
Vol.:(0123456789)

Minds and Machines (2019) 29:193–225
https://doi.org/10.1007/s11023-019-09491-w

1 3

GENERAL DISCUSSION

Information Processing Artifacts

Neal G. Anderson1 

Received: 31 August 2018 / Accepted: 16 January 2019 / Published online: 28 January 2019 
© Springer Nature B.V. 2019

Abstract
What is a computer? What distinguishes computers from other artificial or natural 
systems with alleged computational capacities? What does use of a physical sys-
tem for computation entail, and what distinguishes such use from otherwise identi-
cal transformation of that same system when it is not so used? This paper addresses 
such questions through a theory of information processing artifacts (IPAs), the 
class of technical artifacts with physical capacities that enable agents to use them 
as means to their computational ends. Function ascription, use plan requirements, 
malfunction, and efficacy of IPAs are all addressed in this theory, with emphasis 
on artifacts that can be used—reliably or otherwise—for digital computation. By 
explicitly distinguishing physically grounded computational capacities from user-
ascribed computational functions, and by recognizing the distinct roles of each for 
the implementation of computations in artifacts, this theory clearly distinguishes the 
use of physical systems for computation from the transformations of physical system 
states that enable such use. As such, it provides a rigorous basis for distinguishing 
“computers” from other artificial and natural systems—a distinction whose nature 
and legitimacy faces ever-evolving challenges from multiple disciplines. This the-
ory, and the associated “instrumental” view of computation in artifacts, naturally 
accommodates the openminded but scrupulous consideration of radically unconven-
tional physical systems as potential substrates for future computers.

Keywords  Computers · Technical artifacts · Artifact functions · Physical 
information · Physical computation · Instrumental computation · Unconventional 
computation · Natural computation · Pancomputationalism

 *	 Neal G. Anderson 
	 anderson@ecs.umass.edu

1	 Department of Electrical and Computer Engineering, University of Massachusetts Amherst, 
Amherst, MA 01003‑9292, USA

http://orcid.org/0000-0002-0712-9849
http://crossmark.crossref.org/dialog/?doi=10.1007/s11023-019-09491-w&domain=pdf


194	 N. G. Anderson 

1 3

1  Introduction

Artifacts are distinguished from other physical objects by their usability. Whether 
created, evolved, or appropriated for a particular purpose, artifacts possess identifi-
able physical capacities that can be harnessed by agents through proper execution 
of prescribed use plans (Vermaas and Houkes 2006a, b; Hughes 2009; Houkes and 
Vermaas 2010). Manufactured digital devices—the signature technical artifacts of 
our time—naturally admit such a characterization: their computational capacities 
are deliberately “engineered in” and are user accessible by design. Such artifacts—
digital computing artifacts (DCAs)—are obviously a species of what we here call 
information processing artifacts (IPAs), technical artifacts with physical capacities 
that allow agents to use them as means to their information processing ends.

Much less obvious are the general criteria that a physical system must satisfy to 
qualify as an IPA, or, more specifically, as a computing artifact—criteria that would 
unambiguously distinguish computers from other physical systems. Computers 
would seem obviously to be distinct in that they are used by agents to implement 
particular computations. If this is what distinguishes computers from other physi-
cal systems and artifacts, then they must be distinct in at least one two senses: they 
are distinct “intrinsically” because their dynamics unambiguously execute particular 
computations independent of agents, and/or they are distinct “extrinsically” because 
they are unambiguously used by agents to execute particular computations.

It is not at all clear that physical systems can be taken to execute particular com-
putations in the intrinsic sense. The dynamics of real systems—systems interact-
ing with their environments—evolve their physical states in ways that rule out any 
straightforward correspondence between physical state transformations and the 
computational state mappings that define any particular computation. The corre-
spondence is of course close in conventional electronic computing machines, but 
can be far less so—by nature or by design—in the unconventional and natural sys-
tems increasingly under investigation as potential substrates for future computers. 
In any case, even where dynamics are such that there is a close correspondence 
between physical and computational state mappings, it remains to establish what 
is inherently computational about physical dynamics independent of an externally 
imposed computational interpretation. Either a purely dynamical hallmark of com-
putation must be identified, or—if external interpretation is to play an essential 
role—there must be a clear sense in which physical dynamics can be intrinsically 
computational while requiring externally imposed computational interpretations. If 
there is such a sense—if externally imposed interpretations are admissible—it then 
remains to establish how the inherent subjectivity of computational interpretation 
does not imply, as the pancomputationalist would claim,1 that any physical dynam-
ics can trivially be taken to implement any computation.

