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Abstract
Showing remarkable insight into the relationship between language and thought, 
Alan Turing in 1950 proposed the Imitation Game as a proxy for the question “Can 
machines think?” and its meaning and practicality have been debated hotly ever 
since. The Imitation Game has come under criticism within the Computer Science 
and Artificial Intelligence communities with leading scientists proposing alterna-
tives, revisions, or even that the Game be abandoned entirely. Yet Turing’s imag-
ined conversational fragments between human and machine are rich with complex 
instances of inference of implied information, reasoning from generalizations, and 
meta-reasoning, challenges AI practitioners have wrestled with since at least 1980 
and continue to study. We argue that the very fact the Imitation Game is so difficult 
may be the very reason it shouldn’t be changed or abandoned. The semi-decidability 
of the game at this point hints at the possibility of a hard limit to the powers of 
technology.

Keywords Turing test · Artificial intelligence · Philosophy of mind · Linguistics

1 Introduction

Turing, in a seminal paper (Turing 1950), constructed sample conversational frag-
ments between an interrogator (a rigorous human) and a witness (possibly a digi-
tal computer) illustrative of his expectations of machine conversation that might 
be regarded as human by other humans in conversation with the machine. Here’s a 
snippet:

Interrogator: In the first line of your sonnet which reads "Shall I compare thee 
to a summer’s day," would not "a spring day" do as well or better?
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Witness: It wouldn’t scan.
Interrogator: How about "a winter’s day," That would scan all right.
Witness: Yes, but nobody wants to be compared to a winter’s day.
Interrogator: Would you say Mr. Pickwick reminded you of Christmas?
Witness: In a way.
Interrogator: Yet Christmas is a winter’s day, and I do not think Mr. Pickwick 
would mind the comparison.
Witness: I don’t think you’re serious. By a winter’s day one means a typical 
winter’s day, rather than a special one like Christmas.

Turing considered this an example of a machine giving “satisfactory and sustained” 
responses. He argued that answering the question “Can machines think?” might 
require definitions of the terms ‘machine’ and ‘think’, which to this day have eluded 
agreed and satisfactory definitions, and suggested instead the well-known Imitation 
Game, where an interrogator decides whether an unseen witness he is communicat-
ing with is human or not. Such outcomes could be judged statistically.

Some say that a machine passes the Turing Test if (say) 30% of judges consider 
the machine human after a short period of communication, and several competitions 
described as ‘Turing Test’ competitions use criteria like this for judging the win-
ner, possibly because Turing predicted that by the year 2000 the average interroga-
tor would not have more than a 70 per cent chance of guessing correctly after five 
minutes of questioning. To avoid confusion, here we use only the term Imitation 
Game, by which we intend a rigorous interrogator judging a machine human after a 
sustained engaged conversation, except when citing other work.

Objections to Turing are so numerous and diverse that here we can only provide a 
sample. We begin with Turing himself, who, anticipating challenges to his audacious 
claim, asked, “[m]ay not machines carry out something which ought to be described 
as thinking but which is very different from what a man does?” This is familiar to 
Artificial Intelligence researchers in the following form: Can a plane imitate a bird 
so that an observer could not tell the difference? Is that a reasonable test of whether 
a plane flies? Clearly, no and no. Planes fly but not the way birds fly (French 1990).

Turing concedes that “[t]his objection is a very strong one” but adds, “at least 
we can say that if, nevertheless, a machine can be constructed to play the imitation 
game satisfactorily, we need not be troubled by this objection.” In other words, the 
game is a sufficient but not a necessary test.

Shannon and McCarthy disagree with Turing in their preface to Automata Stud-
ies (1956) where they adumbrate an objection that claims that the test is not even 
sufficient. They remark that “[a] disadvantage of the Turing definition of thinking is 
that it is possible, in principle, to design a machine with a complete set of arbitrarily 
chosen responses to all possible input stimuli. … With a suitable dictionary such a 
machine would surely satisfy Turing’s definition but does not reflect our usual intui-
tive concept of thinking.”

Gunderson’s ‘toe-stepping machine’ (1964) and Block’s “Aunt Bertha machine” 
(1981) belong to this family of objections, but Searle’s Chinese Room argument has 
enjoyed particular prominence. His thought experiment (or ‘intuition pump’ (Den-
nett 1991)) is as follows: Searle, who knows no Chinese, written or spoken, is in 
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a locked room. He receives pieces of paper on which are written Chinese charac-
ters, and returns pieces of paper on which he has written Chinese characters. To 
an observer, Searle’s responses are indistinguishable from those of a native Chinese 
speaker. Yet Searle has no understanding of the Chinese characters: He only follows 
a set of rules that tell him what characters to output in response to the inputs he has 
received; “he has no way to get from the manipulation of the symbols to the mean-
ing of the symbols, and if the person in the room does not understand the meanings 
of the symbols on the basis of implementing the program, then neither does any 
other computer solely on that basis, because no computer, just in virtue of its com-
putational properties, has anything that the man does not have” (1990). The same, 
he adds, is true of the room—or the system—as a whole.

These issues of understanding ‘meaning’ or symbol-grounding have been raised 
both by (French 1990) and Harnad (2001).

French accepts the sufficiency of Turing’s test but argues that a machine could 
never pass it because human intelligence as he envisions it has underlying subcogni-
tive and physical levels, the former learned over a lifetime by interacting with the 
external world in a given cultural context. But the subcognitive is so intertwined 
with the cognitive and physical levels that the Imitation Game “could be passed only 
by things that have experienced the world as we have experienced it.”

French has revised his assessment since the availability of ‘big data’ (French 
2012), but similar ideas remain extant. Embodied intelligence (Cangelosi et  al. 
2015) goes back to (Brooks 1990) and argues that a brain exists in a body that inter-
acts with the world, reminiscent also of early notions of the eye-brain connection in 
computer image understanding (Horn 1985).

