e., a normative method of combining prior expecta-
tions (formed through learning) and sensory observations via Bayes’ rule (e.g., Per-
fors, 2011). Importantly, whilst Bayesian cognitive science postulates that the brain 
conducts Bayesian inference it does not explain how it does it (Williams, 2018). What 
is needed is an algorithmic-level explanation of how the brain implements Bayes-
ian inference (Colombo & Seriès, 2012) – PP is an attempt at filling this gap. PP 
is a very influential paradigm in computational cognitive neuroscience (e.g., Clark, 
2013a, 2016; Hohwy, 2013; Rao & Ballard, 1999) which postulates that Bayesian 
inference is carried out by hierarchically organised generative models where, impor-
tantly, only the difference between expected and sensory observations is propagated 
through the levels of the hierarchical generative model (Friston et al., 2016). Building 
on these basic cognitive mechanisms, PP aims to provide a unifying framework for 
understanding cognition, action and perception (Friston, 2010).1 As a consequence, 
various cognitive domains have been explored through the lens of PP such as percep-
tion (den Ouden et al., 2012), action (Yon et al., 2018), planning (Kaplan & Friston, 
2018), communication (Friston & Penny, 2011), learning (da Costa et al., 2020) and 
mentalizing (Koster-Hale & Saxe, 2013).

2.2  The functionality of hierarchical generative models

Generative models encode sensory observations and model underlying processes that 
generate these observations (Clark, 2013a, 2016). At the higher, cortical areas of 

1  It should be noted that the unificatory aspirations of PP are contested (Litwin & Miłkowski, 2020; 
Colombo & Wright, 2017). However, our treatment does not presuppose that PP affords unifying explana-
tions of all cognitive phenomena.

463



D. Rutar et al.

1 3

the brain, top-down predictions are made about the distal causes underlying sen-
sory observations which are then sent to the lower levels of the hierarchy, triggering 
an expected pattern of activation. Lower areas of the hierarchical generative model 
receive sensory observations and compare them to the expected pattern of activation 
(SanMiguel et al., 2013). Based on the difference between the predicted observation 
reflected in the expected activation pattern and the actual sensory observation, pre-
diction error is computed (Friston & Kiebel, 2009; Clark, 2013a).

Prediction error however is not only a difference between the predicted and the 
actual sensory observation. Prediction error has to be weighted by its precision, 
which signals how important the error is for learning, and how reliable the prediction 
error is (Feldman & Friston, 2010; Clark, 2013b). Based on this the brain estimates 
how the prediction error should affect learning and hence to what extent the error 
should be used for updating the generative model. Errors that are expected to be noisy 
or unimportant will be down-weighted by having low precision. In such situations 
changing the internal model to minimise prediction error will not reliably increase 
perceptual accuracy. Conversely, important and reliable prediction errors will be up-
weighted by having high precision. Only prediction errors with high precision will 
be accumulated and assimilated in higher levels of the generative model (Kanai et 
al., 2015).

From the point of view of PP, minimising prediction error is the primary goal 
of computations in the brain (e.g., Friston & Kiebel, 2009). Prediction error can be 
minimised in one of two ways; either through action (sometimes also referred to as 
“active inference”) or perception (also referred to as “perceptual inference”) (Friston 
et al., 2011; Clark, 2016). In what follows, we will be using the terms “perception” 
and “action”, instead of “perceptual inference” and “active inference”, so as not to 
confuse action with active inference as a theoretical framework (which is, roughly, 
constituted by a class of models that extend PP in certain respects). When predic-
tion error is detected, the error-indicating activity is propagated to the level above, 
which results in an adjustment of the parameters of probabilistic representations at 
that level. This in turn allows top-down predictions to explain away prediction error 
at lower levels. This process is characteristic of perception (Friston et al., 2011). The 
alternative process of minimising prediction error through action is aimed at chang-
ing sensory input, in order to make it conform to top-down predictions (Friston et al., 
2011). In doing so, future prediction error will be smaller.

3  Representation wars in predictive processing and the job 
description challenge

Whilst central to cognitive science and philosophy of mind, the characterisation of 
representations and the attribution of representational status has been a controversial 
topic for a long time. Here, we briefly describe what has come to be labelled as the 
“representation wars” (Williams, 2018; Clark, 2015) in the context of PP.

To assess whether a representational posit deserves its label, Ramsey (2007) iden-
tifies a challenge that every purported representation needs to pass, the job descrip-
tion challenge. The job description challenge consists of showing that the cognitive 
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structures in question have a genuinely representational function. For something to 
function as a representation it needs to play a causal role in a cognitive system, where 
causal relevance constitutes explanatory relevance. Furthermore, the roles played by 
representations must “provide us with conditions that delineate the sort of job rep-
resentations perform, qua representations, in a physical system.” (Ramsey, 2007, p. 
27). In particular, a structure or a state needs to be not just explanatorily relevant, but 
it must be explanatorily relevant in virtue of functioning as a representation.

One way in which the job description challenge can be met is via what Gładziejewski 
(2016) calls the compare-to-prototype strategy. The first step in applying this strat-
egy is to think of a prototypical representation, a structure “that can be pretheoreti-
cally categorized as a representation in an uncontroversial way. In particular, one 
concentrates on the functions served by the structure in question—on what it does 
for its users that makes it a representation. This is our representational prototype” 
(Gładziejewski, 2016, p. 564). The second step involves a functional comparison 
between a representational prototype2 and a cognitive structure in question. In doing 
so, one evaluates whether the cognitive structure under consideration plays a func-
tional role that is similar enough to the functional role of the chosen representational 
prototype (Gładziejewski, 2016).

