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Abstract
In this paper I argue that the search for explainable models and interpretable deci-
sions in AI must be reformulated in terms of the broader project of offering a prag-
matic and naturalistic account of understanding in AI. Intuitively, the purpose of 
providing an explanation of a model or a decision is to make it understandable to 
its stakeholders. But without a previous grasp of what it means to say that an agent 
understands a model or a decision, the explanatory strategies will lack a well-defined 
goal. Aside from providing a clearer objective for XAI, focusing on understanding 
also allows us to relax the factivity condition on explanation, which is impossible 
to fulfill in many machine learning models, and to focus instead on the pragmatic 
conditions that determine the best fit between a model and the methods and devices 
deployed to understand it. After an examination of the different types of under-
standing discussed in the philosophical and psychological literature, I conclude that 
interpretative or approximation models not only provide the best way to achieve the 
objectual understanding of a machine learning model, but are also a necessary con-
dition to achieve post hoc interpretability. This conclusion is partly based on the 
shortcomings of the purely functionalist approach to post hoc interpretability that 
seems to be predominant in most recent literature.

Keywords Explainable artificial intelligence · Understanding · Explanation · Model 
transparency · Post-hoc interpretability · Machine learning · Black box models

1 Introduction

The main goal of Explainable Artificial Intelligence (XAI) has been variously 
described as a search for explainability, transparency and interpretability, for ways 
of validating the decision process of an opaque AI system and generating trust in the 
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model and its predictive performance.1 All of these goals remain underspecified in 
the literature and there are numerous proposals about which attributes make models 
interpretable. Instead of analyzing these goals and proposals piecemeal, the main 
contention of this paper is that the search for explainable, interpretable, trustworthy 
models and decisions2 in AI must be reformulated in terms of the broader project of 
offering an account of understanding in AI. Intuitively, the purpose of providing an 
explanation or an interpretation of a model or a decision is to make it understand-
able or comprehensible to its stakeholders. But without a previous grasp of what it 
means to say that a human agent understands a decision or a model, the explanatory 
or interpretative strategies will lack a well-defined theoretical and practical goal. 
This paper provides a characterization of the theoretical goal of XAI by offering an 
analysis of human understanding in the context of machine learning in general, and 
of black box models in particular.

In recent years, there has been an increased interest in the notion of understand-
ing among epistemologists (Pritchard 2014; Grimm 2018) and philosophers of sci-
ence (de Regt et al. 2009). The interest in this notion has several sources. In epis-
temology, several authors realized that the conceptual analysis of understanding 
differs significantly from the traditional analysis of knowledge. In particular, unlike 
knowledge, understanding need not be factive: not all the information on the basis of 
which a phenomenon is understood must be true. Understanding is also an epistemic 
achievement that some authors regard as more valuable than mere knowledge. It also 
seems to be immune to Gettier cases, it is transparent to the epistemic agent, and it 
has internalist conditions of success. In sum, understanding and knowledge seem to 
be entirely different concepts and it is implausible to conceive the former simply as 
a species of the latter.3

In the philosophy of science, the first philosophers of explanation (Hempel 1965; 
Salmon 1984) regarded the understanding provided by a scientific explanation as 
a pragmatic and psychological by-product that falls beyond the ken of a proper 
philosophical theory. In their view, once we have developed an adequate account of 
explanation, any remaining questions regarding the notion of understanding can be 
addressed from a psychological perspective. A recent interest in the role of models, 
simulations, and idealizations in science, and a closer examination of actual scien-
tific practice, has revealed that scientific understanding can be achieved without the 
use of traditionally-defined scientific explanations, and that the simple possession of 
explanatory knowledge is often not sufficient for the working scientist’s understand-
ing of a phenomenon. Scientific understanding thus seems to be a topic worth inves-
tigating in its own right.

1 For a survey of recent characterizations of the goals of XAI, see Lipton (2016), Doshi-Velez and Kim 
(2017), Samek et al. (2017) and Gilpin et al. (2019).
2 I will use decision as the general term to encompass outputs from AI models, such as predictions, cat-
egorizations, action selection, etc.
3 Needless to say, each of these differences has been the subject of great philosophical controversy. I am 
simply reporting some of the reasons that have been stated in the literature to motivate the analysis of 
understanding as an independent concept.
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There are many aspects of this literature that are germane to XAI. Here I will 
only focus on two main issues. The first one regards the relationship between expla-
nation and understanding in the context of opaque machine learning models. While 
many authors defend the idea that there is no understanding without explanation, 
the impossibility of finding explanations, in the traditional sense of the term, for 
black box machine learning models should lead us to question the inseparability of 
these two concepts in the context of AI. The literature suggests alternative paths to 
achieve understanding, and it is worth investigating how these paths can be fruitfully 
adapted to understand opaque models and decisions.

The second issue regards the nature of understanding itself. Are understanding 
the decision of a model and understanding the model that produced that decision 
two states that demand different accounts or can they be reduced to the same under-
lying cognitive processes and abilities? I will argue that post hoc interpretability and 
model transparency correspond to different levels of the same type of understanding. 
There is, however, a different kind of understanding that stems from the functional 
or instrumental analysis of machine learning models. I will argue that functional 
understanding falls short in many respects of the stated goals of XAI.

It should be noted that the notion of opacity in machine learning is itself in need 
of further specification. There are many types of machine learning models that are 
purposely designed as black boxes (e.g. deep neural networks and Support Vector 
Machines). Other methods, such as rule lists, linear regressions, simple naïve Bayes 
classifiers, and decision trees are often interpretable, but not always. “Sufficiently 
high dimensional models, unwieldy rule lists, and deep decision trees could all be 
considered less transparent than comparatively compact neural networks” (Lipton 
2016, p. 5). Other relatively simple models will be opaque only to certain users who 
lack the required background knowledge to understand them. To simplify the object 
of analysis, in this paper I will only focus on the extreme case of models that are 
unambiguously designed as black boxes. Most of the results of this analysis can then 
be naturally extended to models and methods that are opaque only in certain cases or 
to specific stakeholders.

Finally, given the variety of purposes of black box machine learning models, and 
the differences in background knowledge and interests of their stakeholders, there is 
no reason to believe that a single interpretative strategy will be equally successful 
in all cases. Designing interpretative models and tools will inevitably require taking 
into account the psychological and pragmatic aspects of explanation. The study of 
the cognitive aspects of interpretative models is in its infancy. It follows from the 
general outlook that I present in this paper that this area of research should receive 
more attention in the coming years.

