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Abstract
In this paper, we show that reproducibility is a severe problem that concerns simula-
tion models. The reproducibility problem challenges the concept of numerical solu-
tion and hence the conception of what a simulation actually does. We provide an 
expanded picture of simulation that makes visible those steps of simulation mode-
ling that are numerically relevant, but often escape notice in accounts of simulation. 
Examining these steps and analyzing a number of pertinent examples, we argue that 
numerical solutions are importantly different from usual mathematical solutions. 
They are do not merely approximate the latter, but introduce new problems, includ-
ing issues of artificiality, stability, and well-posedness. Consequently, simulation 
modelling can attain reproducibility only to a certain degree because it is working 
with numerical solutions (in a sense we specify in the paper).

Keywords Artificiality · Ill-posed problems · Mathematical solution · Numerical 
solution · Reproducibility · Stability · Tractability

1 Introduction

Alchemists combined practical skills with curiosity and sometimes audacity. They 
thought the processes of alchemy depended not solely on the objective side of an 
experiment but also on the personality of the experimenter. Using a grain of salt, an 
impure character cannot expect to produce pure gold, no matter how meticulously he 
followed a certain recipe. From the standpoint of modern science, this view sounds 
utterly strange. That scientific results are reproducible in a non-subjective sense 
is a key property of scientific method. On this point, all philosophical accounts 
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of scientific method agree. In practice, however, it might be difficult to reproduce 
an experiment successfully. Collins (1985), for instance, pointed out that implicit 
knowledge on the side of the experimenter might play an important role. Neverthe-
less, reproducibility remains a core element of philosophical accounts of scientific 
method. If an experimental result cannot be independently reproduced, it is not 
accepted as scientific.

No wonder, then, at the shock that propagated through psychology when research-
ers tried to reproduce results published in prominent venues, but failed in a surpris-
ingly high percentage of cases (Open Science Collaboration 2015). This finding 
triggered a “crisis of reproducibility” that threatens the scientific status of the dis-
cipline. At first view, sciences that rely on formal mathematical models, and espe-
cially on computer simulation models, seem to be immune against this threat. They 
possess an almost logical guarantee: Though a model might be highly idealized, or 
irrelevant, or even completely wrong—still its results will be perfectly reproduci-
ble. A = A—just repeat the entire calculation, or the entire run on the computer. The 
crisis of reproducibility might affect sciences that pretend to rely on mathematical 
models, but in fact do not. Maybe those sciences include tacit and dubious addi-
tional practices that prevent the results from being reproduced.1 In short, the prob-
lem of reproducibility lies outside the realm of simulation models.

In this paper, we argue that the above statement is erroneous. Reproducibility is 
a problem that concerns simulation models. Moreover, it is a particularly interesting 
problem because it involves the very concept of numerical solution. The reproduc-
ibility problem gives rise to thinking about the concept of numerical solution and 
about what simulations achieve in terms of numerical solutions.

In fact, the simulation community is aware that ensuring reproducibility requires 
special measures. Investigating such measures is a vibrant field of research on sev-
eral fronts, like the interchangeability of different numerical methods or how com-
pilers should work so that they mutually reproduce their results. Research of this 
kind is about avoiding a crisis of reproducibility. In practice, however, simulation 
modelers do not restrict themselves to the secured methods, but try to tackle com-
plex tasks with those means that are available to them.

Several indicators from very different directions point toward a potential crisis 
of reproducibility in simulation-based sciences. Here is a sample: Kaminski et  al. 
(2018) discuss reproducibility in the context of epistemic opacity. They refer to Lud-
wig (2017) who reported significantly different flow patterns in different computa-
tional jobs from a fluid dynamics simulation that were supposed to deliver identical 
results. Schappals et al. (2017) present a round robin study where a standard (math-
ematical) model in molecular dynamics produced different results when run by dif-
ferent (experienced) working groups. Reproducing the model’s results by different 
groups proved difficult for a number of reasons. We will touch upon some of them 
later in our text. Their study complements the one of Lejaeghere et al. (2016) who 

1 There is a less friendly interpretation of the crisis in psychology that says results cannot be reproduced 
because the publications include outright fraud. No formal models of any kind can be an effective rem-
edy then.
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got a positive result about the (statistical) consistency of results of different simula-
tion models that implemented density functional theory (DFT). The positive result, 
however, should not occlude the insight that the question was open and critical at the 
start of the investigation.

Additionally, there are informal observations from the supercomputing center 
where one of the authors has led the numerics and libraries group. Among other 
things, this department supports clients from inside and outside of academia who 
plan to use high speed computing facilities for running their models. Quite regularly, 
clients expect that results are perfectly reproducible and complain when different 
runs obtain different results. In their opinion, this testifies something went seriously 
wrong. Simulations with identical initial conditions should bit-wise reproduce one 
another, so the clients reason.2 Reproducibility in this sense is a common test (on 
serial machines) whether a simulation is valid.