Harnad (2001) citing (French 1990) describes the Turing test as a test of ‘total 
indistinguishability’, non-verbal as well as verbal. Thinkers, Harnad points out, 
“can and do more than just talk” (2000). Moreover, our words (or symbols) must be 
“grounded directly and autonomously in causal interactions with the objects, events 
and states that they are about (2001),” implying any successful Imitation Game can-
didate must be embodied, and able to act in the physical world, for example, by 
reading facial expressions.

In June of 2014, it was reported that a professor at the University of Reading 
announced that a chatbot known as Eugene Goostman had passed the Turing Test 
at a competition held at the University of Reading on the anniversary of Turing’s 
death, having convinced 33% of the judges it was human (The Guardian 2014). The 
same chatbot had finished second at two Loebner Prize Turing Test competitions 
in 2005 and 2008 and won first prize at another competition at Bletchley Park. The 
2014 announcement was initially met with both excitement and scepticism in the 
mainstream media. However, it appears that Warwick interpreted Turing’s turn-of-
the-century prediction as doing well at the Imitation Game.

We leave it to the reader to come to an independent decision about such competi-
tions. However, Hector Levesque, a prominent Knowledge Representation scholar, 
wrote in a series of peer-reviewed articles and a book (2011, 2014, 2017) to the 
effect that “fooling judges”, as exemplified by such competitions, incentivized trick-
ery and deception, and proposed an alternate test designed to keep the computer on 
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topic. This also caught the attention of the mainstream media (Marcus 2013), and 
we discuss it in some detail later.

These arguments are difficult, if not impossible, to refute. If we could compile 
a database with every possible response to every possible statement, we could of 
course ‘in principle’ build a machine that could succeed at the Imitation Game with 
simple lookups. Or could we? Turing expects the machine to be able to sustain a 
discussion, not just answer questions. So wouldn’t we need to be able to store all 
possible sequences of sentences? Is that possible?

The replies of the witness in the conversational fragment reproduced earlier are 
indeed skillful. Not only do they sustain the discussion of an idea, they also demon-
strate at least three nontrivial patterns of reasoning or meta-reasoning that transcend 
ordinary logical deduction yet are commonplace in ordinary discourse, and each of 
which became a subfield of Knowledge Representation.

That is where we begin our discussion of the game. First we unpack the dialogue 
quoted above to illustrate (1) reasoning with implied communication, (2) reasoning 
with generalizations with exceptions, and (3) meta-reasoning, and show that these 
patterns are not elite tools of philosophers, but occur in everyday reasoning.

We do this in part by placing the Imitation Game in a modern setting—that of an 
administrative assistant who manages a calendar. We illustrate that the dialog uses 
the much-studied inference patterns just noted. Afterwards, we consider three spe-
cific critiques of the Imitation Game from long-time practitioners within the AI com-
munity. Although they give different perspectives, it is interesting that the Imitation 
Game has confounded computer scientists dedicated to AI, and striking in light of 
the progress in areas like networks, computer graphics, and media. Is it possible that 
the simple ability to engage in communication with another living being represents a 
hurdle that our present-day notions of automata might approach but never clear?

Posing this question does not obviate any research direction currently underway, 
no more than understanding the complexity classes P and NP has deterred computer 
scientists from tackling hard problems. Rather, it has guided them, and the same 
could be said of decidability. Answering Turing’s challenge will offer deep insights 
into strengths and limits of both humans and machines.

2  Inference Patterns Used by Turing’s Witness

2.1  Implied Communication

Besides owning explicit expertise in domains ranging from relatively sophisticated 
information about literature to mundane knowledge that Christmas as a special day 
in the otherwise bleak winter, Turing’s witness and interrogator both make interest-
ing inferences about implied but unspoken communication. For example, the inter-
rogator’s opening sentence is a straightforward yes/no question. The witness doesn’t 
answer it, but heads directly to the explanation “It wouldn’t scan”, which implies 
that the answer to the asked question is “no”. In constructing an answer, the witness 
makes the inductive inference that the interrogator will make the inductive inference 
from the witness’s explanation that the witness’s implied answer is “no”.
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A classic example of this pattern sometimes used in introductory AI classes is 
a machine answering “Here you are” to the request “Can you pass the salt?” rather 
than “yes”. The following fragment (based on (Allen and Perrault 1980)) contains 
many instances of implied communication:

Customer (breathless): 3:15 to Windsor?
Clerk: Three dollars. Gate 10. Run!

The reader likely pictures a train station immediately.
How would one tackle the problem of designing software to respond like this 

clerk? First, the computer would need meticulous details about the ticket wicket 
setting, a “straightforward but tedious” task (as mathematicians sometimes say of 
lengthy proofs), which one senses has begun already with products like Siri and 
Alexa. Parsing the utterance “3:15 to Windsor” is more difficult. The clerk must 
determine that the customer wants to purchase a ticket for a train before it leaves 
and that “3:15” is not a price or a train number. The customer is not likely asking 
whether there is a train leaving for Windsor at 3:15. If the discussion allows com-
pletely open-ended statements, the possibilities become endless: perhaps the cus-
tomer should be at the bus station, not the train station, or to give a completely off-
the-wall example, is giving the name of a song or movie (3:10 to Yuma was both).

Allen and Perrault attack the problem using an approach similar to collaborative 
planning, whereby participants infer goals from statements, then formulate a plan 
to overcome obstacles (e.g., not having a ticket). A previous paper (Neufeld and 
Finnestad 2020), discusses language as collaborative planning in the context of the 
Imitation Game, and using Kyburg’s (1974) epistemological probability as a con-
ceptual framework to understand how participants jointly build a practical working 
understanding of a common goal.

3  Reasoning from Generalizations with Exceptions

Towards the end of the introductory dialogue fragment, the witness employs a sec-
ond inference pattern—reasoning from generalizations with exceptions that may 
themselves have exceptions: a pattern also ubiquitous in ordinary conversation.

We presume the witness and the interrogator share the following background 
knowledge:

Winter days are bleak.
Christmas is a winter’s day.
Christmas is not bleak.

