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Abstract
This paper attempts to describe and address a specific puzzle related to composi-
tionality in artificial networks such as Deep Neural Networks and machine learn-
ing in general. The puzzle identified here touches on a larger debate in Artificial 
Intelligence related to epistemic opacity but specifically focuses on computational 
applications of human level linguistic abilities or properties and a special difficulty 
with relation to these. Thus, the resulting issue is both general and unique. A partial 
solution is suggested.

Keywords Compositionality · Deep Neural Networks · Deep learning · machine 
learning · Epistemic opacity · Artificial Intelligence

1 Introduction

The principle of compositionality is a widely endorsed claim about the nature of 
natural language semantics. Although its precise definition is a matter of debate, its 
intuitive appeal is unassailable within linguistics, cognitive science, and philosophy. 
The present work aims to question its further applicability to the field of Artificial 
Intelligence (AI) with specific focus on research into machine learning and artifi-
cial neural network architectures. In this paper, I present a puzzle for applying the 
principle of compositionality to artificial networks such as Deep Neural Networks 
(DNNs) with hidden layers. The puzzle concerns the identification of meaningful 
parts, which I argue is essential for semantic compositionality, within the overall 
network structure.

There has been a recent upsurge in work related to whether or not artificial net-
works used in machine learning can indeed capture compositionality (often assumed 
to be a property of human language competence) (Pinker 1984; Fodor and Pylyshyn 
1988; van Gelder 1994; Marcus 2003; Baroni 2019). However, it is not always clear 
what the exact target of these computational models are (compositional output or 
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compositional input or something in the process itself). Therefore the layout of the 
paper is as follows. In Sects. 2 and 2.3 respectively, I describe the principle of com-
positionality discussed in the literature and aim to clarify some conceptual confu-
sion surrounding the concept. In Sect. 3, I discuss the problem of epistemic opacity 
in AI more generally before presenting a unique puzzle related to Artificial Neural 
Networks and their application to natural language in Sect. 4. I conclude with a sug-
gestion of where one might begin with an answer to this puzzle.

2  Compositionality

As mentioned at the onset, there is no universally agreed upon definition of compo-
sitionality for natural language. Although the statement thereof, the so-called prin-
ciple of compositionality, is often referenced, its precise interpretation varies among 
theorists. In this section, I will not aim to provide the much-sought after definition, 
rather I will attempt to identify one necessary component of the principle as it is 
generally understood in linguistics and philosophy. In other words, whichever inter-
pretation you prefer needs to possess this component on pain of omitting something 
essential about compositionality, namely the concept of a ‘meaningful part’.

Essentially, compositionality concerns the nature of semantic derivation. It states 
that the meaning of a whole expression is determined by or somehow dependent 
on the meaning of its parts and their combination. This is taken to mean that any 
change in the whole is the result of some change in the parts or their combination 
exclusively. Many semanticists, following the Montagovian tradition, interpret this 
claim functionally, i.e. the meaning of the whole is a function of the meaning of its 
parts and their combination. We’ll follow some of the lines of this narrative here.

2.1  Some Background

The genesis of the principle of compositionality (PoC) has been linked with the writ-
ings of Frege, hence the term “Frege’s principle” (sometimes used synonymously). 
In ‘Sinn und Bedeutung’ (1908), Frege challenged a simple notion of compositional 
meaning in terms of co-reference (due to Mill), by testing the latter view on the so-
called substitution thesis [often erroneously assumed to be equivalent to PoC, see 
Szabó (2000)]. Yet his distinction between sense (Sinn) and reference (Bedeutung) 
did aim to rescue a compositional account of meaning in some other form, as the 
compositionality of sense.1

1 Janssen (2012) argues that Frege was not the source (nor an adherent) of the PoC. In fact, he argues 
that Frege subscribed to a quite different principle for natural language semantics. Its true origins can 
actually be traced further back than Frege to Lotze, Wundt and Trendelenburg, according to Janssen. 
Hodges (2012) goes further to trace the concept to the works of the tenth century Arab scholar Al-Farabi 
who could have in turn found it in 3rd century commentaries on Aristotle.
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The modern idea of the principle can be found in Montague (1974) and Partee 
(2004) among others and it usually takes the form of the following type of state-
ment, let’s call it the intuitive principle of compositionality:

(iPoC): The meaning of a complex expression is determined by the meaning of 
its component parts and the way in which they are combined.

In the methodology of logic and computer science, it has been considered the stand-
ard way of interpreting formal or programming languages (although alternatives do 
exist).2 Tarski’s (1933) definition of truth for formal languages has a natural com-
positional interpretation (Janssen 2012). Davidson (1967) used what he called Tar-
ski’s T-schema as a basis for a compositional semantics for natural language. In the 
twentieth century the principle was widely adopted in the philosophy of language 
and logic, through Carnap, Quine, Davidson and various others. Now, it has become 
an essential part of most linguistic theories including generative approaches such the 
seminal Heim and Kratzer (1998).

Unfortunately, there is still no consensus on the correct definition of composition-
ality in natural language. Furthermore, it is not clear if it is exclusively a methodo-
logical principle (Dever 1999) or can be empirically tested (Dowty 2007).

Consider the iPoC again. The statement as it stands is both vague and in need of 
clarification. The problem is that there does not seem to be a neutral way of going 
about this clarification.

Nevertheless, in this section, I will attempt to stay as neutral as possible. Start-
ing with the term “complex expression” which will be characterised as a syntactic 
object built up from simple (and perhaps other complex) expressions, as will its sub-
components. We will remain characteristically reticent about meanings and what is 
exactly meant by ‘meaning’ for the moment.

“Determined by” is usually interpreted functionally, which suggests that given a 
syntactic object as an input, a semantic object or value is returned as an output. One 
might worry that this suggests a unique semantic output for every syntactic expres-
sion but in natural language this tends to overgenerate as there are distinct expres-
sions which arguably should be assigned the same meanings. That would be is a 
very strong constraint on meaning. However, such a scenario is not an issue for com-
positionality. Consider the sentences below: 

1. Jimmy threw the ball.
2. The ball was thrown by Jimmy.

2 Propositional logic is a good example of a formal language with a simple compositional semantics. 
The meaning of a formula is a truth value and the meaning of a complex formula is a function of the 
meanings/truth values of its components. Predicate logic is not as simple a matter. Following Pratt 
(1979), we know that “there is no function such that meaning of ∀x� can be specified with a constraint of 
the form M(∀x�) = F(M(�)) ” (Janssen 1997: 498). In other words, the meaning of a universally quanti-
fied formula is not straightforwardly given in terms of a function from the meaning of its parts, at least 
not by means of the standard Tarskian interpretation.
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The sentences above both seem to express the same meaning but consist of different 
lexical items such as the preposition by as well as a different method of combination 
(active vs passive). It is quite apparent from the literature that if the term ‘function 
of’ (when used to interpret ‘determined by’) is to be conceived of in its strict math-
ematical sense, it involves a surjective function.