From the 1990s onwards, computing centers utilized parallel architectures, but 
parallelization in a way counteracts reproducibility. Contrary to the naive expec-
tation, two runs will in general not produce the same result. What is reproducible 
(repeatable) on serial machines is not reproducible on parallel architectures because 
exact repetition in the order of steps is not guaranteed after parallelization. The same 
limitation may apply even on serial machines after compiling the program by dif-
ferent compilers or with different options of the same compiler. The basic point is 
simple: Adding a list of floating point numbers will yield a result. Since machines 
have limited representation capacity per number, in general this result will not be 
perfectly exact. While adding the same list of numbers in the same order again will 
give the same result, floating point addition of more than two numbers is not strictly 
associative due to the round-off errors. Expressed in simple algebra, it can happen 
that. The equation holds only approximatively. For sums with many elements as they 
appear in large linear problems this might result in large differences in dependence 
on the order of operations. This is not big news, but is reflected in standardization of 
Floating Point Arithmetic by the IEEE-754 Standard. Hence adding the same float-
ing point numbers in a different order will in general not give the same result as 
before. And parallelization typically drops the fixed order in which computations 
are executed. The order might also be changed by different compiler optimization 
options or by using different hardware features of a processor core as SIMD units. 
Consequently, bit-wise reproduction is not adequate as a criterion for validation. 
Admittedly, there are attempts to ensure this type of reproducibility by synchroniz-
ing the parallel steps in a defined order. But this is a very sensitive operation and 
degrades the performance of the program on the parallel machine. People working 
on current high performance computers have learned that the goal of bit-wise iden-
tity is misleading. Bitwise reproducibility on this level is not attainable.

There are also practical limitations. Often, supercomputing power is used where 
goals cannot be reached on smaller machines. Clients want to use the maximum 
computational power and the maximum time slot available to get a result. This 

2 If reproducibility (across different groups and machines) is discerned from repeatability (same group, 
same machine), then the clients expect repeatability.
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rationale renders reproduction time-consuming and expensive. A very similar obser-
vation can be made about clinical trials of pharmaceuticals. Sometimes they are so 
expensive that they can hardly be reproduced (Ioannidis 2005, see Solomon 2011 for 
a philosophical overview).

These observations indicate that reproducibility is a problem for simulation mod-
elling practice and philosophy. Of course, we mentioned already that there are thriv-
ing research agendas in numerical error analysis and interchangeability of numerical 
methods whose results give insight into conditions and level of reproducibility (cf. 
Fillion 2017; Fillion and Corless 2014). However, we target a wider array of factors 
that influence reproducibility in existing simulation practice.

• Bad practices threaten reproducibility. Thus one part of the reproducibility prob-
lem is the normative question of what constitutes good simulation modelling 
practice. Good practice, however, does not guarantee reproducibility. This makes 
the problem philosophically interesting and brings in the second factor.

• Demanding complete reproducibility would be asking too much. It does not 
make sense setting up criteria that cannot be fulfilled anyway. What, therefore, is 
an adequate level of reproducibility?

Finding an adequate account of reproducibility will require investigating into the 
methodology of simulation modelling, and the concept of numerical solution. A 
common definition says that simulation is the numerical solution of a theoretical (or 
mathematical) model. For instance, the entry on ‘computer simulation’ in the Stan-
ford Encyclopedia (Winsberg 2018) discusses a narrow, a broad, and an alternative 
definition, all of which specify simulation as numerically (or approximatively) solv-
ing mathematical equations of a model.

Our main point is that this definition is misleading. It is not strictly false, but it 
is tenable only under a sophisticated understanding of what “numerical solution” 
means—an understanding that includes a significant difference to the normal math-
ematical concept of solution. While complete reproducibility is a core property of 
mathematical solutions, numerical solutions are different. Not only numerical errors, 
but also social and pragmatic effects of implementation undermine reproducibil-
ity. We argue that simulation modelling can attain reproducibility only to a certain 
degree because it is working with numerical solutions (in a sense to be specified). 
Here is an outlook on how we examine simulation modeling.

Section 2 briefly presents the steps involved in simulation modeling. This account 
highlights that the translation from a theoretical (mathematical) model to a simu-
lation model involves a whole series of modeling steps. These steps are mutually 
intertwined and together they constitute a modeling task of their own. Claims like 
this have been made repeatedly in the philosophy of simulation (see, e.g., Winsberg 
1999 on layers of models, or Lenhard 2007 on the significance of discretization). 
It is important, however, to take a close look and expand the picture of simulation 
modeling. One point that becomes visible then is that modelers optimize numerical 
solutions at the cost of reproducibility.

Section 3 contains the main part of our analysis and argument. We discuss four 
aspects of the expanded picture: Sect. 3.1 the iterative nature of simulation and the 
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resulting properties of numerical solutions, Sect. 3.2 parameters of the implementa-
tion, like adaptive grids, that loosen the connection between the theoretical model 
and the simulation, Sect.  3.3 limitations of modification, especially those that are 
due to proprietary software, and Sect.  3.4 the identity of what is getting solved. 
What gets numerically solved is a convolution of many modelling steps—not the 
theoretical (mathematical) model.

