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Abstract
Philosophers interested in the theoretical consequences of predictive processing 
often assume that predictive processing is an inferentialist and representational-
ist theory of cognition. More specifically, they assume that predictive processing 
revolves around approximated Bayesian inferences drawn by inverting a generative 
model. Generative models, in turn, are said to be structural representations: repre-
sentational vehicles that represent their targets by being structurally similar to them. 
Here, I challenge this assumption, claiming that, at present, it lacks an adequate 
justification. I examine the only argument offered to establish that generative mod-
els are structural representations, and argue that it does not substantiate the desired 
conclusion. Having so done, I consider a number of alternative arguments aimed 
at showing that the relevant structural similarity obtains, and argue that all these 
arguments are unconvincing for a variety of reasons. I then conclude the paper by 
briefly highlighting three themes that might be relevant for further investigation on 
the matter.

Keywords Structural representations · Antirepresentationalism · Predictive 
processing · Representation wars · Generative models

1 Introduction

Predictive processing is a neurocomputational framework surrounded by a number 
of philosophical disputes. Some of these disputes concern foundational matters: is 
realism about the theoretical posits of predictive processing warranted (e.g. Colombo 
et al. 2018)? And, if yes, are these posits representations (e.g. Kirchhoff and Rober-
ston 2018)? Other controversies concern what predictive processing (henceforth PP) 
entails: does PP support an internalist or externalist view of the mind (Clark, 2017; 
Hohwy, 2016)? Does it provide a complete account of cognition, or is it unable to 
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account for the systematic nature of human thought and the curiosity so many intel-
ligent animals blatantly manifest (Sims, 2017; Williams, 2018a)? Is consciousness 
really just the brain’s best guess (Dolega & Dewhurst, 2020; Hohwy, 2013)?

In this latter kind of disputes it is often assumed that PP is an inferentialist and 
representationalist theory of cognition. Rendered technically, the assumption is that 
PP revolves around approximated Bayesian inferences drawn by inverting a gen-
erative model operating under a predictive coding message-passing scheme (Clark, 
2013; Hohwy, 2013). More mundanely, it is assumed that PP revolves around statis-
tical inferences performed leveraging probabilistic models of the world. Models, in 
turn, are understood as structural representations: vehicles that represent their tar-
gets by mirroring the targets’ relational structure (e.g. Williams, 2017, 2018b). The 
tie between predictive processing and models runs so deep that some have suggested 
that predictive processing would not be humanly intelligible without them (Clark, 
2015).

Here, I challenge this assumption. I claim that the only1 argument offered to 
identify generative models with structural representations (Gładziejewski, 2016) is 
flawed, and that it cannot be easily ameliorated. By doing so, I hope to bring a small 
contribution to the disputes surrounding the philosophical foundations of PP.

The essay is structured as follows. In Sect. 2, I introduce the theoretical apparatus 
of PP. In Sect. 3, I introduce structural representations, and summarize the argument 
Gładziejewski offers to identify generative models with them. In Sect. 4, I turn from 
exposition to criticism, showing a flaw in Gładziejewski’s argument, and claiming 
that it cannot be easily adjusted. A brief concluding paragraph follows.

2  A Brief Introduction to Predictive Processing

Here, I provide a short introduction to PP. Since PP is now largely known, I will 
sketch only its most fundamental aspects.2

To successfully orchestrate behavior, an agent’s brain must first determine in 
which environmental situation the agent is embedded; that is, what are the environ-
mental causes of the energies impacting the agent’s transducers. PP assumes that 
this task is burdened with uncertainty, as sensory states are under-determined in 
respect to their causes (Friston, 2005).3 Depending on the context, different causes 
might generate similar sensory states, just as a single object can generate an unruly 
manifold of different inputs.

To cope with this uncertainty, PP suggests that the brain resorts to a form of 
Bayesian inference, as it yields an optimal way to determine the most likely cause 

1 A reader might contest this, noting that numerous accounts of generative models as structural represen-
tations have been offered (e.g. Kiefer and Hohwy 2018, 2019; Wiese 2018). I am aware of the existence 
of such accounts. However, to me they all seem to presuppose the success of Gładziejewski’s (2016) 
original argument, to then improve on it in various ways.
2 See (Clark 2013; 2016; Hohwy 2013; Tani 2016) for more introductory material.
3 Notice that this is a theoretical assumption, that can be theoretically contested (e.g. Orlandi, 2016).
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of a sensory state, given the incoming input and some prior knowledge of how envi-
ronmental cause generate sensory states (Yuille and Kernsten 2006; Hohwy, 2013, 
pp. 13–40). Importantly, since exact Bayesian inferences are often computationally 
intractable, PP suggests that the brain approximates their results by inverting a gen-
erative model operating under a predictive coding processing regime.4

Generative models are data structures capturing the relations holding between 
some observable data (here, sensory states) and their hidden causes (here, worldly 
objects). These models are said to be generative, as the knowledge they embody can 
be leveraged “from the top-down” to generate expected instances of data (Hinton, 
2007a; Danks, 2014, p. 44). Since real sensory states are generated by the nested 
interaction of multiple causes operating at different spatiotemporal scales, genera-
tive models need to be hierarchically organized to capture these nested causal rela-
tions. Importantly, this only requires that each hierarchical level lN treats the hierar-
chically lower level lN-1 as a data source, capturing the regularities it displays (see 
Hinton, 2007b). Lastly, these models must be probabilistic, embodying their causal 
knowledge formatted in terms of the probability density functions that are required 
to approximate Bayesian inferences (e.g. Knill & Pouget, 2004).

Predictive coding is a message passing scheme which deploys generative mod-
els as follows (Huang & Rao, 2011; Rao & Ballard, 1999). With the exception of 
the bottommost level, each level lN of the model generates a prediction signal: an 
“expected” pattern of activity of lN-1, which is then conveyed to lN-1 through a set 
of descending connections. Hence, collectively, the levels of the model will gen-
erate a “downstream” flow of progressively spatiotemporally refined predictions 
about the incoming sensory inputs, ideally flowing from “higher” associative areas 
to primary sensory cortices (see Mesulam, 2008). As this signal is received, each 
level contrasts it with its own actual activity (or the incoming input in the case of 
the bottommost level), and computes the mismatch between the two. The magni-
tude of the mismatch, known as prediction error, is then conveyed “upwards”, from 
lN to lN+1, courtesy of a second set of ascending connections. As prediction error 
is received, each level changes the prediction signal conveyed downwards so as to 
minimize the incoming prediction error. This process is then iterated until the entire 
hierarchy reaches a global minimum of prediction error. Since the states of the gen-
erative model that best minimize the error correspond to the most likely causes of 
the incoming sensory signal (given the body of knowledge the generative model 
encodes), minimizing prediction error inverts the generative model, mapping the 
signal onto its most likely causes, implicitly realizing a form of Bayesian inference 
(Clark, 2013, 2016; Hohwy, 2013, 2019; Kiefer & Hohwy, 2019).

This crude sketch calls for significant amendments. Firstly, it is silent upon lat-
eral connections, which allow different, explicitly coded, hypotheses to compete in 

4 Importantly, model inversion is not essentially an approximated process. So, by saying that a genera-
tive model is inverted one has not yet shown how the intractability problem is solved. Since the technical 
details are fairly complex (see Bogacz, 2017) and will not matter for my argument, I will not sketch them 
here. An anonymous referee has my gratitude for having noticed this issue.
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the interpretation of incoming data (Friston, 2005).5 It is also silent on the expected 
precision of the incoming signals, which constantly modulates the message passing, 
determining the “impact” of error signals (Hohwy, 2013, pp. 59–74; Clark, 2016, 
pp. 53–82). Yet, the most significant amendment this sketch needs is the following: 
this mechanism is not just a mechanism of perception. It is also the engine of action 
(Hohwy, 2013, pp. 75–96; Friston, 2013a; Clark, 2016, pp. 111–137). To see how, 
consider the following two points.