A stronger interpretation has it that we start from atomic elements and assign a 
meaning to each of those, then define a semantic rule for every syntactic rule. In this 
way, we have a compositional semantic procedure which parallels every syntactic 
one (this is in essence Montague’s homomorphism definition), also called “paral-
lelism”. This approach does not overgenerate, since the rules that combine (1) and 
(2) may be different but along with the meaning of the words they could produce the 
same meaning for the expressions. The functions sqrt and cbrt will both produce the 
number 2 when the input is 4 or 8 respectively. We will be more precise about these 
definitions in Sect. 2.3.3

Two worries might arise here, one syntactic and the other semantic. From the 
syntactic perspective, one might be concerned that a ban on identical syntactic 
expressions with nonidentical meaning follows from the simple notion of compo-
sitionality. “If a language is compositional, it cannot contain a pair of non-synony-
mous complex expressions with identical structure and pairwise synonymous con-
stituents” (Szabó 2007). This amounts to a ban on ambiguity at the sentence level. 
Pseudo-conditionals appear to be in conflict with this condition. Consider the (3) 
and (4) below from Kay and Michaelis (2011): 

3. If you’re George W. Bush, you’re now allowed to lie in the faces of trusting young 
voters.

4. If you’re pleased with outcome, you may feel like celebrating.

It is argued that (3) and (4) seem to have the same syntactic structure and yet (3) 
does not express a hypothetical statement of any kind while (4) is a conventional 
conditional which does. The semantics of these constructions seems to be quite dif-
ferent. “[N]o hypothetical situation is posed; it appears that a categorical judgement 
is expressed [...] and the subject of that judgement is not the addressee but the per-
son identified as x [George Bush]” (Kay and Michaelis 2011: 2). However, it is not 
clear from their example that a hypothetical reading is not possible for (3). The mere 
fact that (3) is truth-conditionally equivalent to a categorical statement is not a good 
argument for such a claim. In fact, so-called “biscuit conditionals”, in which a con-
ditional reading is much less available, might make the point more clearly, as in (5) 
below: 

5. There are biscuits on the sideboard, if you want some.

3 Parallelism has other weaknesses though. For instance, it strongly suggests a building metaphor of a 
step-by-step procedure mapping syntactic combination with semantic interpretation. Possible world 
semantics does not respect this constraint, nor do semantic formalisms with intermediary representations 
like Montague’s Type 2.
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The more semantic worry is brought out by the much-discussed cases of scope 
ambiguity. Consider the example below: 

6. Every boy loves some girl.

There are at least two possible readings of this sentence. The first is that every boy 
loves some girl in the sense that each boy loves a distinct girl. The second is that 
there is one girl who is extremely popular. Given our definition of compositionality, 
we seem to have a violation since the components and method of combination are 
the same and yet the resulting semantic analyses differ.

In terms of the former problem, this situation can be resolved by interpreting the 
statement about method of combination as involving the combination of the mean-
ings of the components and not the syntactic components themselves.

[This] permits the existence of non-synonymous complex expressions with 
identical syntactic structure and pairwise synonymous constituents, as long 
as we have different semantic rules associated with the same syntactic rules 
(Szabó 2012: 70).

The problem of scope ambiguity has been amply addressed in many ways, ranging 
from alternative syntactic combination (the Montagovian solution) and type shifting 
to Cooper Storage (see Cooper 1975) or underspecification. Basically, both strate-
gies allow for the components to be combined differently (albeit at different levels) 
and thus map onto different semantic rules of composition (or at least to be applied 
in a different order). Some question the compositionality of the latter solutions (see 
Lappin and Zadrozny 2000) but I shall obviate that discussion here.

Lastly, what is meant by “component” as it is used here? The convention in the 
literature is to take this to mean constituent. In linguistics, this is a loaded term. 
Usually, it refers to sets of linguistic items which act as structural units in given 
expressions. There are various tests for constituency such as coordination, deletion, 
modification etc. In terms of representation, constituents are the groupings of items 
that appear in the hierarchical tree diagrams of phrase structure grammar. Consider 
the sentence (7) below: 

7. The host speaks to the caterer after the ceremony.

This sentence can be separated into distinct constituents. One can follow phrase 
structure syntax, in which roughly the NP—the host, the VP—the host speaks, 
PP—to the caterer would be constituents. Alternatively, the verb phrase or predicate 
speaks to and its two arguments the host (subject) and the caterer (complement) 
could be considered constituents. This latter strategy is common to formalisms such 
as dependency grammar (see Rambow and Joshi 1992). Items such as After the cer-
emony are sometimes called adjuncts and can float independently of the other con-
stituents (as opposed to complements which are obligatory).

Linguists often interpret compositionality and “components” as not only involv-
ing constituents but immediate constituents or constituents immediately governed by 



52 R. M. Nefdt 

1 3

the node above (i.e. daughters not granddaughters). Immediate constituents “appear 
at the first level in the analysis of the form into ultimate constituents” (Hodges 2012: 
249) or the terminal alphabet at the bottom of the syntactic tree. Therefore, our ten-
tative definition can be modified to incorporate the clarifications mentioned in this 
section, let’s call it the functional PoC.

(fPoC): The meaning of a complex syntactic expression is a function of the 
meanings of its immediate constituents and the syntactic rule used to combine 
these constituents.4

There is of course much more to say on this topic. How is this relationship to be 
mathematically represented (often read as ‘what kind of formal mappings capture 
the PoC’)? Do we need immediate constituents (Szabó 2012)? Does natural lan-
guage even exhibit compositional structure or do humans learn complex partially 
saturatable constructions (see Croft 2001; Goldberg 2015; Jackendoff 2002)? How 
does compositionality relate to the productivity and systematicity of natural lan-
guage? The list goes on. But for our present purposes, this definition highlights one 
core component of the PoC more generally, the notion of parthood via constituency.

2.2  ‘Meaningful Parts’

Whatever the interpretation of the PoC, or terms such as “determined by” [see Szabó 
(2000) for a supervenience reading thereof] or constituent (which differs within syn-
tactic formalisms such as dependency grammar) or even syntactic combination/rule, 
one notable presupposition of the principle is that complex expressions exhibit a 
part-whole structure. Werning (2012) calls this “semantic constituency” or “a cor-
respondence relation between the part-whole relation in the linguistic domain and 
some part-whole relation on the level of meanings” (634).

The insight dates back to Frege, for whom the sense of an expression reveals a 
mereological structure. “We can regard a Sense as a mapping of a thought: corre-
sponding to the part-whole relation of a thought and its parts we have, we have by 
and large, the same relation for a sentence and its parts” (Frege 1919: PW 255). This 
is not the case for reference for Frege.

In order for the meaning of the whole to be generated, determined or rendered, 
there has to be some notion of a meaningful part. Meaningful parts are like the 
atoms which combine to form molecules and ultimately chemical compounds. They 
are identifiable, independent, and separable entities. You could think of these atoms 
as words in the case of language but there is even considerable compositional struc-
ture below the word level. For instance, in derivational morphology, morphemes 
play the role of “meaningful parts”. Consider the word decomposition which is com-
posed of three separate morphemes de, compose and tion. Of course, in morphology 

4 I neglected to give an interpretation of what is meant by “syntactic rule” here. This is a matter of theo-
retical perspective to a large extent. Traditionally, categorial grammars have been used as well as phrase 
structure grammars. However, the options are without obvious limit.
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the meaningful parts are not independent as in the case with words.5 So what is it for 
something to be a meaningful part? Outside of Frege’s idiosyncratic view on mean-
ing, we would need both a concept of “meaningful” and of “part”. Let’s start with 
the latter.

One way to define a part in mereology is in terms of certain formal properties. 
According to Lesniewski (1916), parthood is generally taken to have three such 
properties: 

a. Irreflexivity: ¬Pxx . Nothing is a part of itself.
b. Asymmetry: Pxy → ¬Pyx. If x is a part of y, then y is not a part of x.
c. Transitivity: (Pxy ∧ Pyz) → Pxy. If x is a part of y and y is a part of z then x is a 

part of z.6

Of course, this definition would not give us much traction on part qua constituent 
in linguistics. According to the rationale any part of an expression would be a con-
stituent of that expression. This definition quickly runs into triviality. Consider the 
sentence below: 

8. A man walked into the room with nothing good on his mind.

The way in which such a sentence would generally be compartmentalised into con-
stituents in a neutral (as possible) theory of syntax is something like:

[x[y[a man]walked]z[ intou[the room]]]

Ignoring hierarchical structure and relationships between these syntactic objects for 
the moment, we can see that the three properties of parthood are respected in this 
case. This might potentially lend credence to the idea that constituents are just lin-
guistic parts. But parthood is more general than constituency as shown in the per-
fectly compatible part-whole structure below,

[x[a]y[man walked]z[into]]u[thev[room]]

This division is equally compatible with a notion of parthood but it does not dovetail 
with the idea of constituency. Thus, parthood by itself does not narrow down the 
class of relevant objects enough. However, here the concept of “meaningful” might 
help.