Section 4 summarizes the findings. Numerical solutions are a kind of compro-
mise and limit the level of attainable reproducibility. An adequate degree of repro-
ducibility in simulation should maintain a normative dimension, but should not ask 
for the impossible.

2  Simulation Modelling—Expanding the Picture

Computer simulations often build on a mathematical model. There are cases like 
agent-based systems, or cellular automata in which the role of a theoretical math-
ematical model is unclear. However, those cases in which there is such model are a 
class of great importance that we take as the standard case.3

A typical example is fluid dynamics where the same mathematical core is used 
when designing an aircraft wing, planning the pipes in an industrial plant, or when 
simulating the atmosphere. Consider a picture like the one displayed in Fig. 1.

There, we start with a quantity xreal in the real world, or less metaphysically, the 
target system that we want to model. This could be the vorticity of a flow. Although 

Fig. 1  Schema of simulation modeling, including a feedback loop (from Hasse and Lenhard 2017). Cour-
tesy of H. Hasse and J. Lenhard

3 Readers interested in taxonomic intricacies might want to have a look at how simulation is defined in 
handbook or encyclopedia articles, see Lenhard (2016), Parker (2013), or Winsberg (2018).
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the figure does not display the term ‘theory’, how one conceptualizes relevant phe-
nomena, like vorticity or eddies, is already a theory-laden issue. Hence the entire 
figure should be read against the background of theory. The Navier–Stokes equa-
tions, a system of partial differential equations, are commonly held to present a very 
accurate model of fluid flow based on continuum mechanics and the conservation of 
mass, momentum and energy. The corresponding entity in the theoretical model is 
xmod—think of the mathematically defined vorticity. Although the theoretical model 
is formulated in the language of mathematical calculus, it is not tractable with it. 
In other words: researchers cannot mathematically solve the equations and obtain 
xmod; it is even an open mathematical problem whether the 3D Navier–Stokes equa-
tions have a smooth mathematical solution over time if the initial conditions are 
also smooth. Instead, the model is implemented on a computer and simulations are 
carried out. Implementing the model requires a discrete version (there are many 
of these) that can only be some approximation of the theoretical model. A dis-
crete model still needs to be implemented on a computer, including algorithms and 
describing them in a concrete software program. The resulting simulation model—
or executed simulations—then yield a quantity xsim (the simulated vorticity) that 
can be compared eventually to the results of experimental studies of the real world 
xexp (measuring vorticity). Such comparison is neither trivial nor direct. Setting up 
an experiment and specifying procedures that measure the target quantity often is 
a demanding task. In general, neither xreal nor xmod can be accessed; only the cor-
responding properties xexp and xsim can be compared. It might even be difficult to 
determine their difference.

This picture of simulation modeling is standard, but very compressed. Any such 
picture misses details, much like any map misses details of the landscape, but the 
standard picture misses parts that are crucial in our context. The critical point is that 
the path from the theoretical model (upper left) to the simulation model is described 
here as “model implementation”. It appears to consist of merely one step. But there 
is an entire series of steps. Without looking at them, talking of numerical solutions 
must miss the point. The picture of simulation modeling must therefore be expanded.

Before we turn our attention to the expanded picture, we would like to observe 
that Fig.  1 entails a feedback loop that is of critical importance when building 
simulation models. All kinds of modeling can include a feedback loop, but making 
intense use of the loop is practical only when the loop works swiftly enough, i.e. 
modifying one element and then repeating all steps (calculations) is fast enough. 
This loop makes adjustable parameters a versatile tool. If, for instance, some simu-
lation deviates from known experimental results, one can insert parameters whose 
adjustment can help to narrow down the deviation. Using adjustable parameters to 
optimize model performance requires marching fast and often through the feedback 
loop. Hence the loop invites modelers to combine top-down (starting from the theo-
retical model) with bottom-up (exploring parameter assignments) approaches (cf. 
Hasse and Lenhard 2017; Lenhard 2016). Figure 2 attempts to name the steps that 
lead from xmod to xsim.

In the following, we concentrate on some of the aspects that become visible in the 
expanded picture and that are pivotal for our topic of reproducibility and numerical 
solution.
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3  Four Elements of the Numerical Part of Modeling

The expanded picture of Fig. 2 displays a number of steps that lead from xmod to xsim. 
The following discussion clarifies what is wrong with describing this pathway as 
“solution”.

3.1  Iterative Nature

The digital computer has a special strength; it works through an iterative algorithm 
with high speed. Before the electronic computer, iterative algorithms were known, 
but their scope of application was very restricted. The calculus illustrates the point. 
Important properties of a mathematical function are defined along a path of itera-
tions, just as a series of linear approximations on the nodes of smaller and smaller 
triangles describes the gradient of a function in 2D at one point. The calculus has 
replaced the iterations with one single operation, namely building the derivative, and 
thus has made the operation tractable. There are other cases, like the Raphson–New-
ton or the Euler methods that iterate numerical schemes. Their utility is that they 
yield an approximative result after not too many iterations (for human beings with 
great but finite skills and concentration span).