By applying this strategy Gładziejewski shows that generative models in PP play a 
map-like and hence representational functional role in the following way. Generative 
models can be modelled as Bayesian networks (Pearl, 2000) whose structure resem-
bles the causal structure of the environment. Specifically, generative models capture 
the causal structure in three ways: by hidden or latent variables, their relations (this 
is how the dynamics of causal-probabilistic relations in the world is encoded), and 
by prior probabilities. Generative models further afford action guidance as they can 
be exploited for guiding action in virtue of them correctly representing the environ-
mental structure. Generative models can also be decoupled – brain areas that are usu-
ally engaged in perception and action control can give rise to fully offline cognitive 
processes such as imagining (Moulton & Kosslyn, 2009) and thinking (Williams, 
2020). Lastly, generative models detect errors where the source of misrepresenta-
tion can be two-fold. Error either arises from an inaccurate model or due to a model 
misapplication in light of an unreliable, noisy signal (Gładziejewski, 2016). Thus, 
generative models in PP, like the representational prototype of cartographic maps, 
function as genuine structural representations (Gładziejewski, 2016; Gładziejewski 
& Miłkowski, 2017; Wiese, 2018; Williams, 2018; Kiefer & Hohwy, 2018). We pres-
ent structural similarity and decoupling more in detail in the next section as they are 
central to our proposal.

The line of reasoning presented above supports the representationalist stance. 
Three historic and foundational challenges have been posed to representationalism: 
concerning representational content, cognitive function and representational function 
(Williams, 2018). The first challenge, also called the “content determination prob-
lem” (Von Eckardt, 2012), is to “identify the natural properties, relations and pro-
cesses that determine the intentional properties of internal representations without 

2  A well-established example of a representational prototype are cartographic maps which we discuss more 
in detail in the Sect. 4.1 (O’Brien and Opie 2004; Ramsey 2007).
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circularity” (Williams, 2018, p. 145, see also Wiese, 2017). The second challenge is 
grounded in ecological perception (Gibson, 2014), and presents the pragmatic turn 
away from representation-centred cognition to cognition for action. Here, the brain 
is primarily understood as a control system for interaction with the environment as 
opposed to reconstructing the structure of the environment. Hence, the question is 
whether representations are needed at all (Anderson, 2017; Chemero, 2009; Pezzulo, 
2016). The third challenge is to show that representational content is causative, i.e., 
for a cognitive structure to qualify as a representation it needs to be exploited to 
guide behaviour of the cognitive system to which it belongs (Shea, 2018; Ramsey, 
2007). More recently, in relation to the third challenge, opponents of representation-
alist views have objected that structural representations do not meet the job descrip-
tion challenge (Facchin, 2021b; van Es & Myin, 2020), that they do not differ in kind 
from (non-representational) detectors (Nirshberg & Shapiro, 2021), and that genera-
tive models are not structural representations (Facchin, 2021a).

For ease of exposition, our proposal is aligned with the representationalist posi-
tion. However, importantly, our argument does not constitute an argument in favour 
of a representalionalist position. In the conclusion we even suggest that our contribu-
tion may be of relevance to anti-representationalist positions (but we do not defend 
that claim in this paper). Here, we argue that degrees of structural similarity and 
decoupling need to be taken into account.

4  Structural representations

For the purposes of our research we will only examine two functional properties of 
structural representations; structural similarity and decoupling (note, decoupling is 
different from detachment, which we explain more in detail in Sect. 4.2 Decoupling). 
In the following, we present more in detail what structural similarity and decoupling 
of representations pertain to, according to the received view. Note that we elaborate 
on and refine the classical treatment of these two functional properties in later parts 
of the manuscript.

4.1  Structural similarity

Structural similarity pertains to representations sharing (to a sufficient degree) a rela-
tional structure with whatever they represent (i.e., a target object). In other words, 
structural similarity is a result of relations between the parts of a target object being 
preserved under a mapping (Shea, 2018; Gładziejewski, 2016; Gładziejewsky & 
Miłkowski, 2017). A cartographic map is an example that illustrates structural simi-
larity. Cartographic maps consist of points and spatial relations between them. Points 
A’, B’, and C’ on a map may, for instance, correspond to buildings A, B and C. If we 
observe that building A is closer to building B than it is to C, then points on the map 
should preserve this relation: point A’ on the map should be closer to B’ than it is to 
C’ (O’Brien & Opie, 2004). If spatial relations between buildings in an area are pre-
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served by the spatial relations that hold between the corresponding parts on the map, 
then we can say that the map is structurally similar to the area.3

Defining structural similarity more rigorously is a challenging task. Intuitively, we 
can judge whether two cartographic maps are similar to each other or not. However, 
making the intuitive notion of similarity precise is non-trivial for at least two reasons. 
First, identifying structural similarity with the existence of a structure-preserving 
mapping trivialises the notion of structural similarity, because it seems that arbitrary 
mappings can be defined by an observer (a version of this problem is known as New-
man’s problem, see Newman, 1928, p. 144). Second, whether one representation is 
(structurally) more similar to the representandum than another representation can 
depend on the purpose for which the representation is used.4 This suggests that mea-
suring structural similarity independently of the context is impossible (Goodman, 
1972, p. 445).