At first blush, we might consider syntax to exhaustively demarcate the domain of 
meaningful parts. Constituents seem to be “natural” groupings of linguistic material 

5 However, the precise definition of word-hood assumed from isolating languages such as English and 
Chinese is not generalisable to agglutinating languages such as Turkish, Yupik and Nguni languages, 
partly due to the vague lines between morphology and syntax in these latter families. See Nefdt (2019) 
for a philosophical view on the difficulty of defining words and Haspelmath (2011) for a linguistic dis-
cussion.
6 In some literature, parthood is defined as a partial ordering, i.e. reflexive, antisymmetric and transitive. 
This allows a part to be a part of itself which when viewed from the point of view of set theory seems to 
invite inconsistencies.
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which act as units during syntactic processes. For instance, they can allow for move-
ment and deletion, 

 8a. Into the room, a man walked with nothing good on his mind.
 8b. A man walked into the room with nothing good on his mind

Whereas neither *Man a walked room into the with nothing good on his mind  nor 
*A man walked into the room with nothing good on his mind works. However, not 
all syntactically relevant groupings are semantically relevant. To see how this is the 
case, consider the Extended Projection Principle (Chomsky 1982) which states that 
languages such as English must possess a subject or more specifically that subjects 
are mandatory in DPs (determiner phrases) even when there is no semantic subject 
or agent in the surface form. Sentences like It is raining, in which “it” is semanti-
cally vacuous, are good examples (the phenomenon of “do-support” in English is 
another example).

Dever (2012) describes the situation with the PoC as a “screening off” process 
from the lexical to the sentential level.

General considerations of the supervenience of the features of wholes on the 
features of their parts do not suffice here: we are asking for determination not 
by all properties of the parts, but only by the specifically semantic proper-
ties of the parts; and we are asking for determination of the meanings of the 
complex expressions, and meanings are extrinsic features of expressions, and 
extrinsic features are typically not determined by features of parts (92).

We do not have to answer the loaded question of ‘what is meaning?’ to make sense 
of the claim here. You could have a separate account of meaning as use (Wittgen-
stein 1953), or inferential role (Brandom 1994),7 concepts (Jackendoff 2002) or 
internal mental instructions (Pietroski 2018). The essential element to all of these 
things is that compositionality requires some concept of a meaningful part, whatever 
meaning turns out to be.8

Thus, I suggest that meaningful parts are going to be those constituents which 
play a significant role in semantic composition. “It” in the sentence “It is raining” 
plays no significant semantic role. The role the part plays determines its meaningful 
status, not only individual features of the parts or syntactic constituents themselves. 
Here the notion of meaning is reduced to an instrumental value. In other words, 
the question becomes which parts are useful to the calculation of the meaning of 
whole expression? Note, these parts could be syntactic constituents, morphemes or 

7 Inferentialism’s “top-down” notion of compositionality might not naturally dovetail with some of the 
remarks made here. They tend to take the sentence as the primary unit of meaning and derive subsenten-
tial semantic value from there. Specifically, Brandom’s account sees language as recursively structured 
but doesn’t see meaning as compositional. See Brandom (2007) for more. I thank Bernard Weiss for this 
observation.
8 Consider Jabberwocky sentences or Chomsky’s Colorless Green Ideas Sleep Furiously, even in the 
absence of knowing what the meaning is, we can still identify what the meaningful parts are (or should 
be).
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partially productive constructions (such as those found in some idioms). Their mem-
bership as semantic or meaningful parts, however, is not determined exclusively by 
these latter features. In order to be classified as a meaningful part, an item needs to 
respect the properties of parthood as well as play a significant role in the meaning of 
the whole expression (whatever you take “meaning” itself to be).

The view presented here does not automatically contradict strong versions of the 
PoC such as parallelism or Montague’s rule-to-rule mappings since semanticists 
can (and do) take these mappings to be represented in terms of partial morphisms 
of some sort. This modification would allow for certain elements of the syntax to 
receive no semantic value. Further discussion of the precise formal relationship 
between syntax and semantics is beyond the present scope [see Pagin and Wester-
stahl (2010) for a few options]. What is relevant here are two principles I take to be 
relatively uncontroversially related by the PoC, the first is required by all versions 
and the second is a specific requirement of what I will call “process compositional-
ity” in the next section.

Meaningful Parts Principle (MPP): For the meaning of the whole to be deter-
mined by the meaning of its parts (and their syntactic combination), there 
needs to be meaningful parts.

The Knowable Parts Principle (KPP): In order to know the meaning of a 
whole expression, we must be able to identify what the meaningful parts are.

Note that KPP does not state that we have to know the meaning of the parts [which 
would be the “argument from understanding” discussed in Szabó (2000)], merely 
that we have to be able to identify what the meaningful parts are by means of the 
roles they play (or some other mechanism).

2.3  Processes Versus States Versus Outcomes

An important but often neglected distinction in the compositionality debate relates 
to the different types of compositionality a system can exhibit.

The most common kind of compositionality discussed in the literature (and the 
discussion above) is what I will call Process Compositionality. The central idea is 
that the property of compositionality is located at the procedural level. What this 
means is that if a compositional procedure, such as a rule-to-rule mapping, is fol-
lowed then the system in question is process compositional.

The PoC discussed above assumes that meaningful parts are composed system-
atically or functionally such that they generate complex or composite meaningful 
expressions. It specifies a procedure for compositional structures. There are vari-
ous ways in which process compositionality can be achieved. Jacobson (2002) for 
instance proposes what she calls “direct compositionality”. In this framework, every 
syntactic constituent must receive a semantic value, or “that for every syntactic 
operation there must be a corresponding semantic operation” (Barker and Jacob-
son 2007: 2). This means that even words like “it” in mandatory subject positions 
in English have semantic values. Unlike some versions of compositionality, which 
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allow for operations to be “held off” until later interpretation in an LF (Logical 
Form) level, direct compositionality insists on immediate semantic resolution of any 
syntactic unit. Importantly, direct compositionality is process compositional in the 
way I am discussing. “[D]irect compositionality is a type of compositionality, where 
(roughly) a theory of grammar is compositional if the meaning of an expression can 
be reliably computed from the meanings of its parts” (Barker and Jacobson 2007: 
2). In other words, there is a procedure for a system to follow in order to qualify 
as directly compositional. If the process does not meet this condition, it fails to be 
such, despite the outcome of the process. For instance, theories which posit quanti-
fier raising (where a quantifier is raised to a higher position in a tree from which it is 
then interpreted) are not directly compositional.

Another attempt at procedural or process compositionality is found Baggio et al. 
(2012). There, the authors attempt to investigate the processing consequences of the 
PoC. They posit that compositionality could be considered as a processing principle 
given a certain concept of modularity in which the language module is “informa-
tionally encapsulated” (in terms of lexicon and syntax) or cognitively impenetrable 
in the parlance of Fodor (1983) and Pylyshyn (1984). They go on to define incre-
mental composition, which starts “from the observation that ‘function’ in the defi-
nition of compositionality needs to refer to some computable input-to-output map-
ping, and that inputs—lexical meanings and syntactic rules or constraints—must be 
given incrementally” (Baggio et al. 2012: 659). Most versions of the PoC assume 
some sort of process compositionality or specification of how the meanings of the 
parts are composed to generate the whole. We’ll see below that this is also the most 
difficult type of compositionality to detect in artificial environments as it requires 
both MPP and KPP.

State compositionality, on the other hand, is a property of a structure identified by 
the possibility of decomposing that structure or state into smaller meaningful units. 
A helpful analogy is a puzzle here. A puzzler might have used particular heuristics 
to construct the overall picture (corners first, left to right, colour matching etc.) yet 
the state of the completed puzzle can be deconstructed (for later reconstruction, per-
haps) in terms of other meaningful arrangements (ignoring the case of randomly 
deconstructing here). The state of a system itself can be said to compositional in this 
sense if it can be subdivided into meaningful parts.