“Winter days are bleak” is a generalization with exceptions (such as Christmas). 
“Christmas is a winter’s day” is a fact because Christmas occurs during the winter 
season. The last sentence, like the first, might also be a generalization with excep-
tions: many of us have experienced a bleak Christmas.
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During the 1980s, this reasoning pattern became known within the Artificial 
Intelligence community variously as nonmonotonic logic (McDermott and Doyle 
1980), default reasoning (Reiter 1980), defeasible reasoning (Loui 1987), common 
sense reasoning (McCarthy 1986), and specificity (Poole 1985). Anecdotally, we 
remark that it dominated research within the Knowledge Representation (KR) com-
munity for some time. Because these formalisms all have slightly different defini-
tions, for simplicity of presentation we refer to this pattern as reasoning from gener-
alizations with exceptions.

Writers of that era noted that this reasoning pattern is easily learned and under-
stood by humans, but designing a software tool to manage knowledge in this form 
proved to be a challenge. The reader likely can see that converting the sentences to 
an obvious first-order logical form immediately creates an inconsistency. (Christmas 
day is not bleak, because it is Christmas, yet Christmas is also bleak because Christ-
mas is a winter’s day and winter’s days are bleak.) The KR community persisted in a 
search for a quasi-logical solution for some time, perhaps because numerical proba-
bilities had been dismissed as “inadequate for artificial intelligence” (McCarthy and 
Hayes 1969), or perhaps because ordinary persons understand the intended meaning 
this inference pattern without needing to collect statistics.

The initial formalisms proposed by the KR community were received enthusi-
astically by the AI community after performing well on small examples, but in due 
course side effects revealed themselves. Attempts to eliminate them resulted in a 
regression whereby the repairs just pushed new side effects out elsewhere. We pre-
sent a detailed example of this in Appendix 1.

Kyburg’s epistemological probability (1983) treats generalizations as statisti-
cal statements. He proposes that sentences of probability (say) 0.95 are practical 
certainties, (certain for practical purposes) and posits that two practical certainties 
cannot be conjoined unless the resulting conjunction is also a practical certainty. 
His work did not suffer from the technical problems mentioned earlier (see Appen-
dix 2, which explicates Kyburg’s ideas in some detail.) The Imitation Game then can 
be understood as follows: witness and interrogator build practical working under-
standings of a problem and a goal. Each participant may have a slightly different 
understanding but where this creates problems, the parties can then better align their 
understandings through discussion. Even then, alignment need not be perfect, just 
sufficient to move the task forward (Neufeld and Finnestad 2020).

The discussion between the interrogator and the witness about winter’s days and 
Christmas provides an example of how generalizations with exceptions are handled 
in ordinary dialogue.

The way this knowledge would typically play out in the discussion of a KR for-
malism is that an agent would have background knowledge of two practical certain-
ties: the generalization about winter’s days (“Winter’s days are bleak”), and the gen-
eralization about Christmases, which is an exception to the previous generalization 
(“Christmas is not bleak”). It would also contain the categorical fact that “Christmas 
is a winter’s day”. After constructing the inference machinery, a question and answer 
scenario would be expected to play out as follows. The answer to the question “Is a 
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winter’s day bleak?” should be “yes”, as would be the answer to the question “Is a 
December day bleak?” The answer to “Is December 19 bleak?” would also be “yes”, 
since December 19 is a winter’s day and the exception cannot be applied in these 
cases because the antecedent (Christmas) is unknown or known to be false. The 
question “Is Christmas bleak?” could be answered yes or no, because either practical 
certainty could be applied. However, it is generally agreed that given two practical 
certainties to choose from, one should choose the one based on the narrowest class. 
So, the answer to this query is “no”. This can continue through many levels. If it is 
also known that Christmas 1946 was bleak, the answer to the previous question will 
still be no, because the rule about Christmas is the narrowest that can be applied. 
But the answer to “Was Christmas 1946 bleak?” will be “yes”, not because that day 
was a winter’s day, but because in this case, “Christmas 1946 was bleak” is the nar-
rowest statement that can be applied.

Kyburg justifies the rule about choosing the generalization based on the narrowest 
class by introducing a notion of epistemological randomness. Given the two practi-
cal certainties above, one can assume that if a winter’s day has been selected, it has 
been randomly selected if there is no information to contradict that assumption of 
randomness. If the day selected is known to be Christmas, then the broader generali-
zation cannot be used because it can no longer be assumed to be random. However, 
it can be assumed to be a typical Christmas day. We remark that Kyburg’s treatment 
has other nuances that we do not address here, some of which appear in Appendix 2.

We now show that in the present witness/interrogator interaction, the use of gen-
eralizations with exceptions plays out in ways far more sophisticated than the ques-
tion/answer format just described.

4  Reasoning About Reasoning

At the end of the dialogue fragment, the witness goes beyond reasoning with domain 
knowledge and/or reasoning from generalizations with exceptions to challenge the 
reasoning style of the interrogator (“I don’t think you’re serious”), and then explains 
the witness’s thinking (“By a winter’s day one means a typical winter’s day, rather 
than a special one like Christmas.” (Emphasis ours.)).

This is called meta-reasoning. The parties might be thinking as follows: The wit-
ness believes the interrogator is baiting him or testing him by presenting a possibly 
foolish or playful argument, so the witness says so (“I don’t think you’re serious”). 
The witness believes that the interrogator is trying to argue that because winter’s 
days are bleak, and Christmas is a winter’s day, and Christmas is special, a winter’s 
day can be special and being compared to a winter’s day need not be objection-
able. This is true, but then the witness clarifies what is meant by “a winter’s day”—
namely a typical (or randomly selected) winter’s day, in effect instantiating the rule 
for reasoning about hierarchies of exceptions.

There are other plausible ways to model this conversation. In another context, 
the interrogator might not be aware that Christmas is not a typical winter’s day. In 
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that setting, the witness might drop the sharp remark, “I don’t think you’re serious”, 
and, in the process of building a better practical working understanding, just gen-
tly remind the interrogator about the nature of generalizations and the exceptional 
aspect of Christmas. This also reinforces the collaborative nature of speech: as an 
issue arises, the parties work to align their working understandings.