First: prediction error minimization can occur under two directions of fit (Shea, 
2013). One can change the predictions to make them fit the input, as sketched above. 
But one can also “keep the predictions still”, and force the input to fit them. Sec-
ondly, given that the agent’s body is, just like the external world, a source of sensory 
signals (and given that these two sources interact: moving towards an object will 
change the stimuli the object generates), the generative model must also model the 
agent’s body (Hohwy, 2015). Mashing these two observations together yields the 
gist of how PP accounts for action: agents act by predicting specific bodily signals, 
to then cancel out the error relative to these predictions through movement (Adams, 
2013). Actions appear thus to be generated by self-fulfilling predictions.

PP thus casts action and perception as two complementary sides of the same 
computational process of prediction error minimization. Given that processes of 
error minimization are inferential processes, as demonstrated by the brief analysis 
of the account of perception PP offers, this means that action is an inferential pro-
cess too.6 This is why, in the PP literature, action is referred to as active inference. 
More specifically, an agent engaged in active inference tests its model of the world, 
seeking sensory evidence to confirm the predictions licensed by that model (Hohwy, 
2015, 2016, 2017, 2018).

Importantly, however,active inference has a broader scope than action as usu-
ally understood (i.e. bodily movements fulfilling one’s intentions). Nothing obliges 
the self-confirming expectations involved in active inference to be proprioceptive 
expectations, to be confirmed by bodily movements. They might be visual (i.e. 
exteroceptive) predictions, and elicit saccades (Friston et al. 2010). Or they might 
be interoceptive predictions, servicing an agent’s homeostatic control (Seth, 2015) 
and emotional regulation (Seth & Friston, 2016). From this perspective, prediction 
error minimization is not primarily a tool for accurate perception and goal-directed 
action. Rather, it appears as a mean to the more fundamental end of maintaining an 
agent within its physiological bounds of viability. This line of reasoning connects PP 
to an ambitious framework in theoretical biology, namely the free energy principle 
(see Friston, 2013b, 2019; Allen & Friston, 2018). But the free energy principle will 
not be considered here,7 and the sketch of PP just proposed seems a sufficient intro-
duction, given the task at hand.

6 And in fact, according to PP, action too requires the inversion of a generative model (see Friston 2011).
7 This is not entirely correct: some aspects of the free energy principle, namely the ones most related to 
neuroscience, will be considered here. But since these aspects tend to boil down to PP (see Friston, 2009; 
2010), I do not think I need to explicitly discuss the free energy principle here.

5 Many thanks to the anonymous reviewer who noticed that the original formulation of this point was 
too strong.
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In the next section, I briefly introduce structural representations and then sum-
marize Gładziejewski’s (2016) argument to identify generative models with them.

3  Structural Representations and Predictive Processing

3.1  Structural Representations

As hinted at in the introduction, structural representations are representations whose 
vehicles represent their targets by mimicking the inner relational structure of the tar-
gets. Consider, for instance, a cartographic map. It might depict a gulf being north 
of an isle by placing a certain element, corresponding to the gulf, above a second 
element, corresponding to the isle. Importantly, the PP literature on structural rep-
resentations (e.g. Dolega, 2017; Hohwy, 2020; Kiefer & Hohwy, 2018, 2019; Ram-
stead et al. 2019; Wiese, 2017, 2018; Williams, 2017) points to a single formalized 
account of structural representations; namely Gładziejewski’s (2015, 2016) account. 
According to Gładziejewski:

A state R of a system S is a structural representation of a target T only if:

(a) R is structurally similar to T; &
(b) R guides S’s action aimed at T; &
(c) R can satisfy (b) when decoupled from T; &
(d) S can detect the representational error of R

Each point calls for clarification.
Point (a) clarifies that structural representations are iconic: their representational 

properties are (at least partially) grounded in the similarity holding between them 
and their targets. Yet notice that the relevant kind of similarity mentioned in (a) is 
structural similarity. The relevant8 definition of structural similarity is provided in 
(O’Brien and Opie 2004, p. 11):

Suppose  SV=(V,ℜV) is a system comprising of a set V of objects, and a set ℜV 
of relations defined on the members of V. The objects in V may be conceptual 
or concrete; the relations in ℜV may be spatial, causal, structural, inferential, 
and so on. […] We will say that there is a second-order resemblance between 
two systems  SV=(V,ℜV) and  SO=(O,ℜO) if, for at least some objects in V and 
some relations in ℜV, there is a one-to-one mapping from V to O and a one-to-

8 Here, “relevant” means “the one adopted by Gładziejewski”. Other definitions of structural similarity 
are surely possible (e.g. Shea, 2018, p. 117). However, since my focus here is Gładziejewski’s argument, 
I will stick to the definition Gładziejewski favors.
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one mapping from ℜV to ℜO, such that when a relation ℜV holds of objects in 
V, the corresponding relation ℜO holds of the corresponding objects in O.

There are several important things to highlight about this definition. One is that it 
can be straightforwardly applied to point (a) assuming that R is  SV and T is  SO. 
Another is that structural resemblance does not require first order resemblance to 
obtain. In fact, nothing in the definition requires  SV and  SO to have any common 
property. All they need to share is a common pattern of relations among their ele-
ments. Thirdly, the definition of structural similarity is tripartite. For  SV to be struc-
turally similar to  SO, it must be the case that: (i) at least some of the objects of which 
 SV and  SO are constituted map one-to-one onto each other; and (ii) at least some of 
the relations holding among these objects map one-to-one onto each other; and (iii) 
corresponding objects stand in corresponding relations in both  SV and  SO. Notice 
that (i) to (iii) need to obtain in conjunction. Notice, lastly, that (i) to (iii) obtaining 
in conjunction entails that  SV is semantically unambiguous in respect to  SO. By this 
I mean that once the mapping rule is known, it is always in principle possible to 
determine, for all elements of  SV mapping onto  SO, to which element of  SO each ele-
ment of  SV corresponds.

According to this definition, a structural similarity might hold among any two 
systems. However, the relevant structural similarity exhibited to satisfy point (a) 
must hold between a representational vehicle and the represented target (Kiefer & 
Hohwy, 2018; O’Brien, 2015). This is entailed by the definition of a structural rep-
resentation: a representational vehicle that represents a target by being structurally 
similar to it.9 It is thus immediately clear that the relevant structural similarity holds 
between the vehicle (the concrete particular doing the representing) and the repre-
sented target. Therefore, R must be a representational vehicle: a concrete particular 
encoding content.

Point (b) establishes that structural representations are causally responsi-
ble for S’s behavior (Gładziejewski & Miłkowski, 2017). Gładziejewski unpacks 
point (b) in terms of exploitable structural similarity (Gładziejewski, 2015, 2016; 
Gładziejewski & Miłkowski, 2017). Hence, the relevant structural similarity in (a) 
must be exploitable10 (Shea, 2014, 2018, p. 120). Put simply:

10 This might or might not require a representational consumer. Gładziejewski asserts that a consumer 
is necessary in his (2015); but his (2016) does not mention consumers. Shea’s definition of exploitable 
structural similarity (to which Gładziejewski adheres) does not require consumers, so I will skip them 
here. Notice that I adapted the notation in Shea’s definition for the sake of orthographic consistency.

9 Alternatively, structural representations can be defined as: “A collection of representations in which a 
relation on representational vehicles represents a relation on the entities they represent” (Shea, 2018, p. 
118). This definition stresses the important fact that each element of the structural representation is also 
a representational vehicle, whose content is determined by the relevant structural similarity in which it 
participates. For instance, each object on a map stands for (i.e. represents) an environmental landmark, 
and spatial relations among objects on a map represent spatial relations holding among the correspond-
ing landmarks. Notice that such a nesting of representational vehicles is entirely unproblematic: after all, 
both a sentence and the words forming it are representational vehicles in an entirely intelligible sense. 
Notice further that according to both Shea’s and Gładziejewski’s definition, the relevant structural repre-
sentation is the entire structure of related objects, rather than any single part of that structure. That is, the 
elements (V and ℜV) of a structural representation need not be, on their own, structural representations.
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R’s structural similarity with T is exploitable by S only if:

(iv) ℜV is a set of relations S’s downstream computational processing is systemati-
cally sensitive to; &

(v) ℜO and O are of significance to S

Condition (iv) requires S to be sensitive, in its downstream processing, to the rel-
evant relations ℜV in virtue of which R structurally resembles T. Given that com-
putational processing is a mechanical affair, this requires the relations in ℜV, or at 
least the objects in V upon which ℜV is defined, to causally impact the processing 
of S in some systematic way. Condition (v) requires R to structurally resemble a tar-
get that matters to S’s purposes; that is, a target which matters to S’s computational 
functioning.