However, state compositionality is theoretically independent of process com-
positionality (although in many cases they do coincide). In other words, it should 
be possible for a compositional process to be followed which results in a non-state 
compositional state. The obvious cases involve situations in which the process is 
interrupted or defective in some way. For instance, you could attempt to build an 
expression from meaningful parts such that at each stage of the process you have 
composed a meaning (incrementally) but at the end of the process the meaning of 
the entire expression is not computable from the meanings of those specific parts. 
Consider the case of a second language speaker who through literal translation stum-
bles upon an idiomatic expression. In such a case, the conventional meaning can 
block the compositional one. For example, if the speaker were to trying to explain 
their activity of solving a math problem in a classroom, they might say something 
like: 
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9. I solved for x, then I went back to the drawing board to solve for y.

The situation elicited by (9) is one in which the sentence means, to an English 
speaker, that the individual started over to solve for y (given the conventional mean-
ing of “back to the drawing board”). But of course, the process compositional mean-
ing merely involves going back to a literal drawing board on which the math prob-
lem was stated. Although the process might have been compositional, the resulting 
sentence is interpretable otherwise.

However, these examples might seem ad hoc or exceptional.9 Evans (1981) dis-
tinguishes between two possible internal systems for constructing a 100 sentence 
list which highlights the more general distinction between process and state com-
positionality well. The first system contains axioms or primitives while the second 
contains composition rules and constituents. He argues that the former unlike the 
latter will be unable to predict the human speaker’s ability to understand previously 
unheard or novel sentences (because it’s not a compositional process). The two 
systems create distinct dispositions, ones which have differing explanatory power. 
Thus, process compositional structures might create dispositions that allow for the 
understanding of novel expressions. This might be why machine learning model-
lers sometimes test for compositional generalisation based on a machine’s ability to 
deal with novel data (as we will see). State compositionality certainly requires MPP 
but only a Weakened version of KPP in which an identification of “some meaning-
ful parts” not necessarily those used in the actual computation. The axioms can be 
decomposed but they are used or memorised as whole chunks by the cogniser. In 
other words, the axiom system is state compositional while the rule-based one is 
process compositional.

One might still worry that process compositionality necessarily leads to state 
compositionality. If a process is compositional, it means that the meaning of the 
whole is derived within a compositional procedure. This would in turn suggest that 
the compositional procedure was applied to “parts”, hence the whole must have 
been decomposable? How can a compositional procedure (in terms of process com-
positionality) be applied to a non-decomposable (i.e. a non-state compositional) 
expression?10

This would indeed be a conceptual concern within the framework. However, 
the separation between process and state compositionality should rather be 
thought of as one of generation not necessarily application. In this sense, a com-
positional procedure can generate a non-state compositional state as in the case 
of the accidental idiom creation. Consider further the case of a chemical reac-
tion precipitated by a catalyst. The resulting covalent bond might be extremely 
hard to decompose and moreover if decomposition is indeed possible, it would 
not recover all the original “parts” such as a the catalyst used to initiate the reac-
tion in the first place. The process involved parts which were composed to form 

9 I thank an anonymous reviewer for drawing my attention to this possibility and guiding me to seek out 
more general examples.
10 I thank an anonymous reviewer for pressing me on this point.
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the whole chemical bond. But the resulting bond is not decomposable into those 
same parts.

In language, the example of word order freezing witnessed in so-called free 
word order languages produces a similar pattern. Jacobson (1984) identified the 
Russian sentence mat’ ljubit doc’ (the mother loves the daughter) as a case which 
only allows interpretations in which mat’ is the subject (despite both words hav-
ing identical nominative and accusative forms respectively). This suggests that 
the meaning ‘the daughter loves the mother’ is not decomposable from the whole 
expression despite involving the same linguistic parts. In other words, the state is 
not decomposable into a meaning which would be licensed otherwise in terms of 
the parts. Of course, the process in this case does lead to one possible state which 
is decomposable (‘the mother loves the daughter’ reading) but it blocks another 
(‘the daughter loves the mother’ reading). For the most part, however, process 
compositionality does indeed lead to state compositionality.

In the other direction, a structure might be said to be state compositional in 
the absence of a compositional process. The reason for this is that state compo-
sitionality is usually identified by the possibility of decomposition into meaning-
ful parts. Take the case of an arithmetic calculation. A student of mathematics 
might have used a number of heuristics to perform a particular calculation. The 
resulting equation, however, could be represented in terms of binary operations 
on series of 1 s and 0 s. This is due to the fact that compositional structures are 
multiply realisable. In the case of language acquisition, the point might be made 
more clearly. Consider the following example adapted (for difference purposes) 
from Szabó (2000).

A child named Arthur learns the sentences ‘It is raining’ and ‘This is an apple’ 
respectively. He is also said to know that the sentence ‘Rain is falling’ can be used in 
the exact same circumstances as the former. But he fails to understand the sentence 
‘This apple is falling’ (perhaps through failure to identify picture-sentence pairs or 
something of the sort). This suggests that Arthur knows the meaning of ‘Rain is fall-
ing’ which is a compositional sentence (not idiomatic or conventional) but fails to 
apply a compositional procedure for deriving its meaning.

In other words, Arthur processes ‘Rain is falling’ through meaning association 
not through individually assigning meanings to each word and functionally compos-
ing those meanings. The sentence, for Arthur, is not process compositional. But this 
does not mean that the sentence is one continuous unit (like a word) for Arthur. He 
could recognise that it is state compositional, i.e. has parts. To another, more knowl-
edgeable, speaker the sentence would be both state and process compositional.

The only requirement for state compositionality is that the whole expression is 
decomposable into smaller meaningful parts not that it needed to be built up from 
those parts. If there is a systematic procedure for decomposing expressions into 
smaller meaningful parts, this is not to say that they were processed in that way. The 
related topic of lexical decomposition evinces the point well, I think. The central 
question there is whether or not simple mono-morphemic words like house, bach-
elor, kill etc. have non-simple semantics or even compositional semantics. There 
is now a wealth of evidence in favour of such analyses of words, for adverbials 
(Morgan 1969), for verbs (Dowty 1979) and more generally Jackendoff (1990) and 



59

1 3

A Puzzle concerning Compositionality in Machines  

Pustejovsky (1995), although the latter’s view rejects exhaustive decomposition in 
favour of certain representational mappings.

The point is that words, often assumed to be the simplest meaningful parts in the 
PoC, might have meaningful parts of their own. They might have internal structures 
upon which certain semantic operations can be computed, as the lexical decompo-
sition literature argues. Words exhibit state compositionality on these views. This 
doesn’t mean that when we compute the meaning of sentences we do so via the 
further compositional structure of words. Words might be state compositional, i.e. 
decomposable, but the sentences of which they are composed need not be process 
compositional in terms of them, i.e. the meaning of whole expressions are not built 
up from the decomposed words.11

Pelletier (2012) comes closest to a similar distinction between his “building block 
version of compositionality” and “functional version of compositionality”.

A difference between the two notions of compositionality concerns whether 
some ‘whole’ can contain things not in the parts. According to the building-
block view, no; but according to the functional version, yes. For, the first notion 
allows the whole to contain only what is in the parts, possibly re-arranged in 
some manner. But the second allows the thing associated with a whole (in the 
linguistic case: the meaning of a complex whole) to be a function of the things 
associated with the parts (in the linguistic case: a function of the meanings of 
the syntactic parts and syntactic mode of combination) (151).

For example, consider the case of neuronal activity in which assemblage-1 of neu-
rons is active during task-1 and assemblage-2 is active during task-2, discussed by 
Pelletier. Now imagine there is a new task that takes task-1 and task-2 as parts. The 
question is then whether the assemblage of neurons involved in this amalgamated 
task is composed of only those neurons involved in either task-1 or task-2? Or does it 
involve a completely new assemblage of neurons? Pelletier claims that “[i]n the case 
of describing the neurons active in the complex task, the function f need not pick 
out any of the neurons that are active in the subtasks...but it would still be compo-
sitional” (2012: 151) according to the functional account or what I have called state 
compositionality. My view of state compositionality is broader than this and sub-
sumes the functional approach. Process compositionality then involves recombining 
or processing the actual materials as they are found in the parts of the computation.