The computer changed the game. Iterating an algorithm is a straightforward and 
easy task to program (though the details may lead to substantial theoretical mat-
ters). Iterative algorithms render approximation strategies feasible that before had 
been intractable. This opportunity invites—and thereby guides and attracts—new 
developments, i.e. new approaches that make fuller use of iteration. Whether itera-
tive procedures get to the “correct” solution as a limit, or whether they plausibly 
approximate it, remains a key question. By and large, linear systems can be solved 
(we come back to the notion of solution in this section) via direct (non-iterative) 
methods, whereas nonlinear systems demand iterative methods.

Fig. 2  An expanded picture detailing the steps between  xmod and  xsim
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We would like to point out that two types of iteration are in play here. Iterative 
algorithms repeat a procedure, taking the result of the previous loop as an input. We 
call this a-iteration. Additionally, the feedback loop in the modeling process intro-
duces an iterative element in the building of the model, including the adjustment 
of parameters. Here, the loop is iterated, but this can be different from iterating an 
algorithm, because depending on the result, modelers will learn and adapt. What 
they do next depends on the previous loop in a potentially complicated way.4 The 
feedback loop helps to control the modeling process. We call this type of repeat-
ing the loop c-iteration. Examples for c-iterations are exploring parameterization 
schemes, adapting physical parameters, the number of particles included in a model, 
etc. We admit this terminology lacks elegance. Our excuse is that we do not want to 
propose a- and c-iteration as new terms. We just want to make clear that there are 
different types of iteration in play.

How does the highly iterative nature of numerical procedures affect the concept 
of solution? If you have an equation e with a variable x, and you replace x by a 
certain term and find that the equation holds, then this term solves e. This concept 
seems to be well-defined (the simple case we just described is sufficient) and hardly 
changeable at all.

A basic but important point is that only machines can do large numbers of itera-
tions. And solutions generated by approximation procedures differ significantly from 
what is called a closed-form solution. For example, the closed-form solution might 
have algebraic or physical properties that the approximate solution does not have. 
A historical example shows the advantages of solutions. Galilei determined the bal-
listic curve of a cannonball. According to his model, it describes a parabola, i.e., a 
quadratic equation—and it is not too difficult to solve this equation. The solution, 
also called closed-form solution, will depend on initial conditions, like the angle of 
the gun barrel. That solution gives a handle on variations, too. How does varying the 
initial angle change the curve? Etc. Moreover, inverting the solution is possible: how 
should the artillerymen act if they want to hit a target? This is a primary point for 
why mathematical modeling might be useful. It opens up the opportunity for predic-
tions and for further analysis of potential variations. Investing work into the solution 
is economical because the solution covers a whole set of situations.

By the way, we chose the military example because it played an important role 
historically: Computing ballistic curves has been a main motivation for developing 
numerical techniques. Furthermore, it nicely illustrates the fact that the predictive 
qualities of mathematical models and their solutions do not imply that such models 
would be accurate. It turned out that real cannonballs do not at all follow a parabola, 
since effects of friction, temperature, etc. change the mathematical form of the curve 
in complicated ways.

Independently of the model’s being accurate or inaccurate, the situation looks 
quite different when we examine numerical solutions rather than closed form solu-
tions. Numerical solutions in general satisfy the equation they solve only approxi-
mately, with an error, which might not be simple to estimate. But this description 

4 If adjusting parameters is automated, it can be conceived as an a-iteration.
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requires clarification. If the initial model is a set of differential equations (think of 
the Navier–Stokes equations), the discretized version (numerical method) is a set 
of difference equations. Nonlinear difference equations are normally not solvable 
in closed form, but they are straightforwardly handled by iteration. Such difference 
equations solve the initial model approximately, but doing so requires a series of 
additional steps (see Fig. 2). Thus it is an additional problem how well a simulation 
accomplishes the approximation in practice. One typical question is how quickly 
the approximation improves with the number of iterations. We want to avoid getting 
technical here.

Although in quantitative terms, the numerical solution might approach the cor-
rect solution (of the mathematical model), in practice the properties remain very dif-
ferent. Inverting the result is not possible with typical numerical solutions because 
there is no backward pathway through the calculations. How strongly does the solu-
tion depend on the initial conditions? Can it vary largely even if the conditions vary 
only slightly in the case of an ill-posed problem? Questions like these involve not 
only the numerical methods and algorithms chosen, but also their concrete imple-
mentation. Answering these questions therefore requires iteration on top, i.e. chang-
ing the parameters and running the simulation again.