Importantly, exploitable structural similarity is not a reflexive and symmetric 
relation (see Shea, 2014; Williams & Collings, 2017). For this reason, structural rep-
resentations are immune to the objections that were fatal to iconic representations 
defined in terms of first order resemblance (see Goodman, 1969, p. 3–4). Notice fur-
ther that insofar as exploitable structural similarity determines representational con-
tent, R’s content is not just causally efficacious (Gładziejewski & Miłkowski, 2017): 
it is also intrinsic to R’s material constitution as a representational vehicle (O’’Brien 
& Opie, 2001; O’Brien, 2015; Lee, 2018), as it is literally inscribed in the physical 
form of R.

Condition (c) captures the idea that genuine representations function as stand-ins 
for their targets, enabling S to perform processes aimed at these targets even when 
they are absent (Grush, 1997; Pezzulo, 2008; Webb, 2006). Gładziejewski unpacks 
this idea in terms of decouplability, defining it as follows (Gładziejewski, 2015): R 
is weakly decoupled from T only if R and T are in no causal contact; R is instead 
strongly decoupled from T only if S and T are in no causal contact.11

Lastly, (d) captures the idea that representations can be semantically evaluated by 
the systems leveraging them (see Bickhard, 1999). Importantly, representations are 
often semantically evaluated only indirectly, by assessing how successful they are in 
guiding action (Gładziejewski, 2015 pp. 78–79; 2016, p. 569). This indirect route of 
evaluation seems a natural outcome of exploitability. If, as (iv) entails, R’s content 
determines downstream processing in S (and eventually S’s behavior), then success-
ful behaviors directly depend on R’s content being correct (accurate and/or truthful). 
Pragmatic successes and failure thus appear as reliable indicators of the semantic 
status of a system’s representational resources.

Before moving forward, it is important to clarify the scope of Gładziejewski’s 
account of structural representations. Following Chemero (2009: pp. 67–68), it is 
possible to distinguish between an epistemic representationalist claim and a meta-
physical representationalist claim. Bluntly put, the epistemic representationalist 

11 In its original formulation, the definition of decouplability also mentions representational consumers 
(see Gładziejewski, 2015). Here, I omit them for the reasons given in the previous footnote.
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claim is the claim that our best explanations of cognition need to posit represen-
tations. The metaphysical representationalist claim is instead the claim that cogni-
tive systems contain components that really are representations. The two claims can 
in principle come apart. A fictionalist about representations, for instance, endorses 
the epistemic claim while denying the metaphysical one (Sprevak, 2013; Ramsey, 
2020; see also Downey, 2018 for a fictionalist interpretation of PP). Gładziejewski’s 
account of structural representations aims at vindicating both claims (Gładziejewski, 
2015: 70).12 Thus, his account of structural representations succeeds just in case the 
relevant representational posits of PP (i.e. generative models) satisfy features (a) to 
(d) and these are the relevant sort of structures identified as representation by our 
best explanatory practices.

3.2  Generative Models as Structural Representations.

Gładziejewski (2016) holds that his account of structural representations straight-
forwardly applies to generative models. The general outlook of his argument is as 
follows:

(P1) Items satisfying conditions (a) to (d) in conjunction are structural repre-
sentations
(P2) Generative models satisfy conditions (a) to (d) in conjunction; therefore
(C) Generative models are structural representations.

The argument needs little clarification. (P1) follows directly from the definition of 
structural representations. Thus, (P2) carries alone the whole weight of the argu-
ment. Here, I sketch the reasoning Gładziejewski provides to substantiate (P2). I will 
focus in particular on point (a), as it will be central in the following discussion.

To claim that generative models satisfy condition (a), Gładziejewski (2016, pp. 
571–573) reasons as follows. Generative models can formally be treated as Bayesian 
nets. Bayesian nets are directed acyclic graphs, and thus are graphs: sets of nodes 
connected by edges. And, in general, graphs are always structurally similar to their 
targets, because: (i) each node stands for one, and only one, environmental variable, 
(ii) the edges connecting the nodes map onto some relation holding among environ-
mental variables; and (iii) two nodes are connected by an edge if, and only if, the 
corresponding variables are in the relation of interest (see Danks, 2014, pp. 39–41). 
Notice that graphs are not just structurally similar to their targets: they are homo-
morphic to them; and homomorphism is a special, stronger, case of structural simi-
larity (see O’’Brien and Opie, 2004, p. 12).

Gładziejewski (2016, pp. 571–573) also suggests a specific way in which generative 
models structurally resemble their targets: the nodes of each hierarchical layer lN in the 
model map onto the likelihoods of the corresponding sensory states. Interlevel con-
nections between nodes mimic the temporal evolution of sensory states. Lastly, each 

12 This commitment seems shared by the majority of accounts of generative models as structural repre-
sentations (e.g. Kiefer and Hohwy, 2018; 2019; Wiese, 2018; Williams, 2017).
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node maps onto the prior probability of the corresponding worldly cause. The validity 
of the mapping on offer might be contested (e.g. Wiese, 2017), but the general point 
Gładziejewski is trying to make is clear: generative models are graphs and, as such, 
they are structurally similar to their targets. Therefore, they easily satisfy condition (a).

Point (b) is satisfied because generative models can engage in active inference. 
Recall: during active inference, the model “purposefully” generates a false prediction, 
to then cancel the prediction error it generates through movement. Thus, generative 
models are the engines of action, and guide behavior exactly as (b) requires.

To show that generative models satisfy condition (c), Gładziejewski exhibits the fol-
lowing evidence. To begin with, prediction error minimization seems responsible for a 
variety of paradigmatically offline cognitive phenomena, such as memory and imagina-
tion (e.g. Clark, 2016, pp. 84–107). Furthermore, early sensory cortices are involved in 
acts of imagination (e.g. Albers, 2013). Given that these cortices are commonly taken 
to be part of the neural machinery implementing our generative model, these studies 
suggest that generative models can in fact function when decoupled from their targets. 
Moreover, generative models must be counterfactually deep (Seth, 2014): to function 
effectively, they need to be able to predict how the sensory signals would change, were 
the agent to move in such-and-such a way. Given that counterfactual scenarios have no 
causal powers, our generative models will always encode some information about tar-
gets from which we are strongly decoupled.

Lastly, generative models clearly satisfy condition (d). When a hypothesis about the 
incoming sensory flow is selected and tested in active inference, the prediction error 
that the hypothesis generated is a measure of its inaccuracy. For instance, when I drink 
coffee, I (subpersonally) expect a flow of gustatory sensations which I try to bring 
about through the ingestion of coffee. But if the ingestion of the liquid does not bring 
about these sensations, the ensuing error will inform me that I’m in fact not drinking a 
coffee, prompting my generative model to revise its expectations. In this way, the error 
ensuing from failed active inferences indicates the representational inaccuracy of the 
tested hypothesis.

This concludes the exposition of Gładziejewski’s argument. In the next section, I 
will attack it, claiming that it does not succeed in equating generative models to struc-
tural representations.

4  Generative Models and Structural Representations: An Unjustified 
Identification

I divide this section in two sub-sections. The first section examines Gładziejewski’s 
argument for (a), and argues that the argument Gładziejewski offers fails in vindicating 
(a). The second section examines some alternative arguments for (a).

4.1  A Problem in Gładziejewski’s Argument for Point (a)

Recall Gładziejewski’s (2016) argument for (a). The argument is as follows: gen-
erative models can be thought of as Bayesian graphs, Bayesian graphs (and graphs 
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in general) are structurally similar to their targets; therefore, generative models are 
structurally similar to their targets. Therefore, (a) obtains.

Yet, I believe that this line of reasoning cannot vindicate (a). This is because the 
relevant structural similarity exhibited to vindicate (a) must hold between a repre-
sentational vehicle and a represented target. But graphical models are not repre-
sentational vehicles. So the argument Gładziejewski provides does not substantiate 
(a).13 Let me unpack.