The essay is organized as follows. The next section examines the question of 
whether there are independent theoretical reasons to appeal to the notion of under-
standing in XAI or whether it will be sufficient, as the traditionalists claim, to 
develop the best possible account of explanation in AI and let understanding nat-
urally emerge from it. I will argue that the connection between explanation and 
understanding in AI is not comparable to that same connection in the natural and 
social sciences. The disconnection arises from the impossibility, in most cases, to 
offer an explanation that fulfills the factivity condition. This will lead, in Sect.  3, 
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to a discussion about alternative paths to understanding that are not based on tra-
ditional explanations. I show how these alternative paths are exemplified in some 
recent attempts to find adequate methods and devices to understand opaque models 
and decisions. In Sect.  4, I analyze the types of understanding that emerge from 
these different avenues to understanding. This will require introducing a distinc-
tion between understanding-why, which prima facie is the type of understanding 
involved in post hoc interpretability, and objectual understanding, which requires 
grasping the inner workings of a complex system such as an AI model. This sec-
tion also addresses the functional understanding of AI systems. Using evidence from 
psychology, it will be possible to offer a nuanced analysis of the interconnections 
between these three possible ways of characterizing understanding in AI.

2  Why Not Settle for AI‑Explanations?

A great number of philosophers of science have argued that understanding is inex-
tricably linked to explanation. For Salmon, a defender of the ontic conception of 
explanation, “understanding results from our ability to fashion scientific explana-
tions” (1984, p. 259). In more recent times, Strevens has staunchly defended the idea 
that “explanation is essentially involved in scientific understanding” (2013, p. 510). 
Perhaps the strongest claim in this direction is made by Khalifa, who defends the 
reductionist thesis that “any philosophically relevant ideas about scientific under-
standing can be captured by philosophical ideas about the epistemology of scientific 
explanation without loss” (2012, p. 17). In the context of XAI, this thesis4 implies 
that understanding an AI model or decision is simply a question of finding an ade-
quate explanation for it. But the implication holds only if scientific explanations and 
AI-explanations share a sufficient number of essential characteristics to be consid-
ered two species of the same genus. If they are, our task will be to find in AI-expla-
nations the same features that enable scientific explanations to generate understand-
ing. However, in this section I will argue that explanations in the present stage of AI 
are incommensurable with the types of explanations discussed in the philosophy of 
science.

My first task will be to clarify what I mean by an AI-explanation. The notion of 
explanation in what is often referred to as “Good Old-Fashioned AI” (GOFAI), that 
is, in symbolic, logic-based AI models, differs significantly from the present task 
of explaining opaque machine learning models. The function of an explanation in 
a logic-based system, either monotonic or nonmonotonic, is to support the addition 
of an input to a belief set or a database. For example, an update request “insert (φ)” 
can be achieved by finding some formula consistent with the database such that the 
union of the set of ground facts in the database and the formula yields φ as a logi-
cal consequence. In previous work (Páez 2009) I argued that this abductive task is 
at odds with the way in which explanation has historically been understood in the 

4 Here I will not evaluate the merits of this thesis in the philosophy of science. For a discussion, see the 
collection edited by De Regt et al. (2009).
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philosophy of science. I refer the reader to the paper for the relevant arguments. My 
purpose here is to defend the same conclusion for the notion of explanation as it is 
being used in the field of computational intelligence in recent times.

An important difference between explanation in logic-based models and in 
current machine learning models is that the explanandum is entirely different. In 
the former, as just mentioned, the goal is to justify an input. In the latter, it is to 
explain an output, generally a decision, or to provide explanatory information about 
the workings of the model that generated that output. The explanandum of an AI-
explanation as it is currently conceived is thus similar to the outcome of a scientific 
experiment, or to the structure of a physical or social system. A natural scientist and 
the stakeholder of a machine learning model would thus be searching for explana-
tions for similar objects. But that is as far as the similarities go. In what follows I 
will present three fundamental reasons why it is misguided to make our understand-
ing of machine learning models dependent on establishing an account of AI-expla-
nations, even if we were to accept the claim that scientific understanding depends on 
devising bona fide scientific explanations.

The first reason has to do with truth. An essential feature of explanations in sci-
ence is their factivity (Hempel 1965), i.e., both the explanans and the explanandum 
must be true.5 If one denies the factivity of explanation, the claim goes, one cannot 
avoid the conclusion that the Ptolemaic theory, the phlogiston theory, or the caloric 
theory, provided bona fide scientific explanations. An explanation of x must reveal, 
depending on which theory of explanation one adopts, either the true causal struc-
ture of x or the natural laws that determine x or its relationship with factors that 
make x more or less probable.6 All objectivist theories of explanation assume that 
researchers have epistemic access either to the inner workings of x or to the com-
plete7 causal or probabilistic context that determines the properties of the explanan-
dum. Without such epistemic access it would be impossible to reach true explana-
tory information about x.

This kind of epistemic access is blocked in the case of opaque AI models. A 
general knowledge of the structure of a deep neural network will be insufficient to 
explain, in this traditional sense, either a specific decision or the actual computa-
tion that was made to generate it. Many types of black box models, like deep neu-
ral networks, are stochastic (non-deterministic). Randomness is introduced in data 
selection, training, and evaluation to help the learning algorithm be more robust and 
accurate.8 Examining the training set and all the weights, biases and structure of 

5 More precisely, the explanans-statement and the explanandum-statement must be true. If one holds, 
following Lewis (1986) and Woodward (2003), that the relata of the explanation relation are particulars, 
i.e., things or events, the claim amounts to saying that the things or events occurring in both the explan-
ans and the explanandum position exist or occur.
6 This list is not meant to be exhaustive and it excludes pragmatic theories of explanation such as the 
ones defended by Achinstein (1983) and van Fraassen (1980). I have argued elsewhere (Páez 2006) that 
these theories offer an account of explanation that lacks any sort of objectivity.
7 Salmon’s (1971) reference class rule, for example, requires the probabilistic (causal) context of a single 
event to be complete to avoid any epistemic relativity.
8 I am grateful to an anonymous reviewer for pointing this out.
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the network will not allow us to understand its specific decisions, and its predictive 
failures and successes cannot be traced back to particular causal paths in its hid-
den layers. To be sure, it is possible to give a true explanation of the general design 
and purpose of a black box model, but such an explanation will not be sufficient to 
explain specific decisions or to generate trust in the model.

One of the main virtues of replacing explanation by understanding as the focus 
of analysis in XAI is that the factivity condition need not be satisfied. According 
to so-called moderate factivists (Kvanvig 2009; Mizrahi 2012; Carter and Gordon 
2016), not all the information on the basis of which something is understood must 
be true, only the central propositions. Other philosophers go even further and reject 
the factivity condition altogether.9 Elgin’s (2007) discussion of the role of models 
and idealizations allows that our understanding of some aspects of reality may be 
literally false. Far from being an unfortunate expedient, idealizations and models 
are an essential and ineliminable component of our scientific understanding of the 
world; she calls them “felicitous falsehoods” (2004, p. 116). In Sect. 3 I will explore 
Elgin’s idea in the context of our understanding of opaque models. I will argue that 
although the methods and artifacts used to understand an intelligent system and its 
decisions are not, and perhaps cannot be, entirely faithful to the model, this does not 
tell against them. On the contrary, they can afford indirect epistemic access to mat-
ters of fact that are otherwise humanly impossible to discern.