There is a another closely related concept of compositionality which I will call 
Outcome Compositionality. This is a functional notion. It states that given a certain 
input, the resulting output is compositional. Again, like with state compositionality, 
the process or input might not be compositional in order for the output to be. The 

11 It might help to think of storage here. Words might be stored as units and brought up or recalled 
during composition independently of their internal structures. According to Baggio et  al. (2012: 656) 
“psychologically speaking, the real issue is about ‘the balance between storage and computation’, and 
the role compositionality plays there”. Martin and Baggio (2019: 1) even suggest that “human behaviour, 
including language use and linguistic data, indicates that composing parts into complex structures does 
not threaten the existence of constituent parts as independent units in the system: parts and wholes exist 
simultaneously yet independently from one another in the mind and brain.”
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difference is that outcome compositionality also need not involve the computation 
of “meaningful parts” as per the PoC. Any parts will do. An algorithm that operates 
on pure uninterpreted symbols like a propositional calculus could still generate an 
outcome compositional structure. It does not need to compute the whole in terms of 
some property the semantic values of its parts. Therefore it does not entail process 
compositionality.

Consider a machine translating algorithm that takes idioms as input and outputs 
compositional sentences. So if the input is the sentence John kicked the bucket yes-
terday the output will be John died yesterday. The precise mechanism could involve 
a simple substitution of terms. The point is that the outcome of such a procedure 
would be compositional but the input would involve non-compositional meaning. Of 
course, this would entail state compositionality as well, because outcome composi-
tionality is a special case of state compositionality, namely the local case. Outcome 
compositionality involves homing in on segments of the whole output and identify-
ing the property of state compositionality at that level.

However, outcome compositionality does not need to involve completed expres-
sions. It can be piecemeal or incrementally evaluated. Thus it does not entail state 
compositionality (as individual segments can be compositional without the whole 
output achieving that state). This is due to the fact that “[e]ach step in an algorithm 
can often be broken down into further sub-steps. We can talk about the algorithm for 
the whole task [...] or the algorithm for its each of its sub-steps, the sub-steps of its 
sub-steps, and so on” (Sullivan 2019: 13). This means that compositional structure 
can be isolated in a piecemeal fashion. Aspects of the construction or expression can 
be compositional without the entire whole following suit [many of the tools used in 
machine learning isolate phrase level or even word-pair compositionality such as the 
SCAN experiments in Lake and Baroni (2018)]. The precise function or algorithm 
might even change or update during the computation or simulation generating differ-
ent or branching possible final states. Furthermore, as we will see, these sub-steps 
might be “black-boxed” or outside of the modeller’s comprehension.

Adherents of Marr’s famous tripartite analysis of informational systems might 
put the point in terms of outcome compositionality is at the level of the algorithm 
while state compositionality is at the level of the computation (and by extension 
process compositionality would be at the implementation level). Recall that the level 
of computation asks “What is the goal of the computation, why is it appropriate, 
and what is the logic of the strategy by which it can be carried out?” (Marr 1982: 
25) Here, the goal is semantic composition or decomposition into meaningful parts. 
But as we have seen, this goal is multiply realisable (as Marr assumes of higher level 
analyses generally). Contrast this with the algorithmic level where we ask “what is 
the representation for the input and output, and what is the algorithm for the trans-
formation?” (Marr 1982: 25). Here we are interested in the general procedure used 
in the computation. The puzzle will later be generated by observing that aspects of 
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the algorithm may not always be transparent in the case of machines (as we will see 
in Sect. 4).12

The above discussion should suffice to provide some intuitive grounding of three 
important distinctions the nature of which I think is largely neglected in the compo-
sitionality literature. In the next section, I shift focus for a moment to the issue of 
epistemic opacity in AI more generally.

3  Epistemic Opacity

Some philosophers have questioned whether the age of computer science has created 
any special issues in the philosophy of science and philosophy more generally (Stock-
ler 2000; Frigg and Reiss 2009; Humphreys 2009). Those who claim that it hasn’t, 
often argue that “[t]he philosophical problems that do come up in connection with 
[computer] simulations are not specific to simulations and most of them are variants 
of problems that have been discussed in other contexts before” (Frigg and Reiss 2009: 
593). They isolate four distinct areas in which computer science is said to present new 
problems in philosophy. I will focus here on the epistemic variant, as it has been at the 
centre of more recent debates in the philosophy of AI and AI policy in general.

The issue of trust in AI has garnered public significance recently, especially after 
the AlphaGo programme defeated the strongest Go players humanity had to offer 
in 2016.13 The idea that machines might be capable of “understanding” and solv-
ing problems based on experience and learning as opposed to explicit programming 
instructions of the GOFAI models sent shock-waves through public landscape. Soon 
policy documents were drafted offering guidelines for “responsible AI” by not only 
organisations (such as http://www.itech law.org/Respo nsibl eAI and https ://ai.googl e/
respo nsibi litie s/respo nsibl e-ai-pract ices/) but also political entities (https ://ec.europ 
a.eu/digit al-singl e-marke t/en/news/ethic s-guide lines -trust worth y-ai). The central 
worry seems to be what Humphreys (2009) calls the “anthropocentric predicament” 
or the problem of “how we, as humans, can understand and evaluate computation-
ally based scientific methods that transcend our own abilities” (617). Nowhere is 
this alleged predicament more strongly felt than in the deep learning community.

Although Geoffrey Hinton’s “deep learning” programme might have ushered in a 
new era of AI (see Krizhevsky et al. 2012; LeCun et al. 2015), the current state of the 
field had precursors in much earlier work on connectionism and parallel distributed 

13 For comparisons between AlphaGo and Deep Blue of the previous AI generation, see Schubbach 
(2019).

12 There is a tendency in the classical connectionist and current machine learning literature to take com-
positionality to only involve a recursive relationship between primitive and compound types of some 
kind (van Gelder 1990, 1994; Baroni 2019). The ways in which this abstract procedure is instantiated 
are then the particular types of compositionality which are implemented. I think these kinds of defini-
tions run the risk of confusing semantic compositionality with computability and/or combinatoriality. 
One major difference between the latter concepts and the former is that they can operate on pure strings 
or syntax without semantic representation. Some experiments in machine learning adopt this confusion 
and test for compositionality on nonce words or ungrammatical strings. However, the PoC is a semantic 
principle which is essentially bound up in the syntax-semantics interface and discussions which neglect 
this aspect can therefore fail to capture its nature.

http://www.itechlaw.org/ResponsibleAI
https://ai.google/responsibilities/responsible-ai-practices/
https://ai.google/responsibilities/responsible-ai-practices/
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
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processing (Rumelhart et  al. 1986; Smolensky 1990; Elman 1991). These earlier 
attempts at modelling human abilities on artificial neural networks met with general 
philosophical skepticism (Fodor and Pylyshyn 1988; Marcus 2018) largely centred 
around their limited success especially on so-called symbolic or logical tasks. The 
recent boom has, in contrast, proven immensely successful on various tasks from 
image recognition to machine-translation.

Humphrey’s proffers the concept of epistemic opacity to capture the idea that the 
abilities of machines might outstrip that of human cognition. The idea behind epis-
temic opacity is that aspects relevant for knowing or justifying the steps of a particu-
lar computation are unknown (or unknowable) by agents of a particular makeup. He 
claims that “no human can examine and justify every element of the computational 
processes that produce the output of a computer simulation or other artifacts of com-
putational science” (Humphreys 2009: 618). This might be true in some sense but 
it overgeneralises. For instance, any mathematical proof based on infinitary logic 
(Hilbert type or otherwise) would be similarly epistemically opaque (perhaps wel-
comed news to the Intuitionists). It cannot just be a matter of complexity. Hum-
phrey’s offers agent-based models with emergent macro-features as examples of pro-
cesses inaccessible to human modellers. Apparently, these features only arise once 
the simulation is running. However, once this simulation runs, humans are able to 
characterise many of these features and patterns.14 Similarly, logic-based program-
ming languages such as Prolog, or those based on determinate algorithms, can be 
extremely complex. But there is a sense in which their steps are comprehensible to 
their programmers, especially since they designed them to solve a particular task in 
a particular way.