If one is a realist about representations (as Gładziejewski surely is, see 
Gładziejewski, 2015, 2016; Gładziejewski & Miłkowski, 2017), then one is commit-
ted to the claim that representations are concrete particulars encoding content (e.g. 
Shea, 2018, pp. 25–43). Accordingly, structural representations are defined as con-
crete particulars (i.e. representational vehicles) which carry content in virtue of a 
relevant exploitable structural similarity that holds between them and their represen-
tational targets. They are representational vehicles that do the representing by struc-
turally resembling. Hence, the relevant structural similarity must hold between a 
representational vehicle (a concrete particular) and a represented target. This is why 
the content of structural representations is supposed to be intrinsic to their material 
constitution (e.g. O’Brien & Opie, 2001; O’Brien, 2015; Williams & Colling, 2017; 
Lee, 2018). Their content is intrinsic because it is inscribed in the physical form of 
the representational vehicle (the concrete particular that does the representing).

But Bayesian nets, and graphs in general, are mathematical objects (e.g. Danks, 
2014, p. 40; Leitgeb, 2020). They are defined as a finite set of nodes connected by 
a finite set of edges (Koski & Noble, 2009, p. 41) and sets, nodes and edges are 
mathematical objects. Mathematical objects might or might not be particulars (it is 
irrelevant for the purpose of the argument), but definitely are not concrete. So they 
cannot be representational vehicles, given that representational vehicles are concrete 
particulars. Hence, the structural similarity Gładziejewski exhibits cannot be used to 
vindicate point (a). It just isn’t what point (a) requires.

The same issue can also be appreciated from another point of view. Thus, con-
sider condition (b). Recall that, in order to satisfy (b), the relevant structural simi-
larity that satisfies (a) must be exploitable. Exploitability is partially defined by 
condition (iv): ℜV is a relation S’s downstream computational processing is sys-
tematically sensitive to. But, as clarified above, for a computation to be sensitive to 
ℜV, either ℜV or the objects V upon which ℜV is defined, must possess the relevant 
causal powers needed to systematically orient S’s processing. Computational pro-
cessing is, at the end of day, a physical affair, which is ultimately responsive only 
to the physical properties of the computational states (e.g. Williams & Collings, 
2017, p. 1945). However, the only structural similarity Gładziejewski provides to 
vindicate (a) is defined over mathematical objects. But mathematical objects do not 
seem to have the causal powers needed to systematically influence S’s downstream 

13 Notice that I’m not claiming that graphical models are not structurally similar to their targets. They 
are. As clarified above, a structural similarity might hold among any pair of entities. Yet, the relevant 
class of structural similarities that can be used to vindicate (a) is the class of structural similarities hold-
ing between representational vehicles and their targets; and graphs are not representational vehicles.
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processing. Hence, the structural similarity that Gładziejewski exhibits to satisfy (a) 
cannot be exploitable.

This places Gładziejewski’s line of argument in a dire situation: either the struc-
tural similarity he shows does not vindicate (a), or it does. But if it does, then (b) 
fails to obtain. Either way, the argument seems to fail, leaving the claim that genera-
tive models are structural representations unjustified.

As I understand it, the overall flaw in Gładziejewski’s argument is the following. 
Structural representations are defined in terms of their vehicle properties. Hence they 
should be identified at the level of the physical machinery doing the computation 
(what Marr would call the implementation level). Structural representations are bits 
of an information processing system literally resembling their target according to an 
appropriate mapping rule. But graphs, wherever they sit in the explanatory hierarchy 
of cognitive science, surely do not sit at the level of the physical machinery doing 
the computing (Danks, 2014, pp. 13–37; 218–221). Hence, Gładziejewski’s argu-
ment seems to be pitched at the wrong level of the relevant explanatory hierarchy. 
For this reason, I conclude that Gładziejewski’s argument does not justify the claim 
that generative models are structural representations.

But there might be other means to justify that claim.

4.2  Alternative Arguments for (a)

4.2.1  Alternative Argument 1

The claim that graph theoretic notions cannot sit at the level of the physical machin-
ery might not be warranted. For instance, graph theoretic notions are used to map the 
connections between different neural regions (e.g. Sporns, 2010). Thus, graph theo-
retic notions can sit at the level of the physical machinery. This suggests an alterna-
tive way to vindicate (a): if graphs are structurally similar to their targets, and these 
graphs can be transparently mapped onto cortical structures and/or neural activity 
patterns, then, since structural similarity is a transitive relation, the relevant cortical 
structures/activity patterns are structurally similar to the target of the graphs. Some 
(e.g. Kiefer, 2017) defend structural representations along precisely these lines.14

This alternative argument for (a) is fairly attractive, as it is maximally conserva-
tive over the structure of Gładziejewski’s original argument. It also nicely integrates 
with the existing scientific literature on PP, at least insofar some generative models, 
rendered as Bayesian nets, have been mapped onto cortical structures (e.g. Bastos, 

14 Or, at least, so it seems. To be honest, I believe that Kiefer is no longer committed to the claim that 
generative models are structural representations. Rather, it seems to me that Kiefer is committed to some 
form of functional role semantics. To be precise, Kiefer (2017, p. 12) seems to endorse the claim that 
generative models are structural representations. However, he seems to have quickly changed his mind 
about this point, as, in numerous later publications (Kiefer and Hohwy, 2018, p. 2393; 2019, p. 401–403; 
Kiefer, 2020, footnote 19) he takes the content of generative models to be determined by internal func-
tional roles rather than by the structural similarity holding between a generative model and its target. I 
will more directly confront this issue in the main text, when dealing with the fourth alternative argument 
for (a). Many thanks to an anonymous referee for having pressed me on this issue.
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2012; Friston, 2017a). Isn’t this sufficient to show that at least these generative mod-
els are structurally similar to their targets?

I believe that a negative answer is warranted. This is because the graphs pre-
sented in (Bastos et al. 2012; Friston et al. 2017a) and a number of similar publica-
tions in the PP literature do not model any worldly target. There is thus no specific 
worldly target that they represent. So, even if the cortical machinery is in some rel-
evant sense structurally similar to these graphs, there is no third element to which 
the cortical machinery can be structurally similar to by being structurally similar to 
these graphs. For this reason, it seems to me correct to conclude that the alternative 
argument for (a) provided above fails.

But what, then, is the purpose of the graphs in (Bastos et  al. 2012; Friston 
et al. 2017a)? The answer, if I understand the literature correctly, is the following: 
these graphs are, in a sense, didactic tools, aimed at showing, with a fair degree 
of approximation, that the cortical machinery is arranged in a way such that it can 
easily perform the inferential processes PP revolves around (see Bastos et al. 2012, 
p. 703; Friston et al 2017a, p. 393). In fact, it seems to me that, within the PP lit-
erature, graphical models are often deployed to capture the message passing within 
the brain; that is, how inference is performed (see, for instance, de Vries & Fris-
ton, 2017; Friston, 2017b; Friston, 2017c; Donnarumma, 2017; Matsumoto & Tani, 
2020; see also Hinton & Sejnowski, 1983 for an earlier model).15 I believe that this 
is an important point to notice for two distinct reasons.

First, if these graphical models are intended to be models of the relevant message 
passing, it seems more natural to suppose they will map onto the cortical machinery 
performing the inferences, rather than on the representational vehicles manipulated 
in inferential processes.16 Secondly, and relatedly, if those graphical models are 
accurately characterized as portraying the inferential message passing in the brain, 
it seems to me that they presuppose the presence of some relevant representational 
vehicle, as inferences are defined over representations.17 These representations 
might (but, as far as I can see, need not) be structural representations. However, as 
these graphical models seem to presuppose the presence of representations, it seems 
to me that they cannot be invoked to justify one’s representationalist claim, on pain 
of circularity.