Because of considerations like these, structural similarity needs to be defined not 
only in terms of the existence of a structure-preserving mapping between two systems. 
The standard way of enriching this definition is to require that the structure preserved 
under the mapping be exploitable (e.g., Shea, 2007, 2018). That is, it must be possible 
to use the structural information contained to guide action (Gładziejewski, 2016). 
Take for example a cartographic map. Users of cartographic maps successfully navi-
gate the environment due to structural similarity between the spatial structure of the 
map and the spatial structure of the area it represents (Gładziejewsky & Miłkowski, 
2017; Gładziejewski, 2016). In this case, a mere existence of a structure-preserving 
mapping is not sufficient to account for a successful navigation. The users must also 
be able to take advantage of the structure embodied by the map. Furthermore, the 
use-condition specifies a context for determining which relations are relevant when it 
comes to evaluating structural similarity. For instance, if a person is unable to make 
sense of contour lines, they will not even be able to use information about elevation 
in a cartographic map (that features contour lines). Consequently, such a map will be 
highly similar to a map lacking contour lines for this person (at least when it comes to 
using the map to navigate; things may be different when the person is asked to judge 
if the maps “look” similar to one another).

4.2  Decoupling

For a representation to be called decoupled it needs to be independent of specific 
stimulus conditions (e.g., Ramsey, 2007; Shea, 2018). Decoupled representations 
operate independently of external stimulation and as such they can generate behav-
ioural responses based on internal stimulation alone. A decoupled representation can 

3  Technically, similarity is a symmetric relation, whereas what we say here only requires that two struc-
tures be homomorphic – which is not a symmetric relation. We shall ignore this conceptual imprecision in 
favour of a more vivid exposition (besides, other authors use the term “structural similarity” in this loose 
sense, as well, see Gładziejewski & Miłkowski, 2017; Gładziejewski, 2016).
4  For instance, two maps may be similar with respect to spatial relations. However, if one map depicts 
elevation (e.g., using contour lines), whereas the other does not, but instead provides information about 
streets and railway connections, the maps will only be considered similar in contexts in which neither 
information about elevation, nor about streets and railways is relevant.
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be distinguished from a detector or a causal mediator (Ramsey, 2007). Whilst infor-
mation afforded by a genuinely decoupled representation can be used independently 
of external stimulation, a causal mediator presents merely a stage in the processing 
of the sensory stimulus. In short, decoupled representations play an information-car-
rying role and mediators do not have such a role (Ganson, 2020). In that context it is 
important to further distinguish decoupled representations from detached representa-
tions that “stand for objects or events that are neither present in the situation nor trig-
gered by some recent situation” (Gärdenfors, 1995, p.1, see also Gładziejewski, 2016 
who subscribes to the detachment requirement as well). A decoupled representation, 
by contrast, can be about currently present objects; however, the causal connection 
to the current environment must be at least loosened for the representation to count 
as decoupled.

Early empirical evidence of what is now known as decoupled representations 
comes from studying rodent navigation (Tolman, 1938)5. In one of his experiments 
Tolman (1938) found that the experimental rats that had previously learnt the round-
about route to a goal point switched to a more direct path immediately if the familiar 
route was blocked. Based on this, Tolman reasoned that rodents must “have access to 
spatial knowledge about the environment, akin to the spatial knowledge obtainable 
from a map, that could be used to guide behaviour in a flexible manner” (Epstein 
et al., 2017). Building on these initial findings it has been found more recently that 
place cells in hippocampus, which are “normally associated with the animal’s spatial 
position, can also fire when the animal is outside its standard “place field,” especially 
during periods of rest or sleep, and at decision points” (Pezzulo, 2016, p. 2). There 
is another kind of internally produced neuronal sequence which is signified by a 
specific theta rhythm (8–12 Hz). The latter is activated when animals are engaged 
in decision tasks and when they are anticipating the consequences of their choices. 
More broadly, these internally generated sequences have been suggested as plausible 
neural correlates of “what-if” scenarios and forward-modelling processes (Johnson 
& Redish, 2007; Wikenheiser & Redish, 2015).

Relating these two complementary examples to the discussion on decoupled rep-
resentations, we can say that cognitive structures that support spatial navigation carry 
relevant information about the structure of the external environment. This informa-
tion plays an important role for the cognitive system as it can be further exploited to 
guide its behaviour even in the absence of external stimulation (or, in the case of rats, 
the so-called mental map can be used for finding an alternative path when the previ-
ously used path has been blocked).

So far, this characterisation of decoupling has focused on extreme cases (i.e., 
either completely decoupled or coupled). However, this overlooks that the degree to 
which one part causally influences another can vary. For instance, a mechanism com-
puting a weighted average will produce a representation of a value (i.e., the weighted 
average), and the result will be influenced to varying degrees by different parts of the 
mechanism (i.e., the values that are weighted and averaged). The degree to which a 

5  Note that Tolman’s findings have failed to replicate in certain cases (e.g., Gentry et al., 1947; Wilson & 
Wilson, 2018). Therefore, we take Tolman’s findings only as an example to motivate our reasoning later 
on and complement it with more recent, reliable findings in support of decoupling.
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given part affects the result will be specified by the weight associated with the repre-
sented value of that part. In this example, the causal influence (and hence, coupling), 
is proportional to the relative weight associated with the represented value. We will 
come back to the point that causal coupling comes in degrees in the later sections.

4.3  Existing accounts of gradual representations

Before unpacking our “gradual features hypothesis” we provide a brief overview 
of accounts according to which either representations or representational features 
are gradual. This will enable us to point out how our proposal differs from existing 
accounts and to clarify what our proposal entails (and what it does not).

To the best of our knowledge, Clark and Toribio (1994) were the first to propose 
that representations might be gradual. In trying to reconciliate anti-representational 
with representational accounts, Clark and Toribio argue for a “rich continuum of 
degrees and types of representationality” (Clark & Toribio, 1994, p. 1). They sug-
gest that at the one end of the continuum there are cognitive processes that arise as a 
result of a direct coupling between the cognitive system and the environment (hence 
are barely representational) and at the other end of the continuum there are cogni-
tive processes that function independently of external stimulation and are as such 
fully dependent on internal representations. The continuum, according to Clark and 
Toribio (1994), is differentiated based on the computational effort needed to trans-
form the sensory input into a form usable by a cognitive system.