Iteratively sounding out the space of solutions is a very different strategy from 
obtaining a closed form mathematical solution, if there is one. Numerical methods 
almost never get it precisely right. More importantly, they do not come with the 
additional helpful properties (variation, inversion, conservation of certain proper-
ties). Thus, a numerical solution provides knowledge about the mathematical model 
(in the sense of section two) that is quite different from what a traditional math-
ematical solution provides. One can see this difference when considering possible 
failures. Considering failures is the flip side of considering solutions.

We discern two types of failures (ignoring the fact that the space of failures is 
much larger). For type one, there is a remedy if the adequate tool is available. For 
type two, there is no remedy. An example for type one failures is the numerical 
weather forecast that L.F. Richardson obtained for part of Germany. He worked dur-
ing the First World War when electronic computers did not exist. Back then, the 
word computer referred to human beings. Richardson set up a numerical scheme 
(system of difference equations) that would describe how meteorological conditions 
process in time (based on physical laws). The model had been formulated as a sys-
tem of (continuous) intractable partial differential equations by the meteorologist 
Vilhelm Bjerknes in 1903. It took Richardson 6 weeks to compute a 6 h forecast for 
one single cell in Germany, for known weather conditions of the year 1910. Alas, 
it turned out that the numerical forecast was utterly wrong. Later researchers ana-
lyzed the reasons, but it is not fully clear whether imprecise initial conditions or 
a misleading discretization (Richardson did not know the Courant-Friedrichs-Lewy 
conditions) caused the failure. Richardson writes that he was motivated by a fantasy: 
an intractable mathematical model could be made tractable via organizing computa-
tional power.

“After so much hard reasoning, may one play with a fantasy? Imagine a large 
hall like a theatre, except that the circles and galleries go right round through the 
space usually occupied by the stage. The walls of this chamber are painted to form 
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a map of the globe. The ceiling represents the north polar regions, England is in 
the gallery… A myriad computers are at work upon the weather of the part of the 
map where each sits, but each computer attends only to one equation or part of an 
equation.” [Computers exchange values with their neighbors. On a tall pillar in the 
middle] “sits a man in charge of the whole theatre; he is surrounded by several assis-
tants and messengers. One of his duties is to maintain a uniform speed of progress 
in all parts of the globe. In this respect he is like the conductor of an orchestra in 
which the instruments are slide-rules and calculating machines.” (Richardson 1922, 
pp. 219–220)

No matter what exactly caused Richardson’s failure, with the right tool at place 
(digital electronic computer with sufficient power, plus experience with rules for 
discretization), his task would have become a doable one. He anticipated even paral-
lel computers.

Type two failures are different: There simply is no remedy in practice. Such fail-
ures are virtually ubiquitous in simulation. One example out of many is molecular 
dynamics simulation where researchers model the behavior of molecules by a large 
number of particles that interact according to certain rules (force fields). How many 
particles should they model? Is there a reason why 1 million particles are sufficiently 
many in molecular simulations compared to the Avogadro-constant of 6.022  1023/
mol? Obviously, this number has to be assigned before the iterative algorithm can 
start. It is an assumption that cannot be justified based on the mathematical model. 
Or maybe it can, but the justification is in typical cases unknown. It is a pragmatic 
assumption: Take a big number, but not so big that it is slowing down the iterative 
algorithm too much. That means the number is strongly dependent on the available 
computational capacity. Typically, simulation models will entail failures of these 
types. They are simply unavoidable. Not every part of a simulation model (in the 
expanded picture from Sect. 2) can be theoretically motivated. After healing Rich-
ardson’s failure, there surely remain several failures of type two in meteorological 
models. Investing more computation in general helps and makes the approximation 
better. But how good precisely? In typical cases, the exact relationship between a 
numerical solution (the simulation) and the exact solution (of the theoretical model) 
is unknown. A numerical solution can never get it right.

Numerical solutions are different from traditional mathematical ones because the 
former bring in pragmatic aspects and relax the connection to “the” correct solution. 
The following sections will add analyses that basically support these findings.

3.2  Parameters

We stay with the example of fluid dynamics. The Navier–Stokes equations are an 
(in)famous set of partial differential equations (PDEs). They are famous because 
they represent the dynamics in a very comprehensive way. At the same time, they 
are infamous because mathematically solving the PDEs is of utmost difficulty. 
Already the question whether a continuous solution exists (not to give this solution) 
has made it into the “Millenium” list, i.e. the shortlist of important unsolved math-
ematical problems. The problem of practically obtaining this solution (if it exists) 
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is on a list that itself does not yet exist. However, simulation methods have made 
fluid dynamical problems tractable. The Navier–Stokes equations can be solved 
numerically (with all caveats the Sect. 3.1 discussed regarding the notion of solu-
tion). Since simulation methods are more or less a requirement when working on 
practical fluid dynamical problems, and since these problems are highly relevant in 
many different fields, fluid dynamics is a prime example of simulation. Moreover, it 
provides a motivation for the standard definition of simulation (see introduction) as 
numerical solution.