Epistemic opacity so defined is also a matter of degree. My simple Python pro-
gram might be epistemically inaccessible to my grandmother no matter how much 
instruction and explanation I pour in (she might be a hardline C++ advocate). Simi-
larly the algorithm behind IBM’s Deep Blue might be epistemically inaccessible or 
opaque to me.15 In other words, the kind of epistemic opacity discussed by Hum-
phreys and others is a matter of degree not kind. Many computer programs in the 
GOFAI tradition were based on logical reasoning and formalised algorithmic pro-
cedures (If-then instructions and the like). These of course could be (and are) com-
plex but they aimed at amplifying human ability, not necessarily transcending its 
nature.16

15 I thank Eduoard Machery for pointing this worry out to me.
16 Humphrey’s does go on to define essentially epistemic opacity or “a process is essentially epistemi-
cally opaque to X if and only if it is impossible, given the nature of X, for X to know all of the epistemi-
cally relevant elements of the process” (2009: 650). It is unclear what is meant exactly by “epistemically 
relevant elements” here. Durán and Formanek (2018) interpret it in terms of some sort of surveyability 
of steps in finite time. Nevertheless, one worries about the historical applicability of some such definition 
in times before a particular scientific advance. Surely relativity might have seemed epistemically opaque 
to Newtonians? The definition assumes we have a clear grasp of the limits of our natures and knowledge.

14 Take Schelling’s famous model of segregation. With a minor preference function (30% satisfaction) 
and two kinds of agents distributed randomly in a population, a macro-level segregation effect is pro-
duced. But this equilibrium is explicable in terms of features of the simulation despite the effect only 
showing itself after a few generations have been run.
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Newman (2016) provides an alternative interpretation of the evidence usually 
advocated in favour of epistemic opacity. He focuses on Software Engineering and 
suggests that any impression of opacity is more likely due to the adoption of bad 
practices on the part of the modellers. He extends his critique to Lenhard and Wins-
berg (2010) discussion of “confirmation holism” or the alleged impossibility of 
locating “the sources of the failure of any complex simulation to match known data, 
so that it must stand or fall as a whole” (Newman 2016: 258). Unlike the standard 
“proof-checking” model of computer programming in which a modeller self-scans 
her code to check for bugs or compiling errors, so-called “Big Data” programmes 
can often be too complex to allow for such a procedure. Lenhard and Winsberg 
(2010) offer modelling in climate science as a case study, since these complex mod-
els involve characteristics such as “fuzzy modularity” in which different models are 
used to simulate different aspects of the target system.17 Here Newton’s suggestion 
for better practices is compelling, especially as a way of keeping track of the differ-
ent models and mechanisms used for one task. For instance, in arguing against Hum-
phrey’s notion of essentially epistemic opaque systems (see footnote 17), Newton 
suggests decomposition as a strategy for managing complexity. He further argues 
that modularity is a benefit to error detection and reduction in Software design and 
can mitigate the effects of fuzzy modularity (and “kludging” which involves using 
bits of recalcitrant tools from predecessor models). This is to say that epistemic 
opacity might be a contingent phenomenon in these cases and indeed better prac-
tices can help reduce its effects or “even promote surveyability” (Newman 2016: 
567).18 However, none of these authors explicitly consider machine learning in their 
discussions, where I will argue techniques like “decomposition” are especially diffi-
cult to utilise. Thus, I hope to show that neural nets might pose a particular problem 
in terms of epistemic opacity, one that does not ride on the issues with the definition 
or application of notions such as Humphreys’.19

In the next section, I argue that it is only with the advent of Deep Learning and 
the profusion of applications of Deep Neural Networks (DNNs) that the question of 
epistemic opacity really takes force. It is onto this puzzle and its consequences for 
the PoC that we move in the next section.

17 Weisberg (2007) calls this modelling technique “multiple models idealization”.
18 Again see Duran and Formanek (2018) for a computational version of reliabilism as a tool to capture 
surveyability and epistemic access in the service of grounding trust in complex systems.
19 Ananny and Crawford (2016) question the ideal of transparency in computational systems itself. They 
discuss a number of issues with the ideal and conclude that a larger “sociotechnical” appreciation of the 
interaction between machines and humans is necessary in order to reconstruct the notion of accountabil-
ity in computational settings. Robbins (2019) also questions transparency but offers “envelopment” of AI 
systems as an approach to their uncertainty or opacity, in which we contain or limit their impact on and 
potential harm to humans.
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4  The Puzzle

In this section, I will detail an argument for the conclusion that Deep Neural Net-
works are indeed epistemically opaque in a particular way which prevents an attribu-
tion of process and state compositionality to them. They might still be considered 
outcome compositional if they generalise in specific way, however. First I will pre-
sent general features of these networks with some focus on the specific subset of 
them often used for natural language tasks. Then, I will discuss a puzzle about the 
applicability of the PoC to these models.

4.1  Neural Nets and Deep Learning

Deep learning and Deep Neural Networks (DNNs), upon which deep learning is 
based, are systems which incorporate multiple hidden layers of connections and 
weightings which deliver outputs based either on supervised or unsupervised train-
ing sets. The aim of such a network is to generalise beyond the training set to a novel 
test set. Specifically, LeCun et al. (2015: 438) describe the underlying architecture of 
deep learning as “a multiplayer stack of simple modules, all (or most) of which are 
subject to learning, and many of which compute non-linear input-output mappings”. 
The DNNs themselves are composed of an input layer, n hidden layers (if n = 1, the 
network is not very “deep”) and an output layer (as shown in Fig. 1 below).

The lines from the input layer feeding into the first set of hidden units (H1) repre-
sent the respective weights of each of the input units. You could label these weights 
according to predefined preferences through supervised learning (basically, the act 
of labelling the “correct” values by the modeller). The hidden layers in turn repre-
sent the non-linear functions or ‘activation functions’ which take as inputs the val-
ues of each of the previous nodes (and their weights). Eventually, after a number of 
iterations of the process, where the output of one layer serves as the input for the 
next, it will terminate in the final output.

As for the general purpose of such a network: “DNNs are designed to learn which 
weights should be assigned to each feature in order to maximize predictive power 
and identify patterns in data that are not easily detectible by humans” (Sullivan 
2019: 20). They can be designed to play Go (Silver et al. 2016), predict future medi-
cal illness based on medical records (Miotto et al. 2016), or guess the next word in a 
sequence (Goldberg 2017). The key to understanding how these models work is by 
appreciating that their structure allows them to learn and adapt their own algorithms 
to a particular task. Thus, the path from x1 to ∧y shown in the diagram is misleading 
as often a clear path is not traceable in a DNN. For instance, back-propagation is a 
hindrance to such a simple analysis. This is when a model, through stochastic tools 
such as a Batch Gradient Descent optimization function or something similar, cor-
rects for errors of previous epochs (say, from H1 to H2) by fine-tuning the weights 
in terms of the base error rate.

The neural analogy dates back to idealisations of Connectionism which describe 
neural nets as idealised and simplified models of real neuronal connections in the 



65

1 3

A Puzzle concerning Compositionality in Machines  

brain, with the strength of connections represented via their relative weightings. 
However, Goodfellow et  al. (2016: 16) caution against interpreting deep learning 
similarly, “one should not view deep learning as an attempt to simulate the brain. 
Modern deep learning draws inspiration from many fields”. Of course, this might 
complicate matters as it opens the door to analyses like Lenhard and Winsberg’s 
(see above) based on fuzzy modularity and kludging (and perhaps Newton’s objec-
tions to their conclusions concerning epistemic opacity). But there are dissimilari-
ties between climate science which utilises different models (with different deter-
minate structure) and learning systems such as DNNs in which “the result [of the 
structure described above] produces a DNN model that follows its own algorithm 
that it learned through the modelling process” (Sullivan 2019: 23).

There are a number of varieties of DNNs which incorporate architectural features 
designed for specific types of tasks. For instance, Convoluted Neural Networks work 
well in image capturing tasks or tasks involving spatial relations. These are feed-
forward networks which are non-cyclic and thus unidirectional. They were some 
of the first kinds of artificial networks and they proved greatly successful on some 
major applications (LeCun et al. 2015). They differ from Recurrent Neural Networks 
(RNNs) which are the ones mostly used in natural language tasks, or sequence tasks.