In contrast to Clark and Toribio (1994), we shall argue that the benefit of taking 
gradation seriously is not primarily that it allows a synthesis of representationalist 
and anti-representationalist accounts, but rather that it puts gradual features of struc-
tural representations at the centre stage. In particular, we do not argue that represen-
tationality itself is gradual, but only that the ability to flexibly modulate degrees of 
representational features is explanatorily relevant.

In his seminal paper on the nature of representations in PP Gładziejewski (2016) 
notes that detachment can be gradual: internal models guide action in a similar way as 
an electronic map connected to the GPS system that is guiding a car. The action guid-
ance achieved by means of an internal model though is attuned to the environmental 
input at all times. Therefore, even though it might appear as if the cognitive sys-
tem operates based on the internally driven processes, these processes are constantly 
being updated on the basis of external input. Hence, internal models do not operate 
in a fully detached manner due to them receiving a “constant corrective feedback” 
to use Gładziejewski’s term. In a related vein, Gładziejewski and Miłkowski (2017) 
argue that: “[…] structural similarity can be easily construed as a gradable relation, 
depending on the degree to which the structure of one relatum actually preserves the 
structure of the another [sic] relatum (see note 1; for another account that explicitly 
defines similarity as coming in degrees, see: Tversky, 1977; Weisberg, 2013). This 
way we can treat X as capable of taking a range of values {X1, X2,…, Xn}, where 
each increasing value corresponds to an increased degree of similarity between the 
vehicle and the target. Therefore, between the lack of any similarity and a complete 
structural indistinguishability, there is a range of intermediate possibilities” (2017, p. 
342). The mechanisms that regulate gradation of structural similarity (Gładziejewski 

469



D. Rutar et al.

1 3

& Miłkowski, 2017) and detachment (Gładziejewski, 2016), as well as the explana-
tory value of this gradual idea, are not explored further in either of the two accounts 
therefore leaving the “gradual features hypothesis” with a familiar but underspecified 
status.

A slightly different take on the gradual argument has also been proposed. Namely, 
some authors have suggested that structural representations and detectors are not 
different in kind but only gradually differ in terms of their state space granularity 
(Morgan, 2014; Nirshberg & Shapiro, 2021; see the following section for more on 
state space granularity). According to this view, detectors are very simple structural 
representations. An example would be a collision warning system in a car that sig-
nals the presence of a potential collision object in front of the car. A simple system 
could generate a single sound whenever a collision object is within a certain distance 
from the car (depending on the car’s current speed). Such a system would function 
as a detector that indicates only that there is a collision object. A more sophisticated 
system could use different types of sound (say, a louder or higher-pitched sound if the 
collision object is closer to the car). Such a system would have a higher state space 
granularity (see below). Within the state space, differences between the volume (and 
pitch) of the sounds would correspond to differences in the spatial distance between 
the car and the collision object. At some point, the structural similarity (and state 
space granularity) could be sufficiently rich, so as to render the system a genuine 
structural representation.

Although this emphasises that the level of state space granularity is relevant to 
understanding structural representations, it does not amount to the claim that regulat-
ing state space granularity (and other gradual features of structural representations) is 
explanatorily relevant. We will clarify and argue for this point in more detail below. 
As a guide for intuition, consider the following extension of the example just given. 
If the same system is also used to aid during parking, it is useful to signal the distance 
to other parked cars in a more fine-grained manner (i.e., increasing state-space granu-
larity), because that enables the driver to use the available space more efficiently. By 
contrast, an increased state-space granularity at high speed on a highway would be 
unnecessary or even confusing.

5  Thesis: Representational features are gradual, and their gradation 
underlies behavioural success of cognitive systems

In the following, we unpack the main thesis of our paper: representational features 
are gradual, and gradation has important implications for the behavioural success 
of cognitive systems. We first provide an account of what PP mechanisms might 
underlie representational features (i.e., structural similarity and decoupling) and then 
we show that representational features are gradual. Next, we argue that representa-
tional features, in virtue of being gradual, underlie behavioural success of cognitive 
systems.
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5.1  Gradual structural similarity

5.1.1  Regulating state space granularity and number of exploitable relations as 
mechanisms of gradual structural similarity

In general, structural similarity pertains to a representation sharing the structure 
with a target object where the preserved structure is exploitable (Shea, 2007, 2018; 
Gładziejewski, 2016). In the example of a cartographic map, the preservation of 
structural properties is most readily explained in terms of spatial relations between 
points on the map (which resemble spatial relations between points in the represented 
territory). Call such structural properties “exploitable internal relations”. One way of 
increasing structural similarity – or, rather, level of detail – is to increase the number 
of exploitable internal relations (that track relations in the representational target). In 
addition to this, structural similarity can also be defined in terms of another dimen-
sion, i.e., state space granularity, which we describe next.