A most important phenomenon of turbulent flow is the emergence of eddies. 
Their behavior strongly influences the global properties of the flow. That eddies 
emerge is inherent in the continuous Navier–Stokes equations. Simulations require 
the discretization of space and time. Obviously, eddies strongly depend on the reso-
lution of the discrete grid. Depending on the order of the scheme no grid can resolve 
phenomena that are essentially smaller than grid size, just like no net can catch fish 
smaller than the grid between knots. Figure 3 shows an example of a fluid dynamical 
simulation, the oceanic circulation in the Labrador Sea. The highest resolution has 
been computed at the DKRZ, Hamburg, Germany, and has had a runtime of 100-
150 h CPU per processor and model year (run in year 2002, 19 Gflop on 8 cores, 
todays machines might be much faster, but do not change the principle).

Obviously, the eddies shape the picture of the circulation with increasing resolu-
tion. Consequently, the calculated fluid dynamical properties depend on the way the 
grid is refined. The crucial question then is, how the grid refinement should look 
to produce a realistic picture (the Kolmogorov length scale for atmospheric motion 
might be measured in centimeters). It is very likely that also future computers are not 
able to resolve all eddies of the flow. Is this a problem of the second type (Sect. 3.1)?

There are at least two different, but connected problems. One is obtaining a good 
approximation on a given grid, the other is deciding on which grid is adequate. The 
first problem is a generic one when moving from continuous mathematical mod-
els (like the Navier–Stokes equations) to discrete ones. The behavior of the dis-
crete model will be different from the continuous one. The former will introduce 
artefacts relative to the initial continuous model, irrespective of whether the initial 

Fig. 3  a–c Oceanic circulation in the Labrador Sea. Increasing resolution from left to right: 4/3, 1/3, 1/12 
degree. From Böning et al. (2002, pp. 11–13)
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model is adequate or not. One example is that the discrete version lacks stability 
when it comes to high frequencies. This problem has been acknowledged from the 
very beginning on, when researchers started to explore the possibility of numerical 
simulation. John von Neumann and others, while working in the Manhattan project, 
proposed to introduce an “artificial viscosity” that compensates the artificial effects 
caused by the grid (Winsberg 2003 discusses this case). Refining the grid will also 
change this artificial viscosity. The idea is that if the grid gets finer and finer, the 
artificial viscosity tends to zero. Ideally, an infinitely fine grid (not feasible in com-
putational practice) will lead to zero artificial viscosity.

As a rule, deviation between theoretical and simulated behavior, i.e. between xmod 
and xsim, is considered unwanted. A very common remedy against such unwanted 
effects is amending simulation models with artificial elements that compensate for 
the deviations.5 In the picture of simulation modeling discussed in Sect. 2, artificial 
viscosity appears as a parameter (or set of parameters) that can be adapted. Depend-
ing on the parameter assignment, the numerical solution becomes better or worse 
compared to known cases or measurements. Such compensation can have draw-
backs. In our example, artificial viscosity might collide with the inherent viscosity 
of the Navier–Stokes equations and influence phenomena like eddies in unforeseen 
ways.

The exact dependence of the fluid dynamical properties from the chosen grid 
refinement is usually not known, but has to be explored (via c-iteration). In prac-
tice, refinement strategies are often guided by expert knowledge that resembles the 
knowledge of an artisan. At the same time, and because of the informal character of 
the grid adaptations, one hardly finds explicit considerations in published papers. 
They usually report only which grid (refinement) has been used, seldom do they 
mention which other refinements had been explored, and practically never can one 
read about reasons why some refinement was superior to others. This is no wonder, 
because formal justification is normally not available.

The second problem asks which grid is adequate. Figure 3 depicts that the behav-
ior is strongly dependent, if not dominated by eddies. Would further refinements 
lead to a significantly different picture, and if so, would these refinements be helpful 
given the simulation purpose? Questions like these are hard to decide. When inter-
esting properties do not change with further refinement, i.e. are robust, this outcome 
would strongly indicate that the grid is sufficiently fine. Ideally, modelers could vali-
date for independence from grid parameters. That would mean they check whether 
simulation results are independent of the exact parameterization. But such tests are 
rarely performed, because the programming community considers parameter-inde-
pendence a matter of experience and fingertip knowledge on the part of model build-
ers. In many circumstances, the grid resolution is already as fine as possible, given 
restrictions in time and money. Hence testing further refinements is practically not 
possible.

5 Lenhard (2007) examines another case where a pioneer of simulation met resistance because of the 
artificial elements he advocated.
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The example of artificial viscosity presents a generic dilemma of simulation. The 
artificial viscosity should be as small as possible, because it is an artificial remedy 
and as such indicates that the model needs such remedy. On the other side, if a big-
ger artificial viscosity (or artificial whatever) leads to better results, this outcome 
normally trumps the first aspect. A numerical solution, like the one displayed in 
Fig. 3c, will balance both counteracting effects. Hence it will rest on a compromise 
and therefore has an essentially pragmatic nature. This lesson applies also to other 
existing numerical approaches (“upwinding”) that need no artificial viscosity.