A second reason to shift our focus from explanation to understanding is the 
importance of taking into account the specific context, background knowledge, and 
interests of end-users and stakeholders of opaque models.10 In any field it is possible 
to establish a distinction between different levels of expertise and different levels of 
understanding depending on the depth of a person’s knowledge of a phenomenon. In 
the sciences, it is expected that the novice will become an expert by acquiring the 
required knowledge and skills. More importantly, scientific experts will be able to 
master the best possible explanations of the phenomena within their field of study. 
This situation is not replicated in the case of machine learning. The medical doctor 
or the parole officer who makes use of a black box model is not supposed to acquire 
the level of expertise of a computer scientist, and their respective level of under-
standing of any explanatory model of the opaque system will remain incomparable. 
This seems to be an element that has not always been kept in mind in XAI. Many 
AI researchers build explanatory models for themselves, rather than for the intended 
users, a phenomenon that Miller et al. (2017) refer to as “the inmates running the 
asylum” (p. 36). The alternative they propose, and which I fully endorse, is to incor-
porate results from psychology and philosophy to XAI.11 It is necessary to explore a 
naturalistic approach to the way in which context and background knowledge mold 

11 See also De Graaf and Malle (2017), Miller (2019) and Mittelstadt et al. (2019).

9 The relaxation of the factivity condition is often defended in the context of objectual understanding, 
but it remains controversial in the case of understanding why. I return to this distinction in Sect. 4.
10 De Graaf and Malle (2017) have also emphasized the importance of these pragmatic factors: “The 
success of an explanation therefore depends on several critical audience factors—assumptions, knowl-
edge, and interests that an audience has when decoding the explanation” (p. 19).
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an agent’s understanding of an interpretative model. Existing theories of how people 
formulate questions and how they select and evaluate answers should also inform 
the discussion (Miller 2019).

A third advantage of focusing on the pragmatic elements of interpretative mod-
els is that we can obtain a better grasp of the relationship between explanation and 
trust. When using machine learning in high-stakes contexts such as medical diagno-
sis or parole decisions it is necessary to trust the individual decisions generated by 
the model. Several authors have argued that post hoc interpretability, i.e., an expla-
nation of the decision, is a necessary condition for trust (Kim 2015; Ribeiro et al. 
2016). Additionally, of course, the system must have a very high score on an evalu-
ation metric based on decisions and ground truths. Suppose that an opaque model 
has consistently shown a high degree of predictive accuracy and a user has been 
given a clear post hoc explanation of its behavior. The user has the best possible 
understanding of the system, taking into account, of course, the epistemic limita-
tions mentioned above. But predictive reliability and a post hoc explanation are not 
sufficient to generate trust. Trust does not depend exclusively on epistemic factors; 
it also depends on the interests, goals, resources, and degree of risk aversion of the 
stakeholders. Trust involves a decision to accept an output and act upon it. Differ-
ent agents bound by different contextual factors will make different decisions on the 
basis of the same information. I will leave open the question of whether classical 
decision theory can provide an adequate analysis of trust in AI systems.12 But the 
important lesson to draw from the multidimensional character of trust is that there is 
no simple correlation between explanation and trust, and that an adequate analysis 
of trust requires taking into account contextual factors that can foster or hinder it.

The reasons I have presented in this section recommend abandoning the tradi-
tional “explanationist” path according to which understanding can only be obtained 
via an explanation in any of the guises it has adopted in the philosophy of science. 
The next section will offer alternative ways to achieve understanding.

3  Alternative Paths to Understanding

Abandoning the necessary connection between explanation and understanding 
opens up several avenues of research that can lead to understanding the workings 
and decisions of opaque models. Implicit causal knowledge, analogical reasoning, 
and exemplars are obvious alternative paths to understanding. But so are models, 
idealizations, simulations, and thought experiments, which play important roles in 
scientific understanding despite being literally false representations of their objects. 
In a similar vein, the methods and devices used to make black box models under-
standable need not be propositionally-stated explanations and they need not be 
truthful representations of the models. I will begin by presenting a few examples 
of how understanding can be achieved in the natural sciences without the use of 

12 See Falcone and Castelfranchi (2001) for a critique of the use of decision theory to understand trust in 
virtual environments.
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explanations before moving to a discussion of how similar devices can be used, and 
have been used, in understanding AI models.

Many philosophers, beginning with Aristotle and continuing with the defenders 
of causal explanations, have argued that understanding-why is simply knowledge of 
causes (Salmon 1984; Lewis 1986; Greco 2010; Grimm 2006, 2014).13 Naturally, 
causal explanations are the prime providers of knowledge of causes. But causal 
knowledge does not come exclusively from explanation. As Lipton points out, 
“much of empirical inquiry consists in activities—physical and intellectual—that 
generate causal information, activities such as observation, experimentation, manip-
ulation, and inference. And these activities are distinct from the activity of giving 
and receiving explanations” (2009, p. 44). To be sure, the causal information gener-
ated by these activities can be given a propositional representation and can thus be 
transformed into explicit causal explanations. But Lipton argues that in many cases 
such activities generate causal information that remains as tacit knowledge, allow-
ing us to perform epistemic and practical tasks. Such tacit causal knowledge comes 
primarily from images and physical models. An orrery or a video, for example, can 
provide better understanding of retrograde planetary motion than an explanation 
stated in propositional form. A subject might even be able to understand retrograde 
motion without being able to articulate such an explanation.

Direct manipulation or tinkering of a causal system is an even more obvious 
source of implicit causal knowledge. Adjusting a lever, a button or an input variable 
and observing its effects on other parts of a system is a way of beginning to under-
stand how the system works. Manipulation also provides modal information about 
the possible states of a system. In fact, the ability to manipulate a system into new 
desired states should be seen as a sign of understanding. In other words, understand-
ing requires the ability to think counterfactually (de Regt and Dieks 2005; Wilken-
feld 2013).

Causal information, implicit or explicit, is not the only source of understand-
ing. Consider analogical reasoning. Darwin (1860/1903) used an analogy between 
the domestic selection of animals and natural selection to argue for the latter. 
Although it is incomparable in many respects, artificial selection illuminates how 
the mechanism would work in a larger class (Lipton 2009, p. 51). Exemplifica-
tion is another important avenue towards understanding. The examples in a logic 
textbook can show a student how the rules of natural deduction work. Her initial 
understanding of the rules will be tied to the examples, but it will gradually drift 
away as her ability to use the rules in new situations improves. When an item 
serves as an example, “it functions as a symbol that makes reference to some 
of the properties, patterns, or relations it instantiates” (Elgin 2017, p. 184). It 
can only display some of these features, downplaying or ignoring others. As the 
complexity of the item increases, the decision to emphasize or underscore some 

13 Philosophers of science are much more inclined to accept this view than epistemologists, who have 
fiercely resisted it. See, for example, Zagzebski (2001), Kvanvig (2003), Elgin (2004) and Pritchard 
(2014). I do not have space to discuss the issue here, but from the text it should be clear that I side with 
the epistemologists.
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salient features over others will be determined by pragmatic reasons, such as the 
intended audience and use of the example.