Traditionally, generative models in PP have been operationalised in terms of 
Gaussian densities (or, more generally, continuous distributions). However, recently 
Friston and colleagues (2015) introduced a distinction between models that use 
Gaussian densities and models that use categorical probability distributions. Tak-
ing this on board, Kwisthout and van Rooij (2015) argued that a crucial difference 
between the two is that in categorical distributions the notion of granularity plays 
a vital role. While the amount of precision in a Gaussian distribution is sufficiently 
described by its variance, precision in categorical distributions must be described in 
terms of entropy (Shannon, 1948) – where the latter is a function of variance and state 
space granularity. It is the granularity of a probability distribution that specifies the 
level of detail of that distribution (Kwisthout & van Rooij, 2015). By clustering the 
values that a given distribution can take, the level of detail is changing. That is, the 
more clusters the distribution has, the more detailed it is and the other way around. 
The level of detail is a context-dependent property. Which level of detail will be 
recognised in the model and further utilised in a particular context is determined by 
context-dependent hyperparameters (Kwisthout et al., 2017)6.

Below, we provide a practical example that illustrates the notion of state space 
granularity. Imagine you are meeting a friend in a cafeteria and the only thing that 
you know about her drinking preferences is that she likes drinking tea. In making a 
guess about her order you can employ two strategies: you can either increase the state 
space granularity of your prediction by predicting that she will order green jasmine 
tea or decrease the state space granularity by predicting that she will drink tea. In 
other words, you can sample your guess from models that are more or less specific. 

6  Hyperparameters refer to several different phenomena. Here, we have one particular notion of hyper-
parameters in mind. Hyperparameters in the context of the above paragraph are involved in determining 
the appropriate level of detail of predictions/hypotheses (Kwisthout et al., 2017). Other notions of hyper-
parameters refer to the following; they “represent the information the beliefs are based on; that is, they 
describe probability densities over the probabilities that indicate how confident the agents are that the 
probability of the belief is correct” (Otworowska et al., 2018, p. 13). Yet another way of thinking about 
hyperparameters is as hyperparameters regulating expected precision of prediction error. Different concep-
tualisations of hyperparameters are independent of one another.
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A specific model has a high state space granularity (bottom part of the flow chart in 
Fig. 1) and a less specific model has lower state space granularity (top part of the flow 
chart in Fig. 1).

Note that it is important not to confuse the level of detail with accuracy as they 
are orthogonal terms.7 Whilst the level of detail depends on the grain at which the 
representation can structurally resemble its target (how many relations could in prin-
ciple be encoded in the representation), accuracy corresponds to how many relations 
are correctly preserved between the representation and the target. To showcase the 
difference between accuracy and the level of detail consider again the tea example 
above. In one scenario you make a prediction about your friend’s order at a high 
level of detail, so you predict that she will drink green jasmine tea. It turns out that 
she will in fact have black tea with vanilla. Despite the fact that your prediction had 
a high level of detail it was not accurate. In another scenario you make a prediction 
at a low level of detail so you only predict that your friend will order tea. She does 
indeed order tea, a black tea with vanilla. Although your prediction was low in detail 
it was entirely accurate.

Next, we provide an example showing that two dimensions of structural similarity, 
i.e., state space granularity and the number of exploitable internal relations, are dis-
tinct in important ways and hence cannot be subsumed by one another.8 Imagine two 
cartographic maps x and y which both depict locations of five cities (Fig. 2). Spatial 
relations between the cities as well as differences in their size are the same on both 
maps. The one difference between the two maps is that in map y the variable colour 
comes in three different values whereas colour in map x comes only in two values – 
the former has a higher level of detail compared to the latter, and in this sense can be 

7  We thank an anonymous reviewer for suggesting to disentangle accuracy from the level of detail.
8  Using the terminology of Godfrey-Smith (2017), the number of exploitable relations is a feature of an 
organized sign system with “syntax”, whereas state space granularity can also be a feature of an organized 
sign system without “syntax”.

Fig. 1  Visual depiction of different levels of state space granularity. Grey boxes present hypotheses/predic-
tions that are increasing in their state space granularity.
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regarded as more “structurally similar” to the actual city. In both maps the darkness 
of the colour indicates the size of the city (the darker, the bigger). If we compare cit-
ies D and E on both maps, the representations are the same in terms of the number of 
exploitable internal spatial relations. Based on both maps we can also infer that city 
D is bigger than city E. However, map y conveys more information about the cities 
than map x; based on map y we can infer that city D is indeed big but not the biggest 
(city A and B are bigger). Map x does not afford this information as it is only able to 
differentiate between small and big cities but nothing in between.

In sum, structural similarity can be defined with regards to two dimensions. On the 
one hand, it can be thought of in terms of relations between parts of a representational 
vehicle that are used in a way that is conducive to the success of a cognitive system. 
This is what we call the number of exploitable internal relations. On the other hand, 
the parts of a structural representation can themselves carry information for the sys-
tem, independently of relations to other parts that are currently tokened. This is what 
we call state space granularity. Both of these features are gradual, i.e., a structural 
representation can have a higher or lower state space granularity than another repre-
sentation, and the number of exploitable internal relations can also vary.

5.1.2  Empirical evidence for the regulation of state space granularity in the brain

Empirical evidence on the regulation of state space regularity in the brain is scarce. 
One suggestion has been recently put forward that the 5-HT2A receptors in layer V 
pyramidal neurons are involved in the regulation of the level of detail (Pink-Hashkes 
et al., 2017). Hyper-activation of the said receptors has been proposed to lead to the 
so-called decomposition of predictions, i.e., a broad categorical prediction is broken 
down into sub-categories (Pink-Hashkes et al., 2017). So called “decomposed predic-

Fig. 2  State space granularity and the number of exploitable relations are distinct concepts. The number of 
exploitable internal relations in maps y and map x is the same. However, they are different in terms of the 
state space granularity, i.e., map y is more detailed than map x in this respect.
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tions” originate in the prefrontal, parietal and somatosensory cortex and are fed back 
to the lower levels of the cortical hierarchy.