Meta-reasoning arises in AI treatments of user modelling (van Arragon, 1991). 
Tutoring software, for example, might try to construct a practical working under-
standing of the possible mental model of a student who has given an incorrect 
answer to a problem. This makes it possible for a tutor to go beyond understanding 
that the student’s answer is wrong and begin a collaborative process that can trou-
bleshoot the student’s mistake. However, as Turing’s example shows, meta-reason-
ing arise whenever two agents differ.

5  A “Practical” Application

Turing’s conversational fragments may not resonate with engineers looking to create 
practical products for the marketplace. To address this, we take the Imitation Game 
from Turing’s drawing room to the modern office where the task at hand is main-
taining an employer’s calendar via email instructions, since digital assistants are 
presently so popular (but limited). Where Turing’s witness focused on the goal of 
sustaining an academic discussion, our assistant’s ultimate goal is scheduling—and 
keeping clients happy. Anyone who’s enjoyed the benefit of a good administrative 
assistant knows how challenging this is.

Here is dialogue from a setting where the responding party (if a machine) would be 
considered to be doing well at the Imitation Game. The backstory is that Susan, who 
lives near Mike, wishes to share with Mike information regarding the death of a former 
neighbour. Unbeknownst to Susan, Mike has decided to get off the grid and asked his 
assistant, Eleanor, to manage his personal email, and has issued the following instruction:

I don’t want to be interrupted while I’m away,
Unless something important comes up.

This is not an uncommon instruction to give an assistant, and it follows the pattern 
of a generalization with exceptions, a different analysis to that discussed in (Neufeld 
and Finnestad 2020). The pursuant commentary on the dialogue was crafted to illus-
trate the structure and variety of inferences in such an ordinary task. Though such 
a discussion could go in any number of directions, we illustrate a path whereby the 
parties arrive at a shared understanding and get to the goal of signing off.

Susan writes Mike:

Dear Mike:
Anne asked me to tell the neighbours that Peter died after a struggle with cancer.
Susan
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Eleanor replies:

Dear Susan,
This is Eleanor, I’m answering Mike’s email while he’s away. He’d planned 
to take a few extra days and get off the grid, but I can contact him if you wish. 
Has a date been set for a funeral or celebration of life?
Eleanor

Eleanor may have inferred from the fact that Susan informed Mike that Peter died 
“after a struggle with cancer” that Mike may have been unaware that Peter had cancer, 
implying some distance in their relationship. Or this may be her standard response. At 
this point, it doesn’t really matter. Susan knows Mike well enough to understand from 
Eleanor’s response that Mike has handed over his personal emails to Eleanor. From 
Eleanor’s response “I can contact him if you wish”, Susan infers Eleanor has cho-
sen not to immediately forward Susan’s message to Mike, whatever the reason. Thus 
implied communication has already taken place. But note that Eleanor delivers the 
message with an implicit invitation for Susan to present a case for an exception.

Susan replies:

Dear Eleanor,
Thanks for your speedy response. Anne and Peter lived across from Mike 
until two years ago, but I couldn’t say how close they were to him.
Susan

Susan responds to Eleanor’s implied question with straightforward factual informa-
tion that Anne and Peter were Mike’s neighbours, which could be interpreted as an 
implied request to Eleanor to use this new information, along with her knowledge 
of Mike, to make the call as to where Mike is on the continuum between those who 
would get to know their neighbours and those who would not, and act on it.
In the answer below, Eleanor (perhaps) judges that the gregarious Mike would 
know his neighbour well, enough to trigger an exception, and now explains her 
reasoning:

Dear Susan,
If they lived just across the street, Mike would be close to them. Send me the 
dates and I’ll forward the message. Have a good day.
Eleanor

If Eleanor were a digital assistant playing the Imitation Game, her perfor-
mance would compare favourably with that of Turing’s witness, and would be 
qualitatively superior to current consumer level digital assistants. Moreover, 
Eleanor uses reasoning patterns similar to those of the witness. (Note: the astute 
reader might have noticed the possibility that digital Eleanor may have goofed by 
interpreting ‘close’ as a measure of distance. In this setting, Eleanor gets away 
with the error; in another, she might not.)
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6  Arguments Against the Imitation Game from Computer Science

Despite the possibilities a machine capable of playing the Imitation Game well 
would offer in practical settings, many arguments have been advanced against the 
Game within the computer science and artificial intelligence communities. These 
arguments do not reflect disagreement with Turing’s wish to sidestep the tricky mat-
ter of defining intelligence. Rather, all three positions presented here raise questions 
about the practical benefits of pursuing the Game in order to achieve such objectives.

7  Levesque: The Imitation Game is Too Easy

Levesque’s (2011, 2014, 2017) objection is that the Game incentivizes deception: 
the computer can succeed by fooling observers into thinking it is human. Levesque 
references the ‘trickery’ and ‘evasiveness’ of the chatbots in the Loebner compe-
tition and others, writing that they respond with “elaborate wordplay, puns, jokes, 
quotations, clever asides, emotional outbursts, points of order. Everything, it would 
seem, except clear and direct answers to questions” (Levesque 2011).

We have discussed Levesque’s argument in detail elsewhere (Neufeld and 
Finnestad 2016a, b) but sum it up here as follows: In describing the Imitation Game, 
Turing suggests certain protocols may have to be followed so that a machine doesn’t 
immediately give away its identity, say, by doing a difficult calculation in a fraction 
of a second. Pausing for a few seconds, or pretending to backspace and correct a typ-
ing error, is in keeping with other protocols like communicating by teletype rather 
than speech and not being visible to the interrogator; the machine uses deception to 
hide the fact it is a machine. But nothing in Turing’s work suggests that the machine 
use deception to disguise the fact it isn’t intelligent; to the contrary, Turing’s frag-
ments demonstrate his high expectations for “satisfactory and sustained” responses.