The use of non-propositional representations such as diagrams, graphs, and 
maps present another clear case of understanding without explanation. A subway 
map is never a faithful representation of the real train network. It alters the dis-
tance between stations and the exact location of the tunnels in order to make the 
network easy to understand, but it must include the correct number of lines, sta-
tions and intersections to be useful at all. It must be sufficiently accurate without 
being too accurate.

Finally, models and idealizations play a similar role in science (Potochnik 2017). 
They simplify complex phenomena and sometimes the same phenomenon is repre-
sented by multiple, seemingly incongruous models. They afford epistemic access to 
features of the object that are otherwise difficult or impossible to discern. Models 
are not supposed to accurately represent the facts, but they must be objective. Mod-
els have to denote in some sense the facts they model. They “are representations 
of the things that they denote” (Elgin 2008, p. 77). The general relation between 
scientific models and their objects is a thorny issue that deserves a more detailed 
discussion than the one I can provide here, but one important aspect that must be 
noted is that the adequate level of “fit” between a model and its object is a pragmatic 
question. Many models are, in Elgin’s apt phrase, “true enough” of the phenomenon 
they denote:

This may be because the models are approximately true, or because they 
diverge from truth in irrelevant respects, or because the range of cases for 
which they are not true is a range of cases we do not care about, as for example 
when the model is inaccurate at the limit. Where a model is true enough, we 
do not go wrong if we think of the phenomena as displaying the features exem-
plified in the model. Obviously, whether such a representation is true enough 
is a contextual question. A representation that is true enough for some pur-
poses, or in some respects is not true enough for or in others (2008, p. 85).

Applications of all of the approaches mentioned above can be found in the XAI 
literature. It is important to bear in mind that many authors in the field refer to these 
alternative paths to understanding as “explanations,” a usage that threatens to trivial-
ize the term. If whatever makes an opaque model or its decisions better understood 
is called an explanation, the term ceases to have any definitive meaning. My argu-
ment throughout the paper has only focused on the notion of explanation as it has 
been traditionally understood in the philosophy of science and epistemology (e.g., 
causal models, covering-law models, probabilistic approaches, etc.). It is in this 
sense that there are alternative sources of understanding.

It is customary to distinguish between two different goals in XAI: understanding 
a decision, often called post hoc interpretability, and understanding how the model 
functions, i.e., making the model transparent (Lipton 2016; Lepri et al. 2017; Mit-
telstadt et al. 2019). Exemplifications, analogies, and causal manipulation are often 
used in the former, while the use of models is more common in the latter. I will 
present some examples of the use of these techniques, and in the next section I will 
examine the kind of understanding they provide. The ultimate question I will try to 
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answer is whether transparency and post hoc interpretability aim at different types of 
understanding.

The attempts to make a model transparent can focus on the model as a whole 
(simulatability), on its parameters (decomposability), or on its algorithms (algorith-
mic transparency) (Lipton 2016). A complete understanding of the model would 
thus allow a user to repeat (simulate) the computation process with a full under-
standing of the algorithm and an intuitive grasp of every part of the model. Each of 
these aspects presents its own challenges, but my interest here is in the use of inter-
pretative devices to provide an overall understanding of opaque models, i.e., models 
that are not designed to be fully understood. The most common way to make a black-
box model as understandable as possible is through the use of proxy or interpreta-
tive models (Guidotti et  al. 2018). Many of these models provide coarse approxi-
mations of how the system behaves over a restricted domain. The two most widely 
used classes of models are linear or gradient-based approximations, and decision 
trees (Mittelstadt et al. 2019). For the interpretative model to be useful, a user must 
know “over which domain a model is reliable and accurate, where it breaks down, 
and where its behavior is uncertain. If the recipient of a local approximation does 
not understand its limitations, at best it is not comprehensible, and at worst mis-
leading” (Mittelstadt et al. 2019, p. 281). Oversimplified or misleading models also 
incur the risk of being perceived as deceitful, thereby undermining the user’s trust in 
the original model. Thus, the first desideratum of interpretative models is that they 
must be as faithful to the original model as possible and absolutely transparent about 
their limitations.

Mittelstadt et al. (2019) argue that XAI should not focus on developing interpre-
tative models because they are akin to scientific models, and therefore very different 
from “the types of scientific and ‘everyday’ explanations considered in philosophy, 
cognitive science, and psychology” (p. 279). My view is exactly the opposite. Since 
the notion of explanation discussed in the philosophy of science is inapplicable in 
the context of opaque machine learning models, and since I do not want to settle for 
a purely subjective sense of explanation, XAI should adopt any other methods and 
devices that provide objective understanding. Scientific models, suitably adapted to 
the intended users, offer an indirect14 path towards an objective understanding of a 
phenomenon. We should therefore see the parallel between scientific models and 
interpretative models in a positive light.

The fidelity desideratum for interpretative models has to be balanced against the 
desideratum of comprehensibility. There are very few empirical studies about which 
kinds of interpretative models are easier to understand. Huysmans et  al. (2011), 
for example, present evidence that single-hit decision tables perform better than 
binary decision trees, propositional rules, and oblique rules in terms of accuracy, 
response time, and answer confidence for a set of problem-solving tasks involv-
ing credit scoring. This study is of limited use because it was done with extremely 

14 A direct understanding of a phenomenon would be factive, based on a literal description of the 
explanatory elements involved. It is in this sense that models offer an indirect path towards objective 
understanding.
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simple representation formats and the only participants were 51 graduate business 
students.15 It is necessary to undertake similar studies that also include linear regres-
sions, simple naïve Bayes classifiers, and random forests.16 These interpretative 
models also have to be tested on a more diverse population with different levels of 
expertise (Doshi-Velez and Kim 2017). These types of empirical studies are essen-
tial for the purposes of XAI, and they have to be complemented with psychological 
studies of the formal and contextual factors that enhance understanding. As noted by 
Pazzani (2000), there is little understanding of the factors that foster or hinder inter-
pretability in these cases, and of whether users prefer, for example, visualizations 
over textual representations.

The appropriateness of an interpretative model thus depends on three factors: 
obtaining the right fit between the interpretative model and the black box model in 
terms of accuracy and reliability, providing sufficient information about its limita-
tions, and achieving an acceptable degree of comprehensibility for the intended user. 
While there may be some identifiable, permanent features of interpretative models 
that facilitate understanding, the choice of the best proxy method or artifact will 
also depend on who the intended users of the original system are. Their background 
knowledge, their levels of expertise, and the time available to them to understand the 
proxy model can vary widely. This last aspect has been entirely neglected in the lit-
erature; not a single method reviewed by Guidotti et al. (2018) presents real experi-
ments about the time required to understand an interpretative model.