5.2  Gradual decoupling

Here, we describe two ways in which neural representations can differ in their degree 
of decoupling. On the one hand, some brain areas are farther away from the sensory 
periphery than others and are therefore less directly affected by the environment, 
whereas other brain areas are closer to the sensory periphery. In other words, there are 
neural structures whose activation (and hence their causal involvement in the cogni-
tive system’s behaviour) is largely dependent on external stimuli (e.g., retina), but 
also representations whose activation relies on external stimulation only to a small 
degree (e.g., prefrontal cortex). We provide some empirical evidence that supports 
the idea that there are differences in how much neural structures depend on internal 
vs. external stimulation. This provides a “default” decoupling of each neural struc-
ture, which broadly determines the range of their decoupling.9 On the other hand, the 
decoupling of some neural representations can be further regulated through precision 
weighting of prediction error. The challenge then is to show that neural structures at 
different levels of the hierarchical generative model are affected by precision weight-
ing – the ones that are will have this extra flexibility with regards to decoupling. We 
provide empirical evidence in support of both of these forms of gradual decoupling.

5.2.1  Different brain areas afford different degrees of decoupling

Retina.
While one might think that the retina only receives and relays visual sensory sig-

nals, one of its main functions is actually to filter the incoming signals (lateral and 
temporal inhibition; for an overview of information processing in retina see Dowl-
ing, 2012). Here, we discuss lateral inhibition through the prism of predictive cod-
ing, which is used as a procedure that reduces the signal amplitude by getting rid of 
predictable and therefore redundant elements in the sensory stimulus. In that way 
sensory signals coming to the system are easily recognisable from the intrinsic noise 
(which limits information capacity of neurons) coming from the central nervous sys-
tem (Srinivasan et al., 1982). Lateral inhibition reduces the range of inputs presented 
to a neuron by making use of the correlation between adjacent points in a visual 
scene. The signal from the centre of the receptive field is estimated based on the 
weighted linear sum of the signals from the surrounding receptors. The weighted 

9  By construing decoupling in like this, we move away from thinking about de-coupling in terms of causa-
tion (i.e., we move away from the idea that a sensory stimulus either causes or does not cause activation 
of a cognitive structure, or, conversely, from the idea that a structure either causes behaviour or not). 
We argue instead that decoupling should be understood in terms of correlation, which may, but does not 
always, involve causation. Activation of a cognitive structure is more or less correlated with external/inter-
nal stimulation even if there is a causal nexus in between. In other words, internally/externally generated 
stimulation can have a more or less direct impact on the generation of behaviour; the mere presence of a 
causal connection is compatible with higher or lower degrees of correlation.
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sum defines an inhibitory surrounding that is subtracted from the arriving signal and 
thereby minimises its amplitude (Srinivasan et al., 1982).

What the above example showcases is that even the activity of structures involved 
in early visual processing (e.g., retina) is not entirely externally driven. Namely, the 
interneurons compute the estimate of the coming signal based on the activity of the 
surrounding neurons and their activity is also influenced by the top-down internal 
noise. Still, early visual processing largely depends on the external sensory influx. 
Therefore, we suggest that the retina is an example of a structure that is very low on 
the decoupling continuum.

Primary visual cortex.
One example of a neural structure that has a moderate degree of decoupling is V1, 

also known as primary visual cortex. Whilst traditionally thought of as being entirely 
dependent on external stimulation, it has been recently proposed that neural activity 
at V1 can be partly explained by the top-down processing. In other words, V1 can 
get activated in the absence of visual sensory stimulation (Petro, 2016; Muckli et 
al., 2015; Edwards et al., 2017). In their experiment, Chong and colleagues (2016) 
used inducer stimuli to showcase that the motion prediction that was projected back 
to V1 contained information about textural detail. The information that they could 
read out from V1 was about an object’s rotational movement as it moved through 
the visual field. Importantly though, sensory input that the brain received did not 
contain information about the rotation. Instead, the rotational information was made 
out by the brain based on its prior experience and accumulated knowledge. Drawing 
on these experimental findings Petro and colleagues (2016) suggest that the activity 
of V1 depends on two information streams; external (i.e., it carries information com-
ing from the environment) and internal (i.e., it carries internally generated signals) 
stream. The external stream provides highly detailed input coming from the retina 
that is processed with high spatial acuity. The internal stream carries more abstract 
information and provides less precise, internally generated cortical feedback.

Default mode network.
The default mode network constitutes an example of a highly decoupled neural 

structure. The default mode network includes the medial temporal lobe, a subsystem 
of the medial prefrontal, posterior cingulate cortex, and inferior parietal lobe (Buck-
ner et al., 2008). It is well-known for being active when people are not attending to 
the external world (Shulman et al., 1997; Mazoyer et al., 2001; Raichle et al., 2001). 
It is thus involved in more or less temporally distant internally simulated cognitive 
processes such as daydreaming, imagining, mind-wandering, thinking about the past 
and planning the future (e.g., Buckner & Carroll, 2007; Buckner et al., 2008). Impor-
tant for our thesis is the fact that the brain areas constitutive of the default brain 
network are, at all points, highly influenced by top-down expectations (since the said 
network is activated in the absence of attention to sensory stimulation).

More generally, activity of the brain areas that are associated with higher order 
cognitive functioning relies to a large extent on prior knowledge and experience, thus 
being less dependent on a direct sensory stimulation. Therefore, we make a schematic 
suggestion that the brain areas involved in higher cognition (such as brain areas con-
stitutive of the default mode network) are largely decoupled. This puts them on the 
other end of the decoupling continuum.
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The examples above are by no means supposed to represent an exhaustive over-
view of the decoupling continuum. Rather, they serve as an illustration of how to 
think about a continuum of “default decoupling” and what differences in the degree 
of decoupling pertain to.