Levesque’s critique is constructive and proposes an interesting alternative to 
the Imitation Game, the Winograd Scheme Challenge (WSC), a exam of cunning 
multiple-choice questions that forces the machine to concisely answer the questions 
posed to it. A WSC question has two forms that differ by a single word, and for each 
question-form, only one of two possible answers is correct.

In the example below, one form of the question omits the word in brackets; the 
other omits the word preceding it. The answers corresponding to each form of the 
question follow.

 The trophy would not fit in the brown suitcase because it was too big (small). 
What was too big (small)?

0: the trophy.
1: the suitcase.

It the trophy would not fit in the suitcase because it was too small, it must refer to 
the suitcase; alternately if the trophy would not fit in the suitcase because it was too 
big, it must refer to the trophy.
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A pronoun should replace a noun only if its referent is unambiguous, but this 
often requires the reader to understand the full meaning of the sentence. Some refer-
ents can be easily guessed using just number (“Mr. Smith did not hire Adair gradu-
ates because they hadn’t studied analytical geometry”) or gender (“Mr. Smith defi-
brillated Ms. Jones after her dramaturg contracted reflexive sympathetic dystropy”). 
WSC questions should be easy for a human to answer, but hard enough that a 
machine needs to understand the sentence’s meaning. Getting the correct answer 
requires ‘thinking it through’, claims Levesque.

This prevents chatbot-type trickery, but the flipside is that the one-word answers 
gives little insight to the judge trying to determine whether the machine actually 
‘thought it through’, or can sustain an discussion.

That said, Levesque’s constructive proposal has already inspired an international 
competition, which, though not as entertaining as the Loebner competition, has 
potential to generate useful milestones towards the Imitation Game.

8  Ford and Hayes et al.: The Imitation Game is Too Hard

Over a period of time, Ken Ford, Patrick Hayes and other co-authors (Ford and 
Hayes 1995; Ford et al., 2016) have put forward a theory of cognitive orthoses (pre-
vious called cognitive prostheses) as an alternative to the Imitation Game, a program 
very different from that of Levesque and with different motivation.

These authors argue very strongly against the Game. The Game creates a regres-
sion: it avoids the problem of defining ‘intelligence’ but introduces the problem of 
defining what it means to “do well”. They (1995) also state that the Imitation Game 
tries to detect that there isn’t a difference between two behaviours, that is, it tries to 
confirm the null hypothesis. Additionally, they believe that it is also necessary to 
‘judge the judge’: in judging the witness, one must also consider whether the judge 
was clever enough to ask sufficiently telling questions. This means the skills of the 
interrogator must be measured, which means the idea of ‘telling questions’ must 
also be formalized. (This could also be an argument against the WSC!).

They do make the interesting observation that at the time Turing was working, the 
ability to perform mental arithmetic, now considered mechanical, was evidence of 
intellectual ability, thus introducing a ‘shifting sands’ argument against the Imitation 
Game: as AI software improves, so will the ability of judges to detect flaws in the 
behaviour of nonhuman machines, and consequently, machines may never be judged 
as doing well at the Game. (This may occur at a subconscious level, analogous to the 
“uncanny valley” (Mori, 2012) experienced by consumers of computer renderings 
of humans and virtual reality (Lanier 2017).) Ford and Hayes do not mince their 
words: the Imitation Game “is not a sensible goal for Artificial Intelligence”; it may 
be “actively harmful”.

They go on to say: “Whether or not he intended it, [Turing’s] insight that tech-
nology might … reach a kind of divine power almost certainly played a key role 
in motivating early AI projects.” However, they say, the time has come to “distin-
guish legend from science.” Where Levesque felt the Imitation Game was too easy 
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to game, Ford and Hayes feel the Game aims at something almost godly that will get 
only harder with the passage of time.

Ford and Hayes fortunately offer a constructive direction in which to take AI 
instead: the production of cognitive orthoses—devices that amplify our own cog-
nitive abilities, the way eyeglasses improve our vision. This computational goal is 
“now and near, a computational Golem is not”. For example, though services like 
Alexa, Siri and autocorrect are a far cry from ideal, they are much better than would 
have been imagined thirty years ago.

We like the metaphor of Ford and Hayes—it is not that different from human-
in-the-loop computing, where software and humans work as a team. The machine 
handles the heavy-duty computation, and the human communicates hunches through 
an interface as to how to direct the computation, and both tasks are easily managed 
on modern consumer hardware. For an example, see (Núñez Siri et al. 2020). How-
ever, we don’t see that this idea obviates the value of the Imitation Game. In fairness 
to Turing, the arguments from Ford and Hayes about the vagaries within the Game 
also apply to cognitive orthoses. Who judges, and by what criteria, whether a piece 
of software has succeeded as a cognitive orthosis or not? At the extremes, a case can 
be made that every reasonably good piece of software amplifies some cognitive abil-
ity, and often, another case that every piece of software stunts some other cognitive 
ability: software still often forces the user to trade efficiency for the ability to handle 
special cases. In that case, everything is a cognitive orthosis, or nothing is, or any-
where between.

9  Stuart Russell: The Imitation Game is Terrible

Stuart Russell is well-known in the AI community as the co-author of Artificial 
Intelligence: A Modern Approach (Russell and Norvig 2009), a comprehensive and 
practical treatment of Artificial Intelligence that is also one of most widely used 
undergraduate/graduate textbooks. A scholar in his own right, he is Vice Chair of 
the World Economic Forum’s Council of AI and Robotics, and he has worked with 
the United Nations. These credentials suggest that he has a good understanding of 
the state of the art in AI at this time and the likely rate of progress.

However, we found Russell’s precise position on the Imitation Game difficult 
to understand. He (2019) characterizes the Imitation Game as “a thought experi-
ment designed to deflect skeptics who supposed machines could not think in the 
right way, for the right reasons, with the right kind of awareness.” We couldn’t agree 
more, but then he plainly says Turing’s Imitation Game is “a terrible definition to 
work with”, and add that researchers instead are pursuing the automation of rational 
behaviour. But then, in an unexpected twist, he says that one of the first major break-
throughs required to achieve this goal is understanding language and common sense: 
practically a restatement of the Imitation Game.