Importantly, I do not believe that the considerations offered above rule out in any 
way the possibility of using graphical models to justify (a). As far as I can see, one 
might still resort to a graphical model to argue that at least some representational 
vehicles in the brain are structurally similar to their targets using the argument by 
transitivity sketched above. However, to do so, one would need a graphical model 

15 Notice that the scope of my claim is restricted to PP and the usage of graphical models in the PP 
literature. I make no claim on how graphical models are used in the rest of cognitive neuroscience (and 
related disciplines). Many thanks to the reviewer who advised me to be more cautious on this point.
16 Importantly, this seems exactly how Kiefer interpreted these models, see (Kiefer 2017, pp. 12–16).
17 The same two points seems to apply whether these models are intended to capture computational pro-
cesses more generally, given that computational processes are often defined in terms of representations 
(see Fodor, 1981; Shagrir, 2001; Ramsey, 2007, pp. 68–77; Sprevak, 2010; Rescorla, 2012). This latter 
point, however, is not entirely uncontested (e.g. Piccinini, 2008).
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depicting some specific worldly target. And, to the best of my knowledge of the PP 
literature, no such graphical model has yet been proposed.

4.2.2  Alternative Argument 2

Artificial neural networks might provide a different way to leverage graph theoretic 
notions to vindicate (a). As formal objects, artificial neural networks are graphs. But 
they are also somewhat plausible sketches of the physical machinery implement-
ing or realizing some given computational process of interest (see Haykin, 2009, 
pp. 1–18; Rogers & McClelland, 2014). Moreover, at least some artificial neural 
networks encoding generative models (such as Helmholtz machines) are Bayesian 
graphs (e.g. Dayan & Hinton, 1996). Therefore, even if these artificial neural net-
works cannot prove that generative models in the brain are structural representations, 
they can show that generative models can be structural representations, thereby pro-
viding circumstantial evidence in favor of (a) obtaining. If our plausible sketches of 
the physical machinery encoding generative models are graphs (or at least graph-
like), then we have a solid reason to believe the real physical machinery encoding 
generative models is graph-like. And, given that graphs are structurally similar to 
their targets, we have a solid reason to believe that (a) obtains. However, I think such 
a belief would be misplaced. Indeed, it seems to me that a closer consideration of 
artificial neural networks provides a reason to believe that (a) does not obtain.

To see why, consider first that artificial neural networks are often said to encode 
generative models in their weighted connections (e.g. Dayan & Hinton, 1996; Hin-
ton, 2014; Spratling, 2016, p. 3).18 But weighted connections (or, more precisely, 
weight matrices) are typically considered to be superposed representations. And the 
vehicles of superposed representations are not structurally similar to their targets. As 
a consequence, if considering artificial neural networks provides evidence regarding 
the status of (a), the evidence they provide is not in favor of (a) obtaining.

To elaborate a little, consider first the notion of a superposed representation. 
A representation R is said to be a superposed representation of two targets T and 
T’ when R encodes information about T and T’ using the same set of physical 
resources. When applied to weight matrices, the idea is that weight matrices super-
positionally represent their targets when each individual weight is assigned a value 
such that the network can exhibit the functionality needed to operate on all its targets 
(Clark, 1993: pp. 17–19, see Van Gelder, 1991, 1992 for further discussion). For 
instance, a single net can be first trained to recognize (or generate) instances of T. If 
the network is then trained so as to recognize (or generate) both instances of T and 
T’, then the weights of the net will encode information about both representational 
targets, and the weight matrix will represent both in a superposed fashion.

However, in weight matrices: “Each memory trace is distributed over many differ-
ent connections, and each connection participates in many different memory traces” 

18 A similar claim is sometimes made in the neuroscientific literature on PP (ad es. Friston, 2005, p. 820; 
Shipp, 2016, p. 3). The claim, however, might not be entirely correct, as I will soon clarify in the main 
text.
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(McClelland & Rumelhart, 1986, p. 176). So, it seems each individual weight maps 
onto many different representational targets (or aspects thereof). But if this is the 
case, then either condition (i) or (ii)19 of structural similarity are blatantly violated, 
since they require a one-to-one mapping. As a further proof of their violation, recall 
that the obtaining of (i) to (iii) in conjunction entails semantic unambiguity (see 
Sect. 3.1). That is, if (i) to (iii) jointly obtain, it is always in principle possible to tell, 
for each “bit” of the representational vehicle, which “bit” of the represented target 
it corresponds to. However, in superposed representations: “It is impossible to point 
to a particular place where the memory of a particular item is stored” (Rumelhart 
& McClelland, 1986, p. 70). Superposed representations are thus not semantically 
unambiguous. Therefore, at least one condition among (i) and (iii) is not met. As a 
consequence, superposed representations do not support the claim that (a) obtains.20

The argument outlined above can be challenged in two ways.21 First, generative 
models are not encoded in connections alone; they are jointly encoded by connec-
tions and activity vectors (e.g. Buckley, 2017, p. 57). Secondly, the definition of 
structural similarity relevant to the obtaining of (a) quantifies only over some. Thus, 
noticing that connections do not participate in any one-to-one mapping does not pro-
vide an argument to the effect that (a) does not obtain: connections might simply be 
excluded from the objects V or relations ℜV of R participating in the structural simi-
larity. I address these challenges in turn.

Are generative models really jointly encoded by activity vectors and weighted 
connections as the first challenge suggests? As far as I can see, the answer is posi-
tive; and focusing only on weighted connections (as I did above) is a mistake. But, to 
my excuse, it is a mistake the that the PP literature encourages:

We allowed the network to learn a hierarchical internal model of its natu-
ral image inputs by maximizing the posterior probability of generating the 
observed data. The internal model is encoded in a distributed manner within 
the synapses of the model at each level. (Rao & Ballard, 1999, p. 80, emphasis 
added)
The representation at any given level attempts to predict the representation at 
the level below; at the lowest level this amounts to a prediction of the raw 

19 Or both. The formulation in terms of “either (i) or (ii)” is due to the fact that it seems to me that one 
might interpret weighted connections either as parts of a structural representation (i.e. as members of V) 
or as relations among parts (i.e. as relations in ℜV).
20 Notice that I’m not denying that weight matrices encode the invariant relations that hold among the 
elements of the domain upon which the network has been trained to operate. I am only denying that there 
is a mapping from weight matrices (that is, from individual weights or sets of weights) to relations such 
that the mapping satisfies (i) or (ii). In simpler terms, I’m not denying that weight matrices represent 
invariant relations, I’m only denying that weight matrices represent invariant relations by being structur-
ally similar to the target domain (or by participating in some relevant structural similarity with the target 
domain). Notice, importantly, that not all invariant relations need to be encoded in a vehicle that is struc-
turally similar to its target. We might, for instance, stipulate that the sign “§” represents the fact that my 
father is n years older than me. If we do so, then “§” encodes an invariant relation holding between me 
and my father, and yet there just seems to be no structural similarity holding between “§” and the target it 
represents. Many thanks to an anonymous reviewer for having pressed me on this point.
21 Many thanks to an anonymous referee for having raised these objections.
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sensory input. It is the backward connections, therefore, that instantiate the 
generative model. (Shipp, 2016, p. 3, emphasis added)
The prediction error minimization (PEM) framework in cognitive science is 
an approach to cognition and perception centered on a simple idea: organ-
isms represent the world by constantly predicting their own internal states. 
[...] Cascades of predictions are matched against the incoming sensory signals, 
which act as negative feedback to correct a generative model encoded in the 
top-down and lateral connections. (Kiefer & Hohwy, 2019, p. 384, emphasis 
added)
The generative model, which in theories such as hierarchical predictive coding 
is hypothesized to be implemented in top-down cortical connections, specifies 
the Umwelt of the organism, the kinds of things and situations it believes in 
independently of the current sensory data [...] (Kiefer, 2020, p. 2, emphasis 
added)

Sadly, this excusation does not address the first challenge. Importantly, however, it 
seems to me that the first challenge is really no challenge at all. Allowing (so to 
speak) activity patterns to participate in the relevant structural similarity alongside 
weighted connections does not change the fact that, at least prima facie, weighted 
connections do not appear to map one-to-one onto any target. Thus, simply counting 
activity patterns as elements of V does not vindicate (a). This is because weighted 
connections are still considered elements of either V or ℜV, and, as a result, at least 
some elements of the vehicle do not map one-to-one onto elements of the target as 
required by (a). Counting activity vectors in, on its own, is not enough: one must 
also be able to exclude that weighted connections participate in the relevant struc-
tural similarity.