Turning very briefly to post hoc interpretability, we find in the literature several 
interpretative devices to understand a decision. In many cases, a sensitivity analysis 
provides a local, feature-specific, linear approximation of the model’s response. The 
result of the analysis consists of a list, a table, or a graphical representation of the 
main features that influenced a decision and their relative importance. Often, such 
devices allow a certain degree of causal manipulation that brings out feature inter-
actions. This is the basis of the LIME model proposed by Ribeiro et al. (2016), a 
technique to offer functional explanations of the decisions of any machine learning 
classifier. To understand the behavior of the underlying model, the input is perturbed 
to see how the decisions change without worrying about the actual computation that 
produced it. The user can ask counterfactual questions about local changes and see 
the results in an intuitive way. Saliency maps offer a similar functional understanding 

15 In Allahyari and Lavesson (2011), 100 non-expert users were asked to compare the understandability 
of decision trees and rule lists. The former method was deemed more understandable. Freitas (2014) 
examines the pros and cons of decision trees, classification rules, decision tables, nearest neighbors, 
and Bayesian network classifiers with respect to their interpretability, and discusses how to improve 
the comprehensibility of classification models in general. More recently, Fürnkranz et  al. (2018) per-
formed an experiment with 390 participants to question the idea that the likeliness that a user will accept 
a logical model such as rule sets as an explanation for a decision is determined by the simplicity of the 
model. Lage et al. (2019) also explore the complexities of rule sets to find features that make them more 
interpretable, while Piltaver et al. (2016) undertake a similar analysis in the case of classification trees. 
Another important aspect of this empirical line of research is the study of cognitive biases in the under-
standing of interpretable models. Kliegr et  al. (2018) study the possible effects of biases on symbolic 
machine learning models.
16 As noted in the Introduction, none of these methods is intrinsically interpretable.
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of the model. A network is repeatedly tested with portions of the input occluded to 
create a map showing which parts of the data actually have influence on the network 
output (Zeiler and Fergus 2014; Lapuschkin et al. 2019).

Caruana et al. (1999) argue that analogies and exemplars (prototypes) are a use-
ful heuristic device. A model can report, for every new decision, other examples 
in the training set that the model considers to be most similar. The authors seek to 
use this method in clinical contexts, where doctors often refer to case-studies to jus-
tify a course of action. The basic assumption made by case-based methods, such as 
k-nearest neighbor, is that similar inputs correlate with similar outputs. The methods 
look for the case in the training set, the prototype, that is most similar in terms of 
input features to the case under consideration.

Another commonly used method, especially in interactions with autonomous 
agents, is to provide natural language explanations of a decision (McAuley and 
Leskovec 2013; Krening et al. 2016). These explanations state information about the 
most important features in a decision and come closer than any other method to the 
causal explanations used in science and everyday life. The difference, once again, 
is that these “explanations” are not factive, regardless of how plausible they appear. 
Ehsan et  al. (2018) even suggest that textual explanations can be rationalizations: 
“AI rationalization is based on the observation that there are times when humans 
may not have full conscious access to reasons for their behavior and consequently 
may not give explanations that literally reveal how a decision was made. In these 
situations, it is more likely that humans create plausible explanations on the spot 
when pressed. However, we accept human-generated rationalizations as providing 
some lay insight into the mind of the other” (p. 81).

A common feature of many post hoc interpretations is that they are model-
agnostic. They do not even attempt to open the black box and they offer only a func-
tional approach to the problem of explaining a decision. The cognitive achievement 
reached by the use of these devices seems to differ in great measure from the under-
standing provided by an interpretative model. In the last section of the paper I will 
tackle the question of whether it is possible to characterize different types of under-
standing in AI.

4  Types of Understanding in AI

On the basis of the methods described in the previous section, it is tempting to 
divide the understanding they provide into two different types. The first one would 
be associated with post hoc interpretability. This type is often called understanding-
why, and in this case its object will be a specific decision of a model. In contrast, 
transparency seems to generate an objectual understanding of a model. The distinc-
tion between these two types of understanding has been widely discussed in episte-
mology. The question I will examine in the beginning of this section is whether this 
epistemological distinction can be defended in the present context.

Epistemologists establish a distinction between understanding why some-
thing is the case, and understanding an object, a system or a body of knowledge 
(Kvanvig 2003). It seems straightforward to say that the goal of transparency in 
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machine learning can be understood in terms of objectual understanding. Con-
sider the various ways in which this type of understanding has been described: 
According to Zagzebski, understanding “involves grasping relations of parts 
to other parts and perhaps the relation of parts to a whole” (2009, p. 144). For 
Grimm, the target of objectual understanding is a “system or structure … that has 
parts or elements that depend upon one another in various ways” (2011, p. 86). 
And Greco characterizes it as “knowledge of a system of dependence relations” 
(2012, p. 123). The interpretative models that we considered in the previous sec-
tion all provide the kind of understanding described by these authors.

Understanding why p, on the other hand, is not equivalent to simply knowing 
why p. Suppose the only thing a person knows about global warming is that it is 
caused, to a large extent, by an increase in the concentration of greenhouse gases. 
This is a claim the person has heard repeatedly in serious media outlets and sci-
entific TV shows, but he has never stopped to think about the causal mechanisms 
involved. The person knows why the earth is warming, but this information is 
insufficient to understand why it is warming. The person lacks, for example, the 
ability to answer a wide range of questions of the type what-if-things-had-been-
different (Woodward 2003, p. 221). What would happen to global temperatures 
if all human activity were to cease? What would be the effect on global warm-
ing of a massive volcanic eruption similar in scale to the eruption of Krakatoa in 
1883? These are the kind of counterfactual scenarios commonly studied in cli-
mate research and modelling, which the common person is unable to understand. 
A complete understanding of global warming also involves the ability to make 
probability estimates of future scenarios based on current data.

Notice that the ability to answer counterfactual questions and to make predic-
tions depends to a large extent on an objectual understanding of the larger body of 
knowledge to which the specific object of understanding belongs. Without a basic 
understanding of the structure, chemistry, and behavior of the earth’s atmosphere, 
for example, a person will not be able to answer counterfactual questions or 
deliver probability estimates about global warming. It follows, as Grimm (2011) 
convincingly argues, that understanding-why is a variety of objectual understand-
ing, but at a local level, and that there is no genuine distinction between the two 
types of understanding. The implication for machine learning is that understand-
ing a decision requires some degree of objectual understanding of the model. 
Mittelstadt et al. (2019) seem to reach a similar conclusion:

[A]t the moment, XAI generally avoids the challenges of testing and validat-
ing approximation models, or fully characterizing their domain. If these ele-
ments are well understood by the individual, models can offer more infor-
mation than an explanation of a single decision or event. Over the domain 
for which the model accurately maps onto the phenomena we are interested 
in, it can be used to answer ‘what if’ questions, for example “What would 
the outcome be if the data looked like this instead?” and to search for con-
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trastive explanations, for example “How could I alter the data to get out-
come X?” (p. 282).17

It is true that some of the post hoc interpretability devices described in the previ-
ous section allow stakeholders to manipulate the parameters and observe the differ-
ent decisions generated thereby. But this is not genuine counterfactual reasoning. By 
tinkering with the parameters, the stakeholders can only form functional generaliza-
tions with a very weak inductive base. True counterfactual reasoning is purely theo-
retical, based on knowledge about how the model works. Thus, if we take the ability 
to think counterfactually about a phenomenon as a sign that the agent understands it, 
as suggested by de Regt and Dieks (2005), understanding the decisions of a model 
requires some degree of objectual understanding.