In any case, Russell is highly optimistic about AI’s future, suggesting superintel-
ligent computers may appear within the lifetime of his children, making him just 
a little more conservative than Turing, who in 1951 estimated completely open-
ended conversation would take at least 100 years to achieve. Russell doesn’t express 



649

1 3

Imitation Game: Threshold or Watershed?  

interest in language as an interactive tool for collaborative planning, but he believes 
it has great value as a way for machines learn quickly. He writes, “A machine that 
really understands human language would be in a position to quickly acquire vast 
quantities of human knowledge”, as opposed to learning concepts from sensor data. 
He points to Project Aristo, which aims to build systems that can pass science exams 
after reading textbooks and study guides. He provides the following test question:

Fourth graders are planning a roller-skate race. Which surface would be the best 
for this race:

(A) Gravel
(B) Sand
(C) Blacktop
(D) Grass

This resembles Levesque’s WSC questions. Once the machine has read its text-
books, it must ‘work out’ that a roller-skate race is a race between people and not 
roller skates, and that the surface referred to is the racing surface, not where spec-
tators will sit. It is difficult to see how this process differs from Turing’s witness 
or Eleanor, albeit in other domains, and, as with the WSC, there is no way to tell 
from the answer whether the machine ‘worked it out’. Although the test question is 
a basic science word problem, Russell’s description of the machine’s reasoning sug-
gests that the machine needs a broad base of common-sense knowledge to clearly 
understand the problem before choosing its answer.

Where to from here? Russell’s imagination is not limited by Aristo. As one goes 
through Human Compatible, one finds fodder for a thousand novels as Russell plun-
ders the treasure chests of philosophy and psychology from Aristotle to Kahnemann, 
explaining the potential and perils of future superintelligent machines as they tackle 
challenges where the stakes are far greater than the parlour conversations of Turing’s 
witness, or the calendar of Eleanor’s office. To sketch one scenario, Russell posits 
that an intelligent machine’s first priority must be to accomplish its master’s goals. 
But a self-driving car taking its master to the airport shouldn’t have to be reminded 
to obey laws and drive safely. Perhaps the robot assistant needs a social conscience. 
Or does it? Might the self-driving car skate as close to the edge of the law as pos-
sible, driving with wild abandon if that benefits its master? In fact, might it advance 
its master’s position illegally if it can do so without getting caught? Might this 
extend to the political sphere?

There is also the thorny problem of decision-making under uncertainty. Will the 
superintelligent pilot of a self-driving Phantom 309 swerve to miss a full school bus, 
sacrificing itself, its human copilot and its valuable cargo? Would it allow the human 
copilot to override its decision? Questions like these are bound to arise in the discus-
sion of self-driving cars.

Where certain AIers have suggested these kinds of possibilities are just around 
the corner, Russell is candid about the challenges ahead. One repeatedly reads in 
his work sentences like: “AI researchers are only just beginning to get a handle on 
how to analyze even the simplest kinds of real decision-making systems, let alone 



650 E. Neufeld, S. Finnestad 

1 3

machines intelligent enough to design their own successors. We have work to do.” 
And again, “the robot butler, managing the household with aplomb and anticipating 
its master’s every wish, is still some way off—it requires something approaching the 
generality of human-level AI”.

Russell implies that these machines will not only be smart, they will be super-
smart, and super-fast, so much so that we may need to take steps in advance so that 
they do not become our masters. Yet we ask: apart from the high stakes they are 
playing for, are Russell’s machines so different from our Eleanor, who would be 
expected to be good at a relatively straightforward task that requires good interaction 
skills. Might Russell’s machines ‘merely’ need Eleanor’s understanding of the world 
to bootstrap themselves into a position of authority? Will Eleanor eventually take 
over the office and then the world?

As we approach the divine, the devil seems to be in the details.

10  Where Does Eleanor Fit In?

Just as Turing’s witness must understand whether a particular metaphor will be 
interpreted as a compliment, Eleanor while dealing with Susan must somehow have 
prior knowledge that a funeral is a meaningful event in the life of a community. She 
also should know that it is inevitable in the life of an individual. That is, death is 
on the one hand a significant event, and on the other, ordinary. That sounds hard-
hearted, but Eleanor must be able to gauge how important this event is to Mike at 
this particular moment.

There are other complications. Is Mike absent because he is on the verge of phys-
ical and mental collapse from the rigours of his high-pressure executive position 
and desperately in need of rest? Or is he just headed to Vegas with friends for a few 
days? How great a knowledge base do we need to enumerate enough possible states 
for Mike that an automated version of Eleanor can do reasonably well at calibrating 
Mike’s needs?

If Mike is to be notified of all deaths, that solves one problem, but consider all 
possible events that Susan or another caller might communicate to Eleanor: a cancer 
diagnosis, a change in the weather, a birthday, a divorce, the loss of a set of keys, 
the disappearance of a pet, a bargain. We’d wager that a few of these events bring a 
complete scenario to the reader’s mind. How many such scenarios need to be explic-
itly enumerated and added to the knowledge base and at what level of complexity? 
Might it be possible to template or generalize them for the purpose of efficiency? If 
so, how are unanticipated scenarios slotted into the templates?

So far, we have only talked about how Eleanor should gauge Mike. Suppose Mike 
is given a different portfolio. Would a general-purpose Eleanor have to be able to 
learn the unique preferences of a new supervisor? Or the new portfolio?