This brings me to the second challenge. Is it possible to define some relevant 
vehicle target structural similarity without involving weighted connections? I think 
that the correct answer is negative.

To start, it is surely possible to define some relevant network-target structural 
similarity without appealing to weighted connections. There is nothing particularly 
new in this claim: Paul Churchland’s state-space semantics is the most obvious 
example of a network-target structural similarity that does not involve connections 
(see Churchland, 1986, 2012; see also O’Brien and Opie, 2004). In his view, the 
entire activation space of the hidden layers of a network structurally resembles the 
target domain upon which the network has been trained to operate. And I’m fairly 
confident that a similar structural similarity can be found by considering artificial 
neural networks encoding generative models.22

Isn’t this just conceding that (a) obtains? I do not think so. For activation spaces 
(the first relevant relatum of the structural similarity) are not vehicles, because they 
are not concrete particulars. They are abstract mathematical spaces that are used to 
account for the systematic behavior of artificial neural networks. So, they fail to vin-
dicate (a) for the same reasons Gładziejewski’s argument fails to vindicate (a).

22 And even if my confidence were misplaced, I would concede the point for the sake of discussion.
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Notice that I’m not claiming that the activation space-target domain structural 
similarity cannot determine the content of each individual activity vector. The rel-
evant structural similarity holding between the activation space and the target might 
be enough to determine the content of each individual vector (i.e. of each individual 
element of V, using O’Brien and Opie’s notation). However, the fact that each indi-
vidual vector acquires content in virtue of the relevant structural similarity holding 
between the entire activation space and the target domain does not entail that each 
individual vector is a structural representation. This is because the elements of the 
vehicle (i.e. the objects of V and relations of ℜV) involved in a structural similarity 
need not be structurally similar to elements of the target (i.e. the members of O and 
ℜO) they correspond to. Given that, to my knowledge, only individual vectors are 
tokened in connectionist systems, the relevant structural similarity holding between 
the state space of a network and the network’s target domain is insufficient to sub-
stantiate the claim that structural representations are tokened within the system.

Moreover, I honestly doubt that it is possible to rightfully exclude weighted con-
nections from the relevant structural similarity. To see why, consider the following: 
if a vehicle represents in virtue of the structural similarity it bears to a target, then 
the more the vehicle and the target are structurally similar, the more the representa-
tion will be accurate. The accuracy of a structural representation non-accidentally 
increases when (and, at least prima facie, only when) the elements of the vehicle 
are rearranged in a way that increases the extent to which the vehicle is structurally 
similar to the target.

If this is correct, then there seems to be a solid reason to deny that we can exclude 
connections from the relevant network-target structural similarity, for modifications 
of weighted connections made in accordance to the learning algorithm do improve 
the representational accuracy of connectionist systems. Thus, if these systems rep-
resent by means of structural similarity, it seems that weighted connections must be 
counted among the elements participating in the similarity. Surely, the relevant defi-
nition of structural similarity provided when unpacking condition (a) quantifies only 
over some, but that “some” seems to include weighted connections. However, if my 
argument based on superpositionality is correct, then weighted connections do not 
map one-to-one on their targets as (a) requires. In short: if artificial neural networks 
deploys structural representations, connections must be involved. Yet, their involve-
ment seems to prevent the obtaining of (a).23

4.2.3  Alternative argument 3

Alternative argument 3: maybe one does not need to look at artificial neural net-
works to vindicate the claim that generative models are structurally similar to their 

23 At this point, it might be tempting to wonder whether the relevant definition of structural similar-
ity could be relaxed, so as to allow connections to be elements in the structural similarity in spite of 
the lack of any intelligible one-to-one mapping holding between them and the elements of the target 
domains. As an anonymous reviewer aptly noticed, O’Brien and Opie’s (2004) definition of structural 
similarity is not the only one on the market, and at least some alternative formulations do not require 
a one-to-one mapping (e.g. Kiefer and Hohwy, 2019, p. 400; Shea, 2018, p. 117). As far as I can see, 
the mapping can be relaxed so as to allow many elements of the vehicle to map onto one element of the 
target. However, I believe the mapping cannot be relaxed so as to allow one element of the vehicle to 
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targets. In fact, PP theorists often point to a relevant structural similarity one might 
leverage to vindicate (a). Friston (2013a, p. 133) provides one clear example, worth 
quoting at length:

[...] every aspect of our brain can be predicted from our environment. [...] A 
nice example is the anatomical division into what and where pathways in the 
visual cortex. Could this have been predicted from the free-energy principle? 
Yes – if the anatomical structure of the brain recapitulates the causal structure 
in the environment, then one would expect independent causes to be encoded 
in functionally segregated neuronal structures.

 Since points (i) and (ii) in the definition of structural similarity quantify only over 
some, this quote by Friston provides us a structural similarity sufficient to vindi-
cate (a): if Friston is right, there is a structure-preserving mapping form some cer-
ebral regions onto some environmental targets. Furthermore, examples like the one 
highlighted in the quote seem fairly easy to multiply. It might be pointed out, for 
instance, that the anatomical segregation of visual and auditory cortices reflects the 
fact that visual and sensory input can have different worldly causes. So there is, I 
submit, a relevant brain-world structural similarity. Therefore, if the whole brain is 
the generative model (a claim that is not uncommon in the PP literature,24 e.g. Bas-
tos et al. 2012, p. 702), then condition (a) is met.

I must confess that, to me, this way of vindicating (a) seems to lead to a Pyrrhic 
victory at best. To begin with, claiming that the whole brain is a structural repre-
sentation seems to prevent Gładziejewski’s account from vindicating the epistemic 

map onto many elements of the target. To see why this is the case, consider a minimal structural repre-
sentation constituted by two objects a*and b* in a relation R*. Suppose that R* corresponds to a relation 
R, that a* corresponds to an element a and that b* maps onto two elements b and c. Now, given this 
mapping, the representation is accurate when aRb is the case. It is also accurate when aRc is the case. 
Hence, misrepresentation occurs only when both aRb and aRc are not the case. But, if this is correct, 
then the representation represents (aRb or aRc), and its content is disjunctive and thus indeterminate. 
Yet, it is widely assumed that a successful theory of content must deliver us determinate content. So, 
it seems to me that, in order for a structural-resemblance based theory of content to be successful, it 
must exclude one-to-many mappings. Now, the issue with weights in connectionist systems is that they 
seem to map one-to-many: each weight encodes information about many targets (see Clark, 1993, pp. 
13–17; Van Gelder, 1991, pp. 42–47; Ramsey, Stich and Garon 1991, pp. 215–217 for early renditions of 
this point). Hence, it seems that each weight is bound to map onto many targets, generating the problem 
with content determinacy. Notice, importantly, that the same line of reasoning holds even when the rela-
tions map onto many. To see why, consider a modified version of the minimal structural representation 
considered above, in which a* maps onto a, b* maps onto b and R* maps onto two relations R and F. 
Again, given this mapping, misrepresentation occurs only when both aRb and aFb are not the case, and 
so the representation represents (aRb or aFb). In both cases, the disjunction problem is brought about 
by the claim that one-to-many mappings might constitute structural similarities, so as to circumvent the 
problems raised by superspositionality. Hence, we should not allow one-to-many to constitute structural 
similarities. Thanks to an anonymous referee for having pressed me on this point.

Footnote 23 (continued)

24 More precisely, it is common in the PP literature most heavily influenced by Friston’s free energy 
principle. Many thanks to an anonymous referee for having noticed this imprecision.
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representationalist claim. This is because, in our best explanatory practices, “repre-
sentation” typically denotes states of information processing systems (e.g. Kandel 
et al. 2012 p. 372), rather than entire information processing systems.25 The struc-
tural similarity presented above seems to enable us to vindicate only metaphysical 
representationalism about the whole brain (i.e. the claim that the whole brain really 
is a “big” representation). Given that Gładziejewski’s account of structural repre-
sentations aims at vindicating both metaphysical and epistemic representationalism, 
this way of vindicating (a) seems to lead to a partial failure of his account.26

Secondly, a complaint about content. What would such a “whole brain” structural 
representation represent? If I understand Friston correctly, the brain is supposed to 
recapitulate the causal structure of the world. Thus, the relevant structural similarity 
holds between the anatomical structure of the brain and the causal structure of the 
world. But a structural representation represents the target whose structure is mir-
rored in the structure of the vehicle, and here such a target is the world (see Wiese, 
2018, p. 219; Williams, 2018a, 2018b, p. 154–155). This is not the kind of content 
naturalistic theories of content are supposed to deliver, for the world is not the kind 
of content invoked in the scientific explanations of our cognitive capacity, nor the 
kind of content relevant to our personal-level mental states. This isn’t a knockdown 
objection against alternative argument 3. But it surely shows that the argument has 
some very undesirable consequences.