Although considerations like these are not part of physics or fluid dynamics, they 
are inevitably part of simulation modelling. Most questions about parameter assign-
ment are not related to the underlying mathematical model, and thus to the extent 
that parameters influence numerical solutions, these solutions do not “solve” the 
mathematical model. There are many reasons why parameters enter the simulation 
model along the way displayed in Fig. 2. One very principled perspective is the fol-
lowing: All models idealize and omit some of the relevant details. Such idealization 
might be even desired. Additionally, knowledge is always incomplete and hence one 
cannot model the full target system. Thus, when parameters are adjusted, they fit 
xsim best fits to xexp (cf. Fig. 1) and thus compensate for missing details and missing 
knowledge. Again, if a simulation is a solution, finding this solution is like finding a 
compromise.

3.3  Limitations of Modification

There is a serious technical limitation to modification. Parameters like those govern-
ing grid refinement span a parameter space with many different parameters that is 
much too large to be explored exhaustively by numerical simulation. Finding the 
best or most adequate assignment of values is typically an unsolvable problem itself. 
Finding some assignment that is good enough is the best what one can hope for. 
Hasse and Lenhard (2017) discuss adjustable parameters in more detail. Figure  4 
shows the basic task when looking for a good adjustment.

Often, modelers do not search for an adjustment by hand, but employ formal opti-
mization methods. They might outsource an optimization task to a numerical solver 
that will handle parameters according to a formal procedure. The resulting param-
eter assignment works best for formal reasons, but motivations for why this is so are 

Fig. 4  Parameter adjustment as a feedback loop (from Hasse and Lenhard 2017). Courtesy of H. Hasse 
and J. Lenhard
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often unavailable. In other words, such procedures create epistemic opacity because 
parameters tend to lose their interpretation.

Here, we concentrate on another reason that limits modification. The car man-
ufacture industry uses simulated crash tests when designing and testing their new 
cars. When repeating empirical crash tests, car bodies will never deform in the very 
same way. But users (and modelers) expected this would happen in simulated crash 
test. For them, it came as a surprise that repeating the same simulation experiment 
(crash test) can lead to significantly different outcomes. Figure 5 shows an example. 
The observed differences motivated a research project that analyzed these unwanted 
variations.

A team conducted simulations with software packages that are standard in finite 
element simulations of crash tests, like Abaqus or LS-Dyna. They found strong 
indications that several factors worked together in producing variations that had no 
counterpart in the target system, i.e. were artefacts of the simulation. By modify-
ing the input, they could analyze the sensitivity of the various packages. However, 
this story found a premature end because these packages are  3rd party code that is 
proprietary, and the modelers were not allowed to analyze the source code. Hence 
they could not do anything about the observed or assumed flaws. If simulation mod-
elers find themselves under pressure to improve the software without access to the 
source code, they can resort to adding some extra artificial measures that are called 
“kluges” (also spelled “kludges”) in software slang. Kluges increase opacity, how-
ever, because there is no reason why they are as they are except for the tested overall 
performance. Even having access to the source code, however, would not lead to a 
quick solution. One would first have to become acquainted with important parts of 
the code. People who have ever tried to understand the logic behind code written by 

Fig. 5  Reprinted from Duddeck (2007). Courtesy of Fabian Duddeck
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someone else, are immediately aware how big the problem is. One indication is that 
manuals of common software packages have often a 4-digit number of pages.

More important for these kinds of numerical tests is that the model for crashes is 
itself not well-posed. That means small changes in initial conditions may produce 
large variations in results. Even very accurate numerical simulations cannot achieve 
anything better than predicting these variations. The question then remains open, of 
whether these predictions are meaningful.

A third and different type of limitation comes from the connection between xreal, 
xmod, and xsim. An example will make the point. In fluid dynamics (and other areas), 
there is a phenomenon called dispersion, i.e. velocities split and waves of different 
wave lengths propagate with different velocities. This is a “real” phenomenon (think 
of monster waves where waves of different velocities pile up at a certain moment) 
and hence a good simulation model should be able to produce this kind of behavior. 
At the same time, dispersion also emerges as an artefact of discretization. In this 
role, dispersion is not wanted. But how to discriminate the two parts or sources of 
dispersion? One option would be to maximize resolution everywhere, but this is not 
possible because of the criterion of economy (limited run time). Again, the art of 
finding a numerical solution partly consists in finding a compromise between factors 
that are not fully formalized.

3.4  A numerical Solution Solves What?

The crucial point has already been made. It is fruitful to see a simulation as a 
numerical solution, but one should keep in mind that this solution does not solve 
the (original) theoretical/mathematical model. Rather, the result is about an entire 
convolution of the theoretical model with all modelling steps and loops involved 
in Fig. 2 (for the moment we assume this figure gives a complete picture). In our 
previous example of fluid dynamics, the simulation does not numerically solve the 
Navier–Stokes equations as partial differential equations, but their specific, discrete 
version, plus the grid, plus the parameterization schemes, plus specifications of 
parameters.