The amount of necessary background information becomes staggering as soon as 
one leaves the toy examples, and so far, we are just discussing how Eleanor will deal 
with a single instruction.
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Turning to the problem of designing Eleanor’s reasoning, we also note that the 
three patterns of inference discussed earlier—implied information, generalizations 
with exceptions and meta-reasoning—are not easily disentangled. Let’s revisit 
the point where Turing’s witness says, “It wouldn’t scan”, rather than, “No. It 
wouldn’t scan.” Here is a sketch of a possible deep representation of the background 
knowledge:

The witness, in replying to the interrogator, assumes that the interrogator is using 
a generalization about meta-reasoning along these lines:

If there is no clear binary answer given to a binary question.
Then infer the answer from the context of the reply.

A generalization like this may have an exception. For example:
If there is a one-word response to a binary question of negative polarity,
Ask the respondent to clarify.

In the case of Eleanor, the exception would help her respond to a superior asking 
‘Aren’t you going to answer Susan?’, where a simple ‘yes’ could mean ‘yes, I am’, or 
‘yes, I’m not’, depending on whether the respondent is replying with the truth-value 
of its situation or with the polarity used in the question.

Clearly the inference engine is getting complicated, too.
Earlier we mentioned that Searle (1980) famously poses problem of an agent 

(himself) who receives queries written in a foreign language he doesn’t understand, 
which he answers by looking up the question in a massive rule book and copying the 
answer. Is the agent intelligent?

Searle answers no, because the agent doesn’t understand what is transpiring 
even though an observer, unaware of the internal workings, would judge the agent’s 
responses as indistinguishable from those of a native speaker of the language.

Levesque (2009) responds “There’s no such rule book!” We agree! But we (Neufeld 
and Finnestad 2016c) suggest that if the agent is perceived to be doing well, the Imita-
tion Game has been solved whoever or whatever wrote the rule book! It’s a homunculus 
problem! In which case, we’d concede that the agent also passes the Imitation Game, 
even if the agent is unaware of what is being accomplished. However, the point of the 
Imitation game is precisely to get away from notions like consciousness and awareness.

But then, is Eleanor possible? Is there no such rule book (knowledge base) to 
guide her modest tasks? The preceding discussion suggests that writing a manage-
able number of typical scripts, given the variety of human experience, would at the 
very least be difficult.

Back to Ford and Hayes, if Eleanor’s wrong decisions do not have significant 
impact beyond mildly inconveniencing Mike, it might be possible to build a use-
ful syntactic Eleanor that acts as a cognitive orthosis for Mike that does well often 
enough, but is unpredictable in unfamiliar situations, as are the present generation 
of voice assistants and tools like auto-correct. A general-purpose Eleanor that can 
consistently respond to emails as illustrated, to use Russell’s expression, appears 
to be a long way off. We have to concede that while epistemological probability 
avoids problems created by using ordinary logic to construct practical working 
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understandings, a closer comparison of Eleanor and Russell’s machines (see (Shotter 
2019; Trausan-Matu 2019)) suggests there is much more at play in these examples.

11  Conclusions

The Imitation Game raises many questions; the arguments sometimes seem to go in 
circles. But we are practically(!) certain of the following.

The game doesn’t harm progress. The world’s largest corporations have 
invested heavily to develop computational prowess at chess, Go, Jeopardy, and 
making hair appointments (Leviathan and Matias 2018), even though there has 
been little, if any, success at creating an agent as capable as Turing’s witness. 
This fact alone speaks volumes. Clearly, the challenge has inspired much com-
puter science and philosophy.

Turing’s Game needs no significant redefinition. Certainly he put forward his 
ideas in plain language at a different time, and, if pressed, we might rephrase it in 
more contemporary language by saying that a machine can be judged to have done 
well at the Imitation Game if it consistently judged to be human after engaging in 
sustained conversation. But it is likely Turing was very careful in his description of 
the Game. The fundamental model of computation named after him is the corner-
stone of computability theory, and the Church-Turing Thesis (Kleene 1952), which 
also bears his name, states that a function on the natural numbers can be calculated 
by an effective method if and only if it is computable by a Turing machine. Turing 
also understood the limits of computing (Turing 1936), by demonstrating impossi-
bility of the halting problem. Nor was he naïve about probability and statistics, hav-
ing collaborated with I.J. Good at Bletchley Park on what is now called Good-Turing 
frequency estimation (Good 1953) (which curiously has found its way into recent 
work in statistical linguistics). Thus, it is practically certain that when Turing in his 
1950 paper repeatedly used the phrase “doing well at the Imitation Game”, he was 
carefully articulating a problem description based on an extraordinary background 
in mathematics and computation. His game is not so different from the idea of judg-
ing “the realism of an artificial image”, which cannot be measured, yet photorealistic 
computer graphics thrives as practitioners deepen their understanding of how light 
interacts with surfaces and how the human perceptual apparatus responds to the ren-
derings produced by computers.

There is no need to ‘shut down’ any other avenue of investigation. Embodied 
intelligence, for example, takes on new meaning when one reads of spiders and mice 
awkwardly adjusting to life in zero gravity on the International Space Station (Kelly 
2017; Wired 2011). Consider the size of a spider’s embodied brain, then consider 
the approach to the hungry-monkey/banana problem (Feldman and Sproull 1977) 
which includes lots of LISP code. Nothing in that approach would help a cyber mon-
key reach the banana in zero gravity if no chair was available.

It is reasonable to ask whether the Imitation Game defines a watershed, rather 
than a threshold towards which researchers can consistently expect make incremen-
tal progress. Given watersheds in complexity, researchers have successfully found 
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ways to mitigate the practical and theoretical challenges of provably hard problems. 
Calude (2018), for example, looks at probabilistic approaches to the halting prob-
lem. One might even consider the area of software testing as discovering heuris-
tics to solve the undecidable problem of program correctness. But can they always? 
While there is no proof that humans are more powerful than Turing machines, there 
is no proof that they are not.

Whatever the ultimate outcome—whether success is finally achieved, or if a clear 
reason is identified that explains the difficulty—it will offer an interesting insight 
into the nature of human thought.
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Appendix

Appendix 1: Representing Generalizations with First Order Logic

Summing up the problems encountered during a decade of research necessarily 
requires oversimplification. We begin with a classic example:

Chilly-Willy is a penguin.
Donald is a duck.
Penguins are birds.
Ducks are birds.
Birds fly.
Penguins don’t fly.