Lastly, and, I believe, most importantly, this way of vindicating (a) seems to pre-
vent (c) from obtaining. If the entire brain is a single gigantic representation repre-
senting the world, it is very hard to see how decouplability might obtain. There is 
always some sort of causal contact between brains and worlds. Since point (c) spells 
out decouplability in terms of causal contact, this way of vindicating (a) seems to 
prevent the obtaining of (c).27

25 Notice that the former usage of “representation” is consistent with the PP literature (e.g. Friston, 
2005, p. 819; Kiefer and Hohwy, 2018, p. 2396).
26 One might contend this verdict is premature. For the elements (i.e. objects of V and relations of ℜV) 
of structural representations are representational vehicles in their own right (e.g. Shea, 2018, p.118; 
Ramsey, 2007, p. 79, footnote 3). Thus, claiming that the brain as a whole is a structural representation 
might in principle justify the claim that the relevant elements of the structural similarity (i.e. patterns of 
activation) are representations too, leading to a vindication of epistemic representationalism. I believe 
that the problem with this line of reasoning is the following: the brain-world structural similarity Friston 
envisages is not defined over patterns of activation in the brain. Rather, it is defined over the anatomical 
structure of the brain. The relevant elements in the structural similarity are not patterns of activation. 
Hence, this way of vindicating (a) fails to properly vindicate the epistemic representationalist claim.
27 Here, one might be tempted to simply reject condition (c) and accept that entire brains are structural 
representations of the environment. As far as I can see, this is a legitimate move. However, it seems quite 
an ad hoc move. There are good independent reasons to hold that representations are necessarily decou-
plable from their targets (see Grush, 1997; Webb, 2006; Pezzulo, 2008: Orlandi, 2014, pp. 120–134). 
Moreover, abandoning (c) would likely make Gładziejewski’s account of structural representations far 
too liberal, as Gładziejewski himself acknowledges (Gładziejewski, 2016, p. 571).
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4.2.4  Alternative argument 4

Alternative argument 4: perhaps there is a way to make “whole brain” representa-
tions work. Thus, consider Kiefer and Hohwy’s (2018, 2019) defense of generative 
models as structural representations.28

On the view Kiefer and Hohwy favor, we should conceive the brain as a com-
plex causal network. If I understand them correctly, we should interpret each node in 
such a network as a definite pattern of neuronal activity, and the arrows connecting 
the nodes as causal relations between patterns (i.e. if node a is connected to node 
b, then pattern a causes pattern b). This network of causal relations, on the account 
Kiefer and Hohwy propose, structurally resembles the causal structures of the world 
as captured by “material inferences”; that is, inferences such as that from “It’s rain-
ing” one infers “The street is wet” (see Kiefer & Hohwy, 2018, pp. 2392–2393). In 
this way, the entire brain (which instantiates the causal network), comes to reflect, 
and hence to represent, the causal structure of the world.

Kiefer and Hohwy’s account of “whole brain” structural representations seems 
to me a significant improvement from the previously scrutinized one. For one thing, 
given that in this view the relevant elements of the structural representation are pat-
terns of activation, and given that the elements of a structural representations can be 
counted as representations in their own right, Kiefer and Hohwy’s proposal would 
allow one to substantiate the epistemic representationalist claim. Moreover, it can 
also assign each individual pattern of activation a determinate content, depending 
on its causal embedding within the network. However, it seems to me that relying on 
Kiefer and Hohwy’s proposal to vindicate (a) has serious drawbacks.

To start, the problem with (c) is not solved by Kiefer and Hohwy’s account.29 If 
the brain is a complex causal network mirroring the causal structure of the world, it 
is correct to say that the relevant structural representation (i.e. the brain) represents 
the world. And I simply do not see how one could sever the constant brain-world 
causal contact so as to vindicate (c).30

28 To be clear, Kiefer and Hohwy do not explicitly set out to defend “whole brain” representations. 
However, it seems to me that their account entails that the whole brain is a structural representation, 
at least insofar they take the entire causal network instantiated by the brain to be the relevant structural 
representation. A reviewer noticed that this characterization of Kiefer and Hohwy’s position might be 
too ungenerous, since, strictly speaking, Kiefer and Howhy speak only of connections among cortical 
regions. Hence, their position is best described as a form of “whole cortex”, rather than “whole brain” 
representationalism. However (and the reviewer seems to agree) noticing this does not substantially alter 
the dialectical situation. So, I will continue to speak of Kiefer and Hohwy as endorsing a form of “whole 
brain” representationalism, mainly for the sake of simplicity.
29 Notice, importantly, that Kiefer and Hohwy seem to consider decouplability a necessary feature of 
representations, see (Kiefer and Hohwy 2019, p. 400).
30 Of course, individual patterns of activation can be decoupled from the individual target they represent 
in virtue of the overall brain-world structural similarity. However, to be satisfied, point (c) requires that 
the entire vehicle of structural representation (in this case, the whole brain) is decoupled from its target 
(in this case, the world). Thus, noticing that in some cases (e.g. during dreaming) certain patterns of acti-
vation are tokened in a way that is functionally independent from the incoming sensory stimulation is not 
sufficient to vindicate point (c). This is because individual patterns of activations are not the entire vehi-
cle of the structural representations, but rather elements of that vehicle. Thanks to an anonymous referee 
for having pressed me to clarify this point.
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Secondly, Kiefer and Hohwy’s account raises a puzzle about the inferential status 
of brain processes. If causal relations holding among patterns of activation are mem-
bers of ℜV, it seems to me that it logically follows that they are part of the vehicle. 
After all, according to O’Brien and Opie’s (2004) definition of structural similarity, 
both the objects of V and the relations in ℜV are parts of  SV. But in order for the 
relevant structural similarity to satisfy (a),  SV must be a vehicle. Hence, Kiefer and 
Hohwy’s proposal seems to imply that causal relations among patterns of activa-
tions are part of the vehicle. But if this is the case, then it seems to me that these 
causal relations cannot be inferential processes, for inferential processes seem to be 
distinct from the representational vehicles upon which they operate. So, it seems 
that if Kiefer and Hohwy’s (2018, 2019) account of structural similarity is accepted, 
causal interactions among neural activity patterns cannot be rightfully called infer-
ences. And this seems a problem, given that the inferentialist reading of PP tends to 
go hand in hand with the claim that generative models are structural representations 
(e.g. Gładziejewski, 2017; Hohwy, 2018; Kiefer, 2017).

Lastly, a wholesale acceptance of Kiefer an Hohwy’s (2018, 2019) account might, 
paradoxically, force one to abandon the claim that generative models are structural 
representations. The point is subtle but important. According to Kiefer and Hohwy:

The contents of parts of a structural representation are (at least in the case 
of causal generative models of an environment) in effect determined by their 
internal functional roles. (Kiefer & Hohwy, 2018, p. 2393; see also Kiefer & 
Hohwy, 2019, p. 402; Kiefer, 2020, endnote 17)

But this is not how the parts (i.e. objects and relations) of a structural representa-
tion acquire their contents. The content of a structural representation is determined 
by the relevant structural similarity it bears to a target; and the content of the parts 
(i.e. the elements of V and ℜV) of a structural representation is determined by the 
way in which they participate in the relevant structural similarity; that is, by the way 
in which they map onto a corresponding element of the target. The relevant rela-
tion determining the contents of the elements of a structural representation is the 
structural similarity holding between the vehicle and the target; not the relations ℜV 
holding among the various members of V. Surely, since structural similarity is struc-
tural, it must, in some relevant sense, be sensitive to the relevant members of ℜV. 
But this does not entail that the content of the elements of a structural representation 
is determined by their relations ℜV.