5.2.2  Precision weighting of prediction error as a mechanism of gradual decoupling

Clark (2013b) suggests that precision weighting of proprioceptive prediction error 
could be involved in the regulation of offline and online cognitive processes. When 
we imagine an action our motor actions are “entrained by proprioceptive expecta-
tions and cannot here ensue” (Clark, 2013b, p. 3), whereas all other parts of the 
generative model are ready to engage in action. This means that during imagining, 
the motor parts of the generative model get activated as if the action was carried 
out. What blocks the action and hence enables imagination is the weight of pro-
prioceptive prediction error being dampened. By setting the precision of propriocep-
tive prediction error low, a cognitive system is free to deploy a generative model 
offline. Only if exteroceptive prediction error is low (attenuated) in relation to the 
proprioceptive prediction error, can proprioceptive prediction error be sustained and 
ultimately decreased by moving. Clark (2016, p. 158) concludes: “For according 
to PP it is the minimisation of proprioceptive prediction error that directly drives 
our own actions, as those high-precision predictions become fulfilled by the motor 
plan.” This suggests that certain prediction error units that are given increased weight 
become likely candidates for driving response, learning, and action. Conversely, if 
proprioceptive prediction errors have low precision weights (relative to other sensory 
prediction errors), action is inhibited and a cognitive system can engage in offline 
motor simulations.

Whilst Clark’s (2013b) proposal is about the role of precision weighted proprio-
ceptive prediction error, we argue that precision weighting of any type prediction 
error has a similar function. That is, by downplaying the effect of prediction error at 
a given level, a cognitive system disengages from sensory stimulation, such that rep-
resentations at that level are relatively more strongly affected by top-down signals. 
Important for our argument about the role of precision weighting in decoupling is that 
precision weighting plays an important role in deciding to what degree a cognitive 
system is free to disengage from the sensory stimulation and rely on internal simula-
tion instead. We provide concrete examples (i.e., echopraxia) of this under 5.3.

5.2.3  Empirical evidence for precision weighting of prediction error in the brain

Empirical evidence of precision weighted prediction error has been found in differ-
ent brain areas. Pulvinar, the largest nucleus of the thalamus, has been suggested to 
encode and regulate expected precision of prediction errors at different levels of the 
cortical hierarchy (Kanai et al., 2015). The pulvinar has specifically strong connectiv-
ity with the visual cortex. Saalmann and colleagues (2012) found direct evidence for 
the pulvinar’s key role in precision weighting in their study of the spike-field coher-
ence. They showed that the spike field coherence between the neurons of the pulvinar 
and alpha oscillations in V4 and TEO (brain area situated at the junction between 
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the occipital and temporal lobes) was amplified when attention was allocated to the 
receptive field of the pulvinar neurons. As the authors point out, this “provides empir-
ical evidence that the pulvinar serves as a gain control system […] to adjust effec-
tive synaptic gain transiently across cortical regions [Crick, 1984; Saalman et al., 
2012]” (Kanai et al., 2015, p. 8). Another study (Purushothaman et al., 2012) found 
that the inactivity of the lateral pulvinar suppressed the activity of the V1 neurons in 
response to the visual input. Conversely, excitation of the pulvinar neurons increased 
the responsiveness of the V1 neurons. Evidence for the precision-weighted predic-
tion errors has also been found in the cortical areas such as superior frontal cortex 
(Haarsma et al., 2020). The activity of the dopaminergic neuromodulatory system 
mediates the precision weighting in these cortical areas. Conversely, dysfunctions 
in the dopaminergic neuromodulatory system result in impaired precision-weighing 
in these areas and has been reported to result in psychotic symptoms (Adams et al., 
2013; Fletcher et al., 2009).

5.3  Behavioural performance depends on the gradation of representational 
features

Next, we present a few examples in which regulating either decoupling (via precision 
weighting of prediction error) or structural similarity (via state space granularity) 
is compromised and we discuss the effects this has on behavioural performance of 
cognitive systems. Given the importance of representational features for behavioural 
success, we propose that a significant part of the explanatory work is done by deter-
mining how representational features are regulated.

The first example is given by echopraxia (involuntary movements). Normally, 
when observing others, we are able to refrain from involuntarily mimicking them. 
Mirror neurons that are involved in action observation can be divided into two kinds. 
The first kind responds to action and action observation and the second kind is acti-
vated by action and is suppressed during action observation (Kraskov et al., 2009). 
Action observation goes along with lowering precision in units that thereby attenuate 
spinal prediction error (Friston et al., 2014). This in turn will attenuate spinal reflexes 
and preclude echopraxia (i.e., motor representations will be decoupled; Vigneswaran 
et al., 2013; Shipp et al., 2013). Conversely, if precision of prediction error was acci-
dentally set high when observing an action, the latter would turn into an actual action.

An example where regulating the level of detail is of primary importance is devel-
opment of (category) learning in children. Children’s category learning follows a 
U-shaped curve (e.g., Siegler, 2004). The U-shaped learning denotes learning where 
a child seems to have correctly acquired some pieces of knowledge initially thus 
making error-free categorical predictions; this phase is then followed by a period 
where a child is making incorrect categorical predictions (a period known as over-
generalisation); the U-shaped learning is concluded by a child eventually learning 
to make categorical predictions at the right level of detail by self-correcting. What 
explains the curious case of children being able to make predictions at the right level 
of detail initially is that, if the learning data set is small enough, they “can simply 
memorize individual data points in addition to choosing among hypotheses about 
them” (Perfors et al., 2011, p. 11). At the end of the U-shaped learning, however, 
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children have acquired a theory that equips them with a true understanding of the 
entities it consists of. Hence, children are able to correctly adjust the level of detail 
of categorical predictions based on the context once they have undergone this devel-
opmental process.