We leave it to the reader to observe that by combining different subsets of this 
knowledge base, we can show that Chilly-Willy flies, and that Chilly-Willy does not 
fly. We can eliminate one of these conclusions by designating “birds fly” as a gener-
alization, and adding a rule that an instance of a generalization can only be applied 
if the set of all sentences used cannot be made to generate a contradiction. We can 
still use an instance of the generalization to conclude Donald is a bird and can fly. 
These sentences allow other interesting inferences. For example, taking contraposi-
tive forms, we conclude that if it flies, it’s not a penguin, and if it’s not a bird, it’s not 
a duck. In this setting, the contrapositive forms make sense, but that isn’t always the 
case.
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Now suppose, ducks are different from most birds in that they have webbed feet. 
To fully incorporate this into the database, we add the following:

Chilly-Willy is a penguin.
Donald is a duck.
Penguins are birds.
Ducks are birds.
Birds fly.
Penguins don’t fly.
Birds don’t have webbed feet.
Ducks have webbed feet.

Again, this seems reasonable. But suppose we add one more sentence.

The only birds are ducks and penguins.

Although it seems unreasonable to say every bird is either a duck or a penguin, this 
gives a compact counterexample. Let’s explore the problem with the compact coun-
terexample, then generalize to something more reasonable.

The counterexample goes as follows. Let Foghorn be a bird. Birds typically fly, so 
if Foghorn flies, Foghorn can’t be a penguin. Because everything is either a penguin 
or a duck, Foghorn is a duck and has webbed feet. Using the same trick, we can put 
together a different set of sentences and conclude that Foghorn is a penguin and 
can’t fly.

Here is a fuller counterexample. Let there be 1000 kinds of birds. Each kind is dif-
ferent from a typical bird in some way, but otherwise is a normal bird. (If the kind has 
no distinguishing feature from other kinds, how can it be a kind?) Plus, we have the 
clause that every bird must be one of the 1000 kinds. Using 999 of the generalizations 
contraposed, we can rule out that Foghorn is not any of those 999 kinds, and therefore 
must be the remaining kind and be unique in the way the remaining kind is unique.

Some readers will see this as a variation on Kyburg’s lottery paradox, others as 
a variation on Simpson’s paradox. Either way, the simple reasoning pattern initially 
proposed has collapsed. This result is our interpretation of (Poole, 1989).

Appendix 2: What Practical Certainty Buys Us

The idea of practical certainty lets us hold as beliefs a set of sentences, which writ-
ten as a conjunction would contradict some fact. The classic example is a lottery, 
where the purchaser buys a numbered ticket, and only one number wins, as opposed 
to modern lotteries where the purchaser can choose their numbers. It is reasonable 
in such a lottery to believe, for each ticket, that it will lose. But it is not reasonable to 
believe that no ticket will win, since by construction a winner is drawn. (For an argu-
ment that this still holds for the modern lottery, see (Neufeld and Goodwin 1998)).

To keep the calculations simple, let’s suppose there are 20 unique tickets in the 
lottery. This means that the probability any ticket will lose is 0.95. Thus, it is prac-
tically certain that each ticket loses. Suppose an individual buys two tickets. The 
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probability that both tickets lose is 0.9 – this is not a practical certainty, but a prob-
ability. In this situation, we cannot combine two practical certainties into a conjunc-
tion that is a practical certainty.

As the number of tickets gets large, one can be practically certain that if two tick-
ets are purchased, both will lose.

Applying this to the previous ‘bird’ example, we can’t treat the conjunction that 
Foghorn is not any one of 999 kinds of birds as a practical certainty. This prevents 
the collapse of the formalism, but also limits the formalism’s inferential power.

We remark that the example above assumed buying tickets without replacement, 
which simplified the calculation. More generally, let A and B be any two events of 
probability 0.95. Thus each is a practical certainty. Using the basic identity.

P(A&B) = P(A) + P(B) – P(A or B).

(where P is probability) the probability of the conjunction could be less than 0.9 
because P(A or B) might be 1.

However, if A and B are two arbitrary events of probability 0.99, we can show the 
lowest value of their conjunction is 0.98 using the same formula, even if the prob-
ability of the disjunction is unity, and the conjunction is a practical certainty.

Finally, we remark that the theory of epistemological probability has many 
nuances. A reader of an earlier draft of this paper asked the following. If 1% of ticks 
carry Lyme disease, then 99% of ticks do not, and thus it is practically certain that 
ticks do not carry Lyme disease. This is a knowledge engineering problem worth 
delving into.

We will use natural language representations of the knowledge rather than intro-
duce a new formalism. To begin with, suppose a data collector has written “Of 300 
ticks examined near Gormley Wood, 3 carried Lyme disease”. This might be trans-
lated to “The probability of any particular tick carrying Lyme disease is between 
0.009 and 0.011”, the interval accounting for all manner of uncertainty about how 
the data was collected. Next we learn, “Alice Butterwick noticed a tick on her dog 
Mollie after a walk through Avon Gorge.” From the statistical data, Alice can infer 
that “the probability the tick on Mollie has Lyme disease is about 1%” (this is lift-
ing) and therefore be practically certain that that tick does not carry the disease. If 
three hundred dog-owners visit the Gorge every day, it is practically certain some-
one’s pet will pick up a tick carrying Lyme disease. Similarly, if Alice visits the 
Gorge with Mollie three hundred times, Mollie is likewise certain to be exposed to a 
disease bearing tick.

Alice might feel differently about a beloved let getting Lyme disease than about 
the probability her car will start; in that case she may wish to adjust her level of 
practical certainty. This also brings in the complications of decision theory. If one 
thinks in terms of mundane lotteries (where neither positive nor negative outcomes 
have drastic consequences) rather than diseases, or the commonplace assumptions 
one makes going about daily business, the conclusions reflect common sense.
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