There is, nonetheless, an important difference between the two types of under-
standing under consideration. Virtually all epistemologists regard understanding-
why as factive, while allowing that objectual understanding might not be entirely 
so. Pritchard, for example, gives the following example to show that understanding-
why is factive: “Suppose that I believe that my house has burned down because of 
an act of vandalism, when it was in fact caused by faulty wiring. Do I understand 
why my house burned down? Clearly not” (2008, p. 8). In other words, according to 
Pritchard, without a true causal explanation there can be no understanding-why. But 
changing the example can debilitate the intuitions that support this conclusion. Sup-
pose an engineer is investigating the collapse of a bridge and uses Newtonian phys-
ics as the basis for his analysis. Strictly speaking, the explanation is based on a false 
theory, but it can hardly be argued that the engineer is a priori barred from under-
standing why the bridge collapsed. Or suppose an economist successfully explains a 
sudden rise in inflation using a macroeconomic model that, again, cannot be literally 
true (Reiss 2012). It thus seems that the factivity of understanding-why can only be 
defended in simple scenarios where a complete analysis of the relevant causal vari-
ables can be provided, but as soon as the context requires the use of theoretical tools 
such as idealizations and models, it becomes highly doubtful.

Machine learning is precisely this kind of context. The use of arbitrary black-box 
functions to make decisions in machine learning makes it impossible to reach the 
causal knowledge necessary to provide a true causal explanation. The functions may 
be extremely complex and have an internal state composed of millions of interde-
pendent values. Machine learning is the kind of context in which one can say that, 
in principle, it is impossible to satisfy the factivity condition for understanding-why.

We thus have an argument to the effect that understanding-why and objectual 
understanding in machine learning cannot be entirely independent of each other, but 
rather, that the former is a localized variety of the latter. And we have an argument 

17 A terminological clarification is in order. Mittelstadt et al. (2019) and other researchers in XAI use the 
phrase “contrastive explanations” to refer to counterfactuals. But these are two very different things. In 
philosophy, an explanation is contrastive if it answers the question “Why p rather than q?” instead of just 
“Why p?” In either case the explanation provided must be factual. To turn it into a counterfactual situa-
tion, the question must be changed to: “What changes in the world would have brought about q instead of 
p?” And the answer will be a hypothetical or counterfactual statement, not an explanation.
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against the claim that understanding-why is always factive, which was supposed to 
be the most important property that distinguished both types of understanding. So 
even if prima facie the devices and methods used to provide transparency and post 
hoc interpretability are different, it is safe to say, on the one hand, that understand-
ing-why and objectual understanding are two different species of the same genus, 
and on the other, that there is no essential difference between them in terms of truth.

There is, however, a third way of characterizing understanding in AI. Psycholo-
gists distinguish between the functional and the mechanistic understanding of an 
event. The former “relies on an appreciation for functions, goals, and purpose” while 
the latter “relies on an appreciation of parts, processes, and proximate causal mecha-
nisms” (Lombrozo and Wilkenfeld forthcoming, p. 1). For example, an alarm clock 
beeps because the circuit connecting the buzzer to a power source has been com-
pleted (mechanical understanding) and because its owner has set it to wake her up 
at a specific time (functional understanding). Lombrozo and Wilkenfeld argue that 
a subject can have a functional understanding of an event while being insensitive to 
mechanistic information. Lombrozo and Gwynne (2014) have shown that proper-
ties that are understood functionally, as opposed to mechanistically, are more likely 
to be generalized on the basis of shared functions. This means that a functional, 
as opposed to a mechanistic understanding of the relation between an input and 
an output will make it easier for a user to inductively conclude that similar inputs 
produce similar decisions. There is also evidence that functional reasoning may be 
psychologically privileged in the sense that it is often favored and seems to be less 
cognitively demanding than mechanistic reasoning. Humans are “promiscuously 
teleological,” to use Kelemen’s (1999) apt description. Finally, Lombrozo and Wilk-
enfeld also argue that functional and mechanistic understanding differ with regard to 
normative considerations. A functional understanding of a property of an object tells 
us what it is supposed to do, while understanding the mechanism that causes that 
property lacks this normative element. Functional understanding thus seems to be a 
different kind of understanding altogether, compared to objectual understanding and 
understanding-why. It involves different content, it supports different functions, and 
it has a distinctive phenomenology.

If we take the decision of an opaque model as our object of understanding, a 
mechanistic understanding of it is equivalent to the local objectual understanding of 
the model, as I have argued above. Its functional understanding, on the other hand, 
would focus on the purpose of the model and the relation between its features and 
decisions. Functional reasoning about black box models allows for a more mech-
anism-independent form of reasoning. Aiming at this type of understanding will 
be appealing to those who want to offer model-neutral interpretability devices and 
focus only on covariations between inputs and decisions.

However, it seems to me that aiming for functional understanding in XAI is, to a 
certain extent, to give up on the project of explaining why an AI model does what it 
does. It is to embrace the black box and trust it as one trusts a reliable oracle without 
understanding its mysterious ways. Less metaphorically, reliability by itself cannot 
usher trust because of the dataset shift problem (Quinonero-Candela et  al. 2009). 
To have confidence that the model is really capturing the correct patterns in the tar-
get domain, and not just patterns valid in past data that will not be valid in future 
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data, it is necessary to have a global or at least a local objectual understanding of 
the model.18 Unfortunately, most solutions to the dataset shift problem focus only 
on accuracy ignoring model comprehensibility issues (Freitas 2014). Furthermore, 
methods designed to enhance the functional understanding of a model are also more 
likely to be tailored to user preferences and expectations, and thus prone to over-
simplification and bias. Although the understanding and trust sought by XAI should 
always take into account a model’s stakeholders, it should not pursue these goals by 
offering misleadingly simple functional explanations that can derive in unjustified 
or dangerous actions (Gilpin et al. 2019). Finally, a purely functional understanding 
of a model would also impede legal accountability and public responsibility for the 
decisions of the model. Guilt for an unexpected decision with harmful or detrimen-
tal consequences to the user cannot be decided if the only information available is 
the previous predictive accuracy of the model. It is necessary to understand why the 
model produced the unexpected result, that is, to have a local objectual understand-
ing of it.

In sum, in this section I have argued that both transparency and post hoc inter-
pretability should be seen as more or less encompassing varieties of objectual under-
standing, and that the kind of understanding provided by the functional approach to 
a model offers an understanding of a different and more limited kind. In my view, it 
is the former kind that should interest researchers in XAI.