Another, perhaps more perspicuous, way to put the same point is this: were the 
content of the elements of V determined by the relations ℜV holding between them, 
then the elements of V would have content whether the entire vehicle is structurally 
similar to something or not. Moreover, even in cases in which the whole vehicle  SV 
is structurally similar to some target  SO, there is, as far as I can see, no prior guar-
antee that the content assigned to each element in V in virtue of the relations in ℜV 
would match the content each element of V would bear, were their contents deter-
mined by the relevant mapping from  SV to  SO constituting the structural similarity. 
To put it bluntly, what I’m trying to point out is this: Kiefer and Hohwy espouse a 
form of functional role semantics. But functional role semantics and structural simi-
larity have no essential connections, pace Kiefer and Hohwy. It thus seems to me 
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that a wholesale adoption of Kiefer and Hohwy’s proposal ends up undermining the 
broader structural-representationalist claim. Kiefer and Hohwy might provide a way 
to vindicate (a); but a wholesale acceptance of their proposal seems to make such a 
vindication redundant. If one adheres to functional role semantics,one does not need 
a structural similarity.

This is not to deny that Kiefer and Hohwy (2018, p. 2393; 2019, p. 402) stress 
that the relevant (i.e. content constituting) functional relations in ℜV mirror, in the 
relevant sense, the causal structure of the world (i.e. ℜO): in their view, functional 
role semantics entails a relevant structural similarity. But this surely does not allow 
us to count Kiefer and Hohwy as defenders of structural representations. For, as 
many have stressed, causal/informational theories of content entail a relevant vehi-
cle-target structural similarity too (Morgan, 2014; Nirshberg & Shapiro, 2020; Fac-
chin 2021). But surely causal/informational theories of content are not structural 
resemblance-based theories of content, for at least three reasons. First, the claim that 
content is determined by causal/informational factors is logically distinct from the 
claim that content is determined by a relevant vehicle-target structural similarity. 
Secondly, it is not the case that the obtaining of all vehicle-target structural similari-
ties hinges upon some appropriate causal/informational relation holding the vehicle 
and the target (see Shea, 2018, p. 139–140). Lastly, in the case of genuine structural 
representations, the relevant structural similarity is what determines the relevant 
content. Hence, it should not be a “side effect” of some other content-determining 
factor (see Gładziejewski & Miłkowski, 2017 for further discussion).31 It seems to 
me that one needs only to substitute “causal/informational relations” with “func-
tional relations” to make the same remarks about Kiefer and Hohwy’s proposal.

4.2.5  Alternative argument 5

Alternative argument 5: one might further try to vindicate (a) by claiming that, since 
generative models can be rendered as Bayesian nets, and that Bayesian nets are com-
putationally useful because they are structurally similar to their target (Danks, 2014 
p. 39), whatever piece of machinery is instantiating the relevant generative mod-
els must also be structurally similar to the target to be computationally useful. This 
way of vindicating (a), however, seems flawed. Generative models can be run by 
everyday personal computers: Von Neumann architectures computing over arbitrary 
symbols. And symbols surely aren’t structural representations: in fact, the two are 
typically contrasted (O’Brien & Opie, 2001; Williams & Collings, 2017).

There might be other ways to vindicate (a). But I’m not claiming that the propo-
sition “generative models are structural representations” is false. I’m only claim-
ing that it is presently unjustified. And the discussion above seems sufficient to sub-
stantiate that claim. If the arguments provided above are correct, Gładziejewski’s 

31 One might object that Kiefer and Hohwy (2018, 2019) should be counted as defending structural rep-
resentations because they stress that the relevant structural similarity is relevant for the system’s success. 
As I understand it, the problem with this line of argument is that the same holds true also for causal theo-
ries of content (see Nirshberg and Shapiro, 2020, pp. 6–7; Facchin 2021, pp. 9–12).
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original argument fails to substantiate the claim that generative models are structural 
representations; and, as far as I can see, there is no “rough and ready” way to vindi-
cate that claim on offer in the current philosophical market.

5  Concluding Remarks

In this essay, I have tried to argue that the identification of generative models with 
structural representations is, at present, unjustified. Here, I wish to single out some 
recurrent themes that emerged in the discussion above, as they are likely to be 
important to understand the theoretical commitments of PP.

One issue that repeatedly emerged from the discussion above concerns the vehi-
cles of generative models. The PP literature, I believe, is fairly confusing on this 
point. The word “model” is in fact applied to a variety of quite distinct things, 
including: (i) the whole brain (e.g. Bastos et al., 2012, p. 702), (ii) axonal connec-
tions (e.g. Shipps, 2016, p. 3), (iii) functionally specialized networks of neural areas 
(e.g. the mirror system as a model of bodily kinematics, see Kilner et  al., 2007), 
(iv) neuronal responses and connections (Buckley et al. 2017, p. 57), (v) the spinal 
cord32 (Friston, 2011, p. 491), (vi) single hierarchical levels33 (e.g. Kiefer & Hohwy, 
2019, p. 387) and I would not be surprised if this list is not complete. This liberal, 
almost casual, usage of “model” makes it very difficult to understand what piece of 
neural machinery should be taken as the vehicle of the relevant representation. It 
also makes unclear what sort of structural similarity would be appropriate to vindi-
cate a structural representationalist claim. I believe that clarifying this point should 
be a priority for philosophers (and empirical scientists) interested in defending the 
claim that generative models are structural representations. This is because struc-
tural representations are defined in terms of a (relational) vehicle property; namely, 
structural similarity. Hence, determining what counts as the relevant vehicle is 
essential in order to vindicate the claim that the relevant vehicle is the vehicle of a 
structural representation.

A related problem is that it is unclear whether the candidate vehicle (that is, the 
candidate piece of neural circuitry) is supposed to be (or embody) a model or merely 
to encode a model.34 As far as I can see, “being/embodying a model” and “encod-
ing a model” are used roughly as synonyms in the PP literature. Yet, there seems to 
be an obvious difference between the two claims: the hard drive of my PC surely 
encodes numerous early drafts of this very essay, but my hard drive is not an early 
draft of this essay. If the core claim PP makes is that the relevant candidate vehicle 

32 To be precise, Friston suggests that the dorsal horn of the spinal cord embodies an inverse model. But 
an inverse model still seems to me to count as a model.
33 Presumably, single, well identified, regions of the cortical hierarchy.
34 This issue seems to me importantly related to the “having VS. being” a model in the literature on the 
free energy principle (see van Es, 2020; Baltieri et al., 2020; see also Bruineberg et al., 2020). I must 
confess, however, that I’m unsure about how to properly articulate such a relation.
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is a model, and models really are structural representations, then some structural 
similarity must be found; otherwise, PP would be in trouble. But if the core claim PP 
makes is just that the relevant candidate vehicle simply encodes a model, then the 
absence of any relevant vehicle-target structural similarity might be entirely unprob-
lematic (supposing that not each and every form of encoding entails a structural 
similarity).

This latter point also suggests that, where the core claim of PP that the brain only 
encodes a generative model, the reading of generative models as structural represen-
tations would not be mandatory. For this reason, I believe that philosophers willing 
to defend a representationalist account of PP need not necessarily commit them-
selves to a “structuralist” account of representations. Representations in cognitive 
science need not necessarily be structural representations; and it would be interest-
ing to explore whether a representationalist account of PP not based on structural 
representations is viable.35

Lastly, a point about the rhetoric of the philosophical discussion surrounding 
PP. Many philosophers defending a representational reading of PP based on struc-
tural representations seem to hold that the “representation wars” are over, since PP 
has conclusively resolved the issue in favor of (structural) representationalism (e.g. 
Clark, 2015; Gładziejewski, 2016; Williams, 2017). Now, I find it sincerely hard to 
deny that structural representations are increasingly popular in cognitive neurosci-
ence (e.g. Poldrack, 2020; Williams & Colling, 2017).36 However, if the argument I 
have provided here is correct, the newfound popularity of structural representations 
might have very little to do with predictive processing. Identifying the factors that 
actually contribute to the popularity of structural representations might prove useful 
to fully understand the strength and merits of both representationalism and antirep-
resentationalism in cognitive science.
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