Thus we encounter a twofold problem about how simulation is linked to numeri-
cal solution. First, the simulation does not solve the initial model. It rather solves a 
model that is a complicated set of assumptions and that is given only implicitly by 
the convolution of all modeling steps. It is not “the” model that runs on the com-
puter. It is this complicated and implicit convolution that produces the results (xsim). 
It cannot be the unique correct solution (if it exists in a mathematical sense)—and, 
more importantly, speaking about approximation is often a thinly disguised hope 
rather than a clear modeling condition.

The second part of the problem is not about what is solved, but about how it is 
solved. Numerical solution starkly differs from normal mathematical solution. Our 
investigation revealed that numerical solutions, in contrast to mathematical ones, 
have a pragmatic character. Notions like tractability and the economy of time and 
money co-determine what counts as a numerical solution.
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4  Conclusion

This paper started with the claim that the problem of reproducibility exists in 
simulation modeling and that examining this problem leads to re-thinking the 
concept of numerical solution and how simulation is related to it. Now we look 
backwards, starting from simulation and numerical solution. The usual picture 
assumes that a small number of steps lead from a theoretical mathematical model 
to a discrete model and further on to the final simulation. Practitioners as well as 
philosophers of science commonly refer to simulations as solutions, but this way 
of speaking is only accurate if the numerical method is stable under the condi-
tions in questions and the simulation approximately solves the numerical method 
with sufficient accuracy. Investigating whether these conditions are met requires 
a detailed picture of the modeling steps involved. Only a picture of simulation 
modeling that, compared to the common picture, resolves many more steps can 
address the relevant numerical, technical, and social aspects.

Problems with interfaces between the modeling steps and the role of iteration 
(both a- and c-iteration) become visible only in the expanded mode. Simulation 
modeling interconnects quite different entities, the theoretical model and the 
computer simulation. The host of extra assumptions, artificial additions, param-
eterizations, and the effort to write a simulation program testify how demanding 
it is to construct this link.

Thus a main lesson is how important the expanded picture of simulation mod-
eling is. That the picture used here (Fig. 2) might be incomplete only strengthens 
the case. Since the modeling steps are interdependent and of very different char-
acter, the outcome attains features of a compromise. This gives reason to disam-
biguate the concepts of “computer simulation” and “numerical solution”.

How does this conclusion relate to the problem of reproducibility? To expect bit-
wise reproducibility would be naïve. Numerical analysts are aware of this fact which 
is even reflected in the official IEEE norms. The commonly supposed close link 
between simulation and solution motivates a high expectation concerning the level 
of reproducibility. Strictly proven mathematical solutions possess unquestionable 
and complete reproducibility. They might even count as the paradigms of reproduc-
ibility. However, since computer simulations can count as numerical solutions only 
if solution is understood in a pragmatic sense, a very high level of reproducibility 
is much less plausible. Not only numerical errors come in as factors of computer-
related mathematics, but issues of the implementation bring in factors of social and 
pragmatic nature. We think it is important to reflect on this and other transforma-
tions that happen when simulation modelling replaces older approaches to mathe-
matical modelling. This is a time when new scientific practices of simulation grow 
and practitioners have not yet agreed upon the standards they follow. Finding such 
standard requires having a clear conception of what can be reproduced (in the best 
case) and what never will be reproducible (even in the best case). Potentially, most 
problems of reproducibility can be alleviated by changing simulation practice.

Growing awareness that simulations might require new conceptions for confir-
mation and for measuring the quality of numerical solutions has led to interesting 
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developments. Numerical error analysis, for instance, shows that much could be 
achieved when modelers adopted a mathematical perspective on a larger number 
of modeling steps, i.e. on a larger fraction of the entire modeling process. How 
this works out in practical cases like car crash simulation remains yet to be seen. 
Another interesting concept is sensitivity analysis. It aims at giving some of the 
relevant information that researchers would get from a closed-form mathemati-
cal solution. Another example is working with so-called model ensembles, i.e. 
an entire class of models that vary in a controlled way. They are used mainly 
in climate science to test the robustness of model properties. Finally, there is a 
normative dimension: what are adequate goals that should guide the modelers? 
This much should be clear: Bitwise reproducibility does not make sense as a goal 
because it is not attainable. If simulation models are unable to reproduce a result 
and if (a big if) the sources of errors have been eliminated, the remaining lack 
of reproducibility can indicate a serious point. Maybe the problem is ill-posed, 
i.e. great sensitivity from initial conditions is due to the (mathematical) problem 
itself, not due to erroneous implementation. In these cases, the problem does not 
allow a meaningful numerical solution and, therefore, the quality of simulation-
based predictions is questionable. An important question for mathematics there-
fore is: what is maintained even in the ill-posed case? Often, obtaining the solu-
tion is not even the goal. Giving some handle, guiding a decision etc. can work 
with much less. Whether this is a good or bad thing, is a political question.
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