5  Conclusion

In this paper I have argued that the term ‘explanation’, as it is currently used in 
XAI, has no definitive meaning and shares none of the properties that have been 
traditionally attributed to explanations in epistemology and the philosophy of sci-
ence. My suggestion has been to shift our focus from a blind search for explanatory 
devices and methods whose success is uncertain, to the study of the mental state 
that XAI researchers are aiming at, namely, an objective understanding of opaque 
machine learning models and their decisions. I have argued that the use of inter-
pretative models is the best avenue available to obtain understanding, both in terms 
of transparency (understanding how the model works) and post hoc interpretability 
(understanding a decision of the model). The current approaches to the latter rely on 
a purely functional understanding of models; however, leaving the black box entirely 
untouched seems to belie the purpose of XAI. It must be admitted that interpretative 
models can provide false assurances of comprehensibility. The task ahead for XAI is 
thus to fulfill the double desiderata of finding the right fit between the interpretative 

18 To be sure, there are many scenarios where both the owner and the user (but not the developer) of the 
model will be satisfied with its accurate decisions without feeling the need to have an objectual under-
stand of it. Think of the books recommended by Amazon or the movies suggested by Netflix using the 
simple rule: “If you liked x, you might like y.” As I argued in Sect. 2, the relation between understanding 
and trust is always mediated by the interests, goals, resources, and degree of risk aversion of stakehold-
ers. In these cases, the cost–benefit relation makes it unnecessary to make the additional effort of looking 
for mechanisms.
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and the black box model, and to design interpretative models and devices that are 
easily understood by the intended users. This latter task must be guided by an empir-
ical investigation of the features of interpretative models that make them easier to 
understand to users with different backgrounds and levels of expertise. One of the 
possible areas of research is the comparative study of the complexity of rule sets, 
decision tables and trees, nearest neighbors, and Bayesian network classifiers with 
respect to their interpretability. XAI can also benefit from interdisciplinary work 
with designers to create user-friendly, accessible, and engaging interpretative tools 
and interfaces, in the same spirit as the legal design movement. Finally, an important 
aspect of this empirical line of research is the study of cognitive biases in the inter-
pretation of models, especially in the context of autonomous systems with human-
like interfaces.

References

Achinstein, P. (1983). The nature of explanation. New York: Oxford University Press.
Allahyari, H., & Lavesson, N. (2011). User-oriented assessment of classification model understandabil-

ity. In Proceedings of the 11th Scandinavian conference on artificial intelligence. Amsterdam: IOS 
Press.

Carter, J. A., & Gordon, E. C. (2016). Objectual understanding, factivity and belief. In M. Grajner & P. 
Schmechtig (Eds.), Epistemic reasons, norms and goals (pp. 423–442). Berlin: De Gruyter.

Caruana, R., Kangarloo, H., Dionisio, J. D. N., Sinha, U., & Johnson, D. (1999). Case-based explanations 
of non-case-based learning methods. In Proceedings of the AMIA symposium (p. 212). American 
Medical Informatics Association.

Darwin, C. (1860/1903). Letter to Henslow, May 1860. In F. Darwin (Ed.), More letters of Charles Dar-
win (Vol. I). New York: D. Appleton.

De Graaf, M. M., & Malle, B. F. (2017). How people explain action (and autonomous intelligent sys-
tems should too). In AAAI fall symposium on artificial intelligence for human–robot interaction (pp. 
19–26). Palo Alto: The AAAI Press.

de Regt, H. W., & Dieks, D. (2005). A contextual approach to scientific understanding. Synthese, 144, 
137–170.

de Regt, H. W., Leonelli, S., & Eigner, K. (Eds.). (2009). Scientific understanding: Philosophical per-
spectives. Pittsburgh: University of Pittsburgh Press.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv 
preprint arXiv :1702.08608 .

Ehsan, U., Harrison, B., Chan, L., & Riedl, M. O. (2018). Rationalization: A neural machine translation 
approach to generating natural language explanations. In Proceedings of the 2018 AAAI/ACM con-
ference on AI, ethics, and society (pp. 81–87). New York: ACM.

Elgin, C. Z. (2004). True enough. Philosophical Issues, 14, 113–131.
Elgin, C. Z. (2007). Understanding and the facts. Philosophical Studies, 132, 33–42.
Elgin, C. Z. (2008). Exemplification, idealization, and scientific understanding. In M. Suárez (Ed.), 

Fictions in science: Philosophical essays on modelling and idealization (pp. 77–90). London: 
Routledge.

Elgin, C. Z. (2017). True enough. Cambridge: MIT Press.
Falcone, R., & Castelfranchi, C. (2001). Social trust: A cognitive approach. In C. Castelfranchi, & Tan, 

Y.-H. (Eds.), Trust and deception in virtual societies (pp. 55–90). Dordrecht: Springer.
Freitas, A. A. (2014). Comprehensible classification models: a position paper. ACM SIGKDD Explora-

tions Newsletter, 15(1), 1–10.
Fürnkranz, J., Kliegr, T., & Paulheim, H. (2018). On cognitive preferences and the plausibility of rule-

based models. arXiv preprint arXiv :1803.01316 .
Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2019). Explaining explanation. 

An overview of interpretability of machine learning. arXiv preprint arXiv :1806.00069 v3.

http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1803.01316
http://arxiv.org/abs/1806.00069v3


458 A. Páez 

1 3

Greco, J. (2010). Achieving knowledge. Cambridge: Cambridge University Press.
Greco, J. (2012). Intellectual virtues and their place in philosophy. In C. Jäger & W. Löffler (Eds.), Epis-

temology: Contexts, values, disagreement: Proceedings of the 34th international Wittgenstein sym-
posium (pp. 117–130). Heusenstamm: Ontos.

Grimm, S. R. (2006). Is understanding a species of knowledge? British Journal for the Philosophy of Sci-
ence, 57, 515–535.

Grimm, S. R. (2011). Understanding. In S. Bernecker & D. Pritchard (Eds.), The Routledge companion to 
epistemology (pp. 84–94). New York: Routledge.

Grimm, S. R. (2014). Understanding as knowledge of causes. In A. Fairweather (Ed.), Virtue episte-
mology naturalized: Bridges between virtue epistemology and philosophy of science. Dordrecht: 
Springer.

Grimm, S. R. (Ed.). (2018). Making sense of the world: New essays on the philosophy of understanding. 
New York: Oxford University Press.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of 
methods for explaining black box models. ACM Computing Surveys (CSUR), 51(5), Article 93.

Hempel, C. G. (1965). Aspects of scientific explanation. New York: The Free Press.
Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., & Baesens, B. (2011). An empirical evaluation of 

the comprehensibility of decision table, tree and rule based predictive models. Decision Support 
Systems, 51(1), 141–154.