In the previous section we explained how the 5-HT2A receptors in layer V pyra-
midal neurons are involved in regulating of the level of detail (Pink-Hashkes et al., 
2017). Specifically, hyperactivation of the cells in layer V is supposed to decompose 
a broad prediction (that is encoded by this neural population) into an overly detailed 
prediction, i.e., “decomposed prediction”. Pink-Hashkes and colleagues further sug-
gest that the hyperactivation of the said receptors can explain various effects of psy-
chedelics, such as hallucinations, synaesthesia, “ego-death”, time dilation and more 
(Pink-Hashkes et al., 2017; Deane, 2020). Here is an example of how, according to 
Pink-Hashkes and colleagues’ proposal, psychedelics can lead to “decomposed pre-
dictions”. In comparison to normal predictions, they elicit larger prediction errors, 
which the brain attempts to minimise by continuously changing predictions. How-
ever, since these “decomposed predictions” remain overly detailed, large prediction 
errors will persist and the brain will not settle on a stable percept. Instead, objects and 
scenes will appear to rapidly change and morph (Pink-Hashkes et al., 2017, p. 2910).

The examples above illustrate how an inflexible or inappropriate regulation of 
the two representational features, decoupling and structural similarity via the pro-
posed PP mechanisms, can result in suboptimal behavioural performance. Substan-
tial involvement of representational features in behavioural performance of cognitive 
systems suggests that representational features bear an explanatory role.

6  Concluding remarks and future research

The main aim of the present paper was to examine gradual features of representations 
within the confinements of PP. We focused on two features of representations, struc-
tural similarity and decoupling, and identified candidate mechanisms that underlie 
their gradation. We argued that structural similarity can be analysed in terms of two, 
rather than one, dimension: number of exploitable internal relations and state space 
granularity. Both dimensions can take on different values and hence render struc-
tural similarity gradual. Furthermore, we argued that decoupling is gradual in two 
ways. First, we showed that different brain areas are involved in decoupled cognitive 
processes to a greater or lesser degree depending on their proximity to the sensory 
and motor periphery. Second, and more importantly, we argued that the degree of 
decoupling can be further regulated in some brain areas through precision weighting 
of prediction error. Finally, we argued that gradation of decoupling (via precision 
weighting) and gradation of structural similarity (via state space granularity) are con-
ducive to behavioural success.

Whilst the notion of representational gradation is not entirely novel (see Clark & 
Toribio, 1994; Gładziejewski & Miłkowski, 2017; Gładziejewski, 2016), our take on 
gradation is different from existing accounts and, crucially, extends them. First, we 
do not assume that representationality itself comes in degrees, in contrast to Clark 
and Toribio (1994), but rather argue that representational features are gradual. Hence, 
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the explanatory potential is carried by gradual representational features. Second, we 
provided potential mechanisms that are involved in the regulation of feature grada-
tion, and third, we have argued that representational gradation is related to behav-
ioural success of cognitive systems.

We have argued that distinguishing between degrees of representational features is 
not just a conceptual distinction. In our paper we put forward the idea that represen-
tational gradation has implications for the behavioural success of cognitive systems. 
Computational simulations could more formally nuance this idea. For example, we 
propose that representational features as cast in PP terms can be implemented in arti-
ficial agents where one group of agents is equipped with gradational representational 
features and the other one has representational features that are fixed. The task of 
agents would be two-fold, to survive in an artificial environment and to achieve a cer-
tain goal. The hypothesis following from our theoretical proposal is that agents that 
can dynamically change the degree to which representational features are expressed 
would be better off at surviving and achieving the goal than the ones that have fixed 
representational features.

Besides this, we propose that the next research step should be to explore what 
consequences our gradational account has for the debate on representations in (phi-
losophy of) cognitive science more generally. Although we have, as a background 
assumption, presupposed that the structures posited by PP play a genuinely rep-
resentational role, one might be able to make a case for the claim that the actual 
explanatory burden is carried by the degrees to which representational features are 
expressed, rather than by a representation itself. That is, one could argue that the 
regulation of structural similarity and of decoupling is explanatorily relevant, while 
denying that the regulation of these features contributes to genuine representational 
processes in the brain. For ease of exposition, we have described our gradational 
account as a contribution to a specific representationalist position (as defended by 
Gładziejewski, 2016). However, it may be equally valuable for non-representation-
alist interpretations of PP (Hutto & Myin, 2012; van Es & Myin, 2020; Nirshberg & 
Shapiro, 2021), as long as they agree that the regulation of structural similarity and 
decoupling plays an important role in understanding the performance of cognitive 
systems. Conversely, our account may also serve to refine existing representationalist 
interpretations of PP, for instance, by facilitating a nuanced account of the difference 
between structural representations and detectors (Nirshberg & Shapiro, 2021), or by 
offering conceptual tools to further clarify how structural representations can play 
a genuine representational role (thereby responding to Facchin, 2021b). Lastly, our 
account might even inspire new accounts of how representationality itself can come 
in degrees (in the spirit of Clark & Toribio, 1994), where the idea would be that the 
more granular and decoupled the more representation-like a cognitive structure is. To 
flesh out this proposal in detail, a full research program is needed. However, our goal 
here has been much more modest: we only hope to have shown that the regulation 
of structural similarity and decoupling is explanatorily relevant, and that PP offers a 
perspective through which these processes can be better understood.
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