[A] sequence-processing recurrent network reads some input (e.g. a word), and 
produces an output (e.g. a guess about the next work) at each time step. The 
output of the network at time t is a non-linear function of the input at time t, 
as well as of the state of the network itself at step t − 1 (weighted by recurrent 
connections that propagate activations across time) (Baroni 2019: 5).

Again, there are various forms of RNNs. For instance, sequence-to-sequence tasks, 
such as translation between sentences in different languages, are handled well by 
encoder-decoder models (Sutskever et  al. 2014). While gated RNNs, using Long-
short term memory networks or LSTMs, allow for decision procedures to dictate the 
control of information over time in the network (see Hochreiter and Schmidhuber 
1997). Of course, LSTMs and RNNs can also be used as units in encoder-decoder 
models. Further details of specific architectures are, however, beyond the current 
scope, the remaining discussion will therefore focus on the idea of black-boxing in 
DNNs relevant to the present discussion.

4.2  Black‑Boxes and Meaningful Parts

Despite the immense success of deep learning on a range of applications, these sys-
tems do seem to face a philosophical difficulty, one that is often recognised by their 
practitioners. Given the architectural designs mentioned above and the self-update 
and correcting nature of DNNs, aspects of the system can be “black-boxed” from the 
modeller. The situation is often described in dire terms and is already reflected in 
the simple stages of the system described in Sect. 4.1:

[T]he outputs of learning networks are not based on well-defined procedures 
or explicit criteria any more than their processing. Although we do get an out-
put, we do neither know how this output was computed nor why it is this out-



66 R. M. Nefdt 

1 3

put and no other. Therefore, DLNs [Deep Learning Networks] are regularly 
called ‘black boxes’ (Schubbach 2019: 8).

In fact the programs are evolving, so when new data comes in, or new feed-
back is given...the patterns in the learning system change. What this means is 
that the outcome cannot really be explained, it is not transparent to the user or 
programmers, it is opaque (Müller 2019: 7).

The modeller cannot predict which data points will be most salient, nor can the 
modeller interpret the ways in which the machine settled on certain weights 
for certain pieces of data...The modeller does not even know which weights or 
activations will be deployed in a given iteration (Sullivan 2019: 24).

There are some subtle differences in the positions described above. Schubbach is 
highlighting the differences between DNNs and the determinate algorithmic struc-
tures of GOFAI programs, Müller is emphasising the evolving or dynamic nature 
of these systems in generating opacity20 and Sullivan is focusing on the possible 
implementation level opacity.21 However, there is one thing that most descriptions 
of black-boxing in DNNs have in common, uncertainty about which parts the system 
takes to be meaningful or significant.

Fig. 1  An example Deep Neural Network

21 Sullivan interprets this situation as one of “link uncertainty” in which understanding the intricacies of 
model is not paramount but rather the epistemic opacity is generated by a lack of understanding the link 
between the model and target phenomenon.

20 Technically, dynamics or updates should not preclude the possibility of transparency. Dynamic 
semantics based as it is on dynamic logic is not epistemically opaque in any sense relevant here and 
although static concepts of meaning are jettisoned for context change potentials or updates, meaningful 
parts are clearly identifiable. See Groenendjik and Stokhof (1990) and Veltman (1991) for clear descrip-
tions of the general framework.
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Let me be more clear. The issue is not that the parts of the learning system are 
in general opaque. On the contrary, the basic architecture is well-defined and the 
(statistical) functions used in its operation are decided by the modellers in advance. 
The issue is not even that we have no means of identifying the inner workings of 
these systems as is sometimes implied by modellers themselves such as Dudley, as 
reported by Knight (2017), on the deep patient model in saying “we can build these 
models, but we don’t know how they work”.22 Rather the issue is that we don’t know 
what the machine takes to be a meaningful part in its operations. This problem is 
two-fold. Firstly, it arises at the level of input. It is unclear which parts of the input 
the machine takes to be meaningful in some cases. Then, this problem is structurally 
compounded in that the input to further layers is also obscured. Thus, the meaning-
ful parts of the network itself is left opaque.

For example, a particular RNN might do well in generalising to patterns in the 
test set on a natural language task such as sequence processing. In fact “neural net-
works display a preference for the grammatical sentences that is well above chance 
level and competitive baselines” (Baroni 2019: 7) and in some cases approximate 
the Gold Standard or human level performance (see Gulordava et al. 2018). But how 
it performs these tasks is still uncertain. In most cases, the indications are of an 
indirect nature, “it is only through indirect means that the modeller can investigate 
whether the model is picking up on what seems to be the most relevant features 
for the task at hand” (Sullivan 2019: 25). The heuristics the system is using might 
be far from rule-based grammatical constructions. Lake and Baroni (2018) aim to 
set up benchmarks for compositionality in machine learning by testing the networks 
on compositional tasks. But the networks failed on tasks requiring systematic com-
positional rules. They concluded from these experiments that the networks are not 
compositional yet highly proficient at language processing beyond pattern recogni-
tion to structure dependence. An alternative interpretation might be that the much 
discussed notion of systematicity is not a general feature of linguistic behaviour [see 
Johnson (2004) for a convincing argument as to the restrictions of systematicity] nor 
a clear indicator of compositionality [see Werning (2005) for a formal argument] 
nor indeed is compositionality sufficient for systematicity [see Blutner et al. (2004) 
for a connectionist argument to this effect]. Nevertheless, the indirect methods used 
to identify internal processes often rely on the behaviour of the system. Specifically, 
in the experiment discussed above, outcome compositionality (or its failure) is used 
to determined process compositionality. But these two kinds of compositionality do 
not entail one another (as shown in Sect. 2.3).23

As previously discussed, there are two essential aspects of the PoC, repeated 
below:

22 Many ethical discussions have centred around the possibility or necessity of “opening the black-
boxes” or the “right to explanation” (such as the EU’s General Data Protection Regulation legislation). 
These discussions are of course beyond the present scope but see Robbins (2019) for an alternative 
approach to the ethical issues around black boxes in AI.
23 Similarly, for the salience based methods of describing image classifier tasks discussed in Ribeiro 
et al. (2016).
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Meaningful Parts Principle (MPP): For the meaning of the whole to be deter-
mined by the meaning of its parts (and their syntactic combination), there 
needs to be meaningful parts.

The Knowable Parts Principle (KPP): In order to know the meaning of a 
whole expression, we must be able to identify what the meaningful parts are.

The main problem is that neither principle is respected in the case of DNNs applied 
to natural language. As we gleaned from the Sullivan quote above, modeller’s “can-
not predict which data points will be most salient” or how the machine settled on rel-
evant weights i.e. both requirements for identifying parts. Plebe and Grasso (2019) 
even suggest that it is an open question as to why deep models (with multiple layers) 
are more successful than shallow models with clear part structure, at least in terms 
of the mathematics involved. According to my view, the black-boxing specifically 
obscures the identification of the parts of the process which are considered to be 
meaningful by the learning algorithm. Indirect methods only get us some traction on 
outcome compositionality which as we have seen is no guarantee of process or state 
compositionality. However, if the meaningful parts themselves are black-boxed, then 
this would make the claim that DNNs or RNNs applied to natural language are com-
positional (or not) potentially impossible to evaluate. They may indeed turn out to 
be using compositional rules in their constructions but the epistemic opacity of the 
system precisely prevents such an analysis.

Recall that process compositionality requires the MPP (and KPP) for an account 
of how relatively static meaningful parts combine to form larger meaningful parts 
and eventually entire expressions. Back-propagation and a learning algorithm which 
through multiple (sometimes tens of thousands) of weighted connections can reor-
ganise itself and reassign weights to its parts makes the isolation of any stable 
semantic value extremely difficult to understand. The weighting of connections is 
important here. If we interpret a weighting as a measure of the importance a system 
assigns to a piece of information or unit in a process (or more precisely between the 
connections of two properties of the system), then the possibility of that assignment 
altering significantly without clear explanation creates a black-box effect around that 
particular unit. If the system is using non-discrete heuristics and non-compositional 
rules (as perhaps even humans might do) then compositionality of this kind will fail. 
The problem is that it is not possible to tell.