Kelemen, D. (1999). Functions, goals, and intentions: Children’s teleological reasoning about objects. 
Trends in Cognitive Science, 12, 461–468.

Khalifa, K. (2012). Inaugurating understanding or repackaging explanation. Philosophy of Science, 79, 
15–37.

Kim, B. (2015). Interactive and interpretable machine learning models for human machine collabora-
tion. Ph.D. thesis, Massachusetts Institute of Technology.

Kliegr, T., Bahník, Š., & Fürnkranz, J. (2018). A review of possible effects of cognitive biases on interpre-
tation of rule-based machine learning models. arXiv preprint arXiv :1804.02969 .

Krening, S., Harrison, B., Feigh, K., Isbell, C., Riedl, M., & Thomaz, A. (2016). Learning from explana-
tions using sentiment and advice in RL. IEEE Transactions on Cognitive and Developmental Sys-
tems, 9(1), 44–55.

Kvanvig, J. (2003). The value of knowledge and the pursuit of understanding. New York: Cambridge 
University Press.

Kvanvig, J. (2009). Response to critics. In A. Haddock, A. Millar, & D. Pritchard (Eds.), Epistemic value 
(pp. 339–351). New York: Oxford University Press.

Lage, I., Chen, E., He, J., Narayanan, M., Kim, B., Gershman, S., et  al. (2019). An evaluation of the 
human-interpretability of explanation. arXiv preprint arXiv :1902.00006 .

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., & Müller, K. R. (2019). Unmasking 
Clever Hans predictors and assessing what machines really learn. Nature Communications, 10(1), 
1096.

Lepri, B., Oliver, N., Letouzé, E., Pentland, A., & Vinck, P. (2017). Fair, transparent, and accountable 
algorithmic decision-making processes: The premise, the proposed solutions, and the open chal-
lenges. Philosophy & Technology, 31, 611–627.

Lewis, D. K. (1986). Causal explanation. In D. K. Lewis (Ed.), Philosophical papers (Vol. II, pp. 214–
240). New York: Oxford University Press.

Lipton, P. (2009). Understanding without explanation. In H. W. de Regt, S. Leonelli, & K. Eigner (Eds.), 
Scientific understanding: Philosophical perspectives (pp. 43–63). Pittsburgh: University of Pitts-
burgh Press.

Lipton, Z. C. (2016). The mythos of model interpretability. arXiv preprint arXiv :1606.03490 .
Lombrozo, T., & Gwynne, N. Z. (2014). Explanation and inference: Mechanistic and functional explana-

tions guide property generalization. Frontiers in Human Neuroscience, 8, 700.
Lombrozo, T., & Wilkenfeld, D. A. (forthcoming). Mechanistic vs. functional understanding. In  S. R. 

Grimm (Ed.), Varieties of understanding: New perspectives from philosophy, psychology, and theol-
ogy. New York: Oxford University Press.

McAuley, J., & Leskovec, J. (2013). Hidden factors and hidden topics: Understanding rating dimensions 
with review text. In Proceedings of the 7th ACM conference on recommender systems (pp. 165–
172). New York: ACM.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intel-
ligence, 267, 1–18.

http://arxiv.org/abs/1804.02969
http://arxiv.org/abs/1902.00006
http://arxiv.org/abs/1606.03490


459

1 3

The Pragmatic Turn in Explainable Artificial Intelligence…

Miller, T., Howe, P., & Sonenberg, L. (2017). Explainable AI: Beware of inmates running the asylum. In 
Proceedings of the IJCAI-17 workshop on explainable AI (XAI) (pp. 36–42). http://www.intel ligen 
trobo ts.org/files /IJCAI 2017/IJCAI -17_XAI_WS_Proce eding s.pdf. Accessed March 10, 2019.

Mittelstadt, B., Russell, C., & Wachter, S. (2019). Explaining explanations in AI. In Proceedings of the 
conference on fairness, accountability, and transparency (pp. 279–288). New York: ACM.

Mizrahi, M. (2012). Idealizations and scientific understanding. Philosophical Studies, 160, 237–252.
Páez, A. (2006). Explanations in K. An analysis of explanation as a belief revision operation. Ober-

hausen: Athena Verlag.
Páez, A. (2009). Artificial explanations: the epistemological interpretation of explanation in AI. Synthese, 

170, 131–146.
Pazzani, M. (2000). Knowledge discovery from data? IEEE Intelligent Systems, 15(2), 10–13.
Piltaver, R., Luštrek, M., Gams, M., & Martinčić-Ipšić, S. (2016). What makes classification trees com-

prehensible? Expert Systems with Applications: An International Journal, 62(C), 333–346.
Potochnik, A. (2017). Idealization and the aims of science. Chicago: University of Chicago Press.
Pritchard, D. (2008). Knowing the answer, Understanding and epistemic value. Grazer Philosophische 

Studien, 77, 325–339.
Pritchard, D. (2014). Knowledge and understanding. In A. Fairweather (Ed.), Virtue scientia: Bridges 

between virtue epistemology and philosophy of science (pp. 315–328). Dordrecht: Springer.
Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (Eds.). (2009). Dataset shift 

in machine learning. Cambridge: MIT Press.
Reiss, J. (2012). The explanation paradox. Journal of Economic Methodology, 19, 43–62.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”: Explaining the predictions 

of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge 
discovery and data mining (pp. 1135–1144). New York: ACM.

Salmon, W. C. (1971). Statistical explanation. In W. C. Salmon (Ed.), Statistical explanation and statisti-
cal relevance. Pittsburgh: Pittsburgh University Press.

Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton 
University Press.

Samek, W., Wiegand, T., & Müller, K. R. (2017). Explainable artificial intelligence: Understanding, vis-
ualizing and interpreting deep learning models. arXiv preprint arXiv :1708.08296 .

Strevens, M. (2013). No understanding without explanation. Studies in the History and Philosophy of Sci-
ence, 44, 510–515.

van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.
Wilkenfeld, D. (2013). Understanding as representation manipulability. Synthese, 190, 997–1016.
Woodward, J. (2003). Making things happen. A theory of causal explanation. New York: Oxford Univer-

sity Press.
Zagzebski, L. (2001). Recovering understanding. In M. Steup (Ed.), Knowledge, truth, and duty: Essays 

on epistemic justification, responsibility, and virtue. New York: Oxford University Press.
Zagzebski, L. (2009). On epistemology. Belmont: Wadsworth.
Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In 13th Euro-

pean conference on computer vision ECCV 2014 (pp. 818–833). Cham: Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://www.intelligentrobots.org/files/IJCAI2017/IJCAI-17_XAI_WS_Proceedings.pdf
http://www.intelligentrobots.org/files/IJCAI2017/IJCAI-17_XAI_WS_Proceedings.pdf
http://arxiv.org/abs/1708.08296

	The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
	Abstract
	1 Introduction
	2 Why Not Settle for AI-Explanations?
	3 Alternative Paths to Understanding
	4 Types of Understanding in AI
	5 Conclusion
	References