State compositionality requires decomposition into meaningful parts and, again 
via a weakened version of KPP, the ability to identify what those parts are, even in 
the absence of process compositionality. This too is missing in the case of DNNs 
which do not decompose homogeneously into separable units. We could possibly 
stop a simulation and “look” at the state of the computation at that stage but given 
back-propagation, we would still not have a clear path to the final state of the system 
or the parts that will be relevant to getting there.

What I surmise is that most of the machine learning literature is tracking outcome 
compositionality. This is what performance on tasks in the test set would be an indi-
cator of, if anything. But outcome compositionality does not entail state or process 
compositionality, as shown in Sect. 2.3.
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Notice, this situation might not be problematic for other applications of DNNs. 
Visual perception and image recognition tasks are not necessarily compositional 
(even in humans), so the question of meaningful parts does not obviously come 
up in that context. On the contrary, I have explicitly argued that the PoC depends 
on something like the MPP and KPP (above). Thus, when asking the question of 
whether machines operate compositionally, it matters whether we can identify what 
they take to be meaningful parts of whole expressions.24

In a sense, the situation is not altogether unsurprising. The concept of composi-
tionality originated in applications of formal languages to natural language seman-
tics. The same mathematical underpinnings presupposed in this latter application 
informed much of the GOFAI approaches to AI. When the mathematics changed 
with deep learning, this formal property of compositionality can no longer be taken 
as a given. Groenendijk and Stokhof (2005) go further to claim that since this prop-
erty is methodologically inherited from formal languages of a certain type (namely, 
first order), it could have a different or no role in frameworks which do not involve 
formal languages of the logical variety.

Nevertheless, despite the growing interest in the topic of compositionality in 
machine learning (Liang and Potts 2015; Baroni 2019; Hupkes et al. 2019; Andreas 
2019 to name a few), the kinds of semantic compositionality which have most inter-
ested linguists and philosophers of language might not be accessible given our cur-
rent understanding of artificial networks. Furthermore, the focus on so-called “com-
positional” solutions to particular learning tasks misses the mark in the absence of 
identifying meaningful part-structure. In the last section, I will suggest a different 
potential strategy for discussing the PoC and denuding black-boxes in the context of 
natural language applications of machine learning.

4.3  A Partial Suggestion

The uniqueness of learning systems is often touted as an obstacle to their compari-
son. The deep patient model has little in common with the Alpha Go program since 
the training data vastly differs (medical records vs past Go games), the output differs 
(patient representations vs ‘moves’), the internal structures have different features 
(unsupervised vs supervised) and of course the tasks were distinct. DNNs can even 
differ in architecture as shown in Sect. 4.1. The effect of this uniqueness assumption 
is that theorists and modellers only look at the specific models for indirect evidence 
as to their inner workings without considering other similar and even dissimilar 
models.

Here, I suggest that a dual approach might be advantageous in order to approach 
the black-box issue in deep learning and the compositionality debate in particular. 

24 Of course, compositionality could apply in the visual domain similarly. The argument could go as 
follows: people seem to interpret visual stimuli they have never encountered before and they do so in a 
systematic way; the best explanation is that they accomplish this by relying on the smallest interpretable 
parts of the stimuli and the way those parts are combined. So, visual interpretation must be composi-
tional. I thank Zoltán Szabó for this observation.
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Salience mappings and the like might be good tools for homing in on the processes 
of particular models but cross-model comparisons on similar tasks could identify 
invariant structure in DNNs more generally.

A proposal in a similar spirit is made in Johnson (2015) with relation to formal 
grammars in linguistics. The insight is borrowed from physics in which an invari-
ant is a property of a system which remains unchanged under transformation. “Two 
theories may prima facie appear drastically different, and yet be indistinguishable 
in terms of their empirical predictions, etc. In such a case, they are not essentially 
different and may be assumed to each capture one and the same underlying idea, 
albeit in distinct vocabularies” (Johnson 2015: 163). By “indistinguishable in terms 
of empirical predictions”, he means they are notational variants of one another or 
weakly equivalent in the terminology of formal language theory. He further suggests 
that this idea of notational variants, often inimical to linguists, might point to under-
lying structural overlap among formalisms and serve to identify the true content of 
theories “often not identifiable without recourse to notational variants (i.e. symme-
tries)” (Johnson 2015: 164).

There are a number of extant tools which might be useful for the task of iden-
tifying invariant structure. One such tool, borrowed from neuroscience, is abla-
tion. Basically, the idea is that modellers remove some component of the model 
and measure the effect on the system by comparing the system before and after the 
removal. In a sense, these studies isolate the behaviour of a system before and after 
a transformation of sorts. For example, Meyes et al. (2019) perform ablation studies 
on two dissimilar networks in the computer vision domain showing not only that 
such studies are useful for identifying structure but also that networks can recover 
from the removal of components (proportional to the size of the removal in some 
cases). However, network recovery (which they show can happen after one epoch) 
can hamper our ability to isolate meaningful parts in a way that is not generally the 
case in aphasiology.

For structural invariance to be useful at all, it might be necessary to train differ-
ent DNNs on the same corpus or training set (as is done in computational linguistics 
with the Wall Street Journal corpus). Similarly predictions might then yield indica-
tions of invariant processes among different networks. This approach would mark a 
shift in the focus from outcome behavioural diagnostics often used to analyse DNNs 
at present. But there is no reason to avoid using the two approaches in tandem. Of 
course, different networks might perform differently on the same training sets. But 
the variation in this case could be illuminating for a comparative account of mean-
ingful part segmentation across different DNNs, i.e. what about architecture A as 
compared to architecture B resulted in a different output to the same input X.25

We are still a ways off from isolating the meaningful parts of such networks but 
with a dual approach like the one gestured at here, perhaps we can hope to identify 

25 More direct approaches to identifying structure in networks do exist. One famous example is Smolen-
sky’s (1990) tensor product representations which aimed at capturing variable binding and symbolic pro-
cessing while remaining true to the neural net architecture of classical connectionism. See McCoy et al. 
(2019) for a more recent adaptation of this idea on RNNs.
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some invariant structure across black boxes as opposed to only trying to look inside 
them.

The literature on the black-boxing problem and interpretability is consider-
ably more developed than might be suggested here. Promising research in this vein 
includes Lei et al. (2016) using the extraction of unsupervised input text as justifica-
tion (or “rationales”) for prediction in neural networks based on a multi-aspect senti-
ment analysis, and building on this the work of Yu et al. (2019) aimed at identifying 
corresponding rationales in text matching tasks by means of a three part “rationale 
generator” using bi-directional LSTM encoder networks. Bastings et al. (2019) who 
among other things introduce to the former a novel distribution they call a “hard 
Kumaraswamy distribution” which exhibits both continuous and discrete behaviour, 
also falls within this approach to the black box problem. In a sense, this kind of 
research forces the neural models to “show their work” (without sacrificing empiri-
cal success) which might provide additional clues as to what DNNs identify as 
meaningful parts.26

This small section merely describes a partial suggestion towards a partial solution 
to the problem of black-boxes in networks aimed at natural language processing. 
Much more work needs to be done (and is being done) in order to understand the 
workings of these extremely successful machines and how they might demarcate the 
meaningful parts of expressions in order to predict, translate, and learn natural lan-
guage structures. The lessons learned might in turn hold insights for DNNs designed 
for other tasks.27

5  Conclusion

In this paper, I have harnessed the literature on epistemic opacity in AI to describe a 
novel puzzle related to artificial networks such as DNNs and the principle of compo-
sitionality in linguistics. I have argued that the current state of understanding these 
networks precludes the possibility of identifying process and state compositional 
structures within them, which I defined earlier. Finally, I have provided some hints 
as to how one might begin to find ways of uncovering the black boxes inherent in 
the neural nets designed for natural language tasks but the puzzle remains for the 
present state of the science.
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