1  See Piccinini (2015, pp. 51–73), Anderson and Piccinini (2017), and Piccinini and Anderson (2018) 
for critical evaluation of pancomputationalist claims and constructions, including those discussed by Put-
nam (1991), Searle (1992), Chalmers (1996), and others.



195

1 3

Information Processing Artifacts﻿	

It is also not entirely clear how computers are distinct from other physical sys-
tems in the extrinsic sense. The characterization of use presents challenges of its 
own, requiring that use of a system for computation be clearly distinguished from 
the otherwise identical physical transformation of that same system when it is not so 
used. If such a distinction exists, and if use for computation is required for physical 
systems to count as computers, then computers do not execute computations when 
they are not used by agents for computation—even when they evolve exactly as they 
do when they are used for this purpose. Can this be?

The distinguishing of computers from other physical systems thus faces chal-
lenges on multiple fronts, even if through the seemingly obvious recognition that 
they are artifacts used by agents to implement specific computations. In this paper, 
I offer a theory of IPAs and DCAs that addresses these challenges. This theory 
regards the execution of computations as functional goals of agents and regards 
computers as technical artifacts used by agents as means to achieve these goals.2 
By distinguishing computational capacity from computational function, and display 
of computational capacity from execution of a computational function, this theory 
clarifies what it means for agents to use physical systems to perform digital com-
putations—reliably or otherwise—and what distinguishes computers from other 
artificial and natural systems. My objectives are to articulate this theory in detail, 
to show how this theory meets the above challenges, and to characterize the view 
of computation—hereafter “instrumental computation”—that underlies this theory. 
This view contrasts sharply with the notion of “intrinsic computation” in physical 
systems, in that it takes computation to be more than appropriately structured pat-
terns of state transformations in physical objects. Instrumental computation further 
requires agents, without whom there are no computational goals, no artifacts with 
computational functions, and thus no computations.

Several remarks are in order at the outset.

–	 I will focus primarily on digital computing artifacts in this work. Specifically, 
I will focus on artifacts used to evaluate deterministic logical functions L for 
inputs of a user’s choosing, which I will call L-IPAs. While L-IPAs belong to a 
restricted subclass of IPAs (and even of DCAs), any artificial or natural system 
that can be used to evaluate an arbitrary complex logical function L for any input 
in this function’s domain is an L-IPA. The capacities of a system required for its 
use as an L-IPA are captured, at the right level of generality for the purposes of 
this work, by Ladyman’s L-machines (Ladyman et al. 2007; Ladyman 2009) in 
idealized scenarios and by their noisy, quantum generalizations (Anderson 2010) 
in more realistic scenarios. Analogous accounts of capacities for realization of 
more sophisticated digital computing structures, such as the general physical 
characterization of finite state automata of Ganesh and Anderson (2013), could 

2  Note that Turner (2018) has articulated a philosophy of computer science that regards both computing 
machines and programs as technical artifacts, and which includes a sketch of “logical machines” that is 
similar in spirit to the theory of digital computing artifacts developed in detail in this work.



196	 N. G. Anderson 

1 3

be used to extend the present theory to subclasses of DCAs that go beyond 
L-IPAs.

–	 The notion of function that I adopt and extend to computational functions is 
that of an instrumental artifact function introduced by Hughes (Hughes 2009). 
This notion of function3 emphasizes instrumental user knowledge over explana-
tory knowledge, which is entirely appropriate in computational contexts. Digital 
computation, as practiced routinely by billions of users, overwhelmingly involves 
users with substantial instrumental knowledge of how to use their digital devices 
to accomplish various tasks but little or no explanatory knowledge of what gives 
rise to the computational capacities of these devices. There even exist systems 
with computational capacities that cannot be accounted for by their creators—
systems with computational capacities rooted in physical structures that are 
known to no one—but that can demonstrably be used to execute nontrivial com-
putations (e.g. Vissol-Gaudin et al. 2017).

–	 Because the computational functions of this work are instrumental artifact func-
tions, they apply exclusively to artifacts. Instrumental artifact functions pre-
sume—indeed require—the existence of agents who have functional goals, 
ascribe functions to artifacts, and use artifacts to realize their functional goals, 
but they do not apply to the agents/users themselves. Thus, while the notion of 
computational artifact functions adopted here specifies roles for agents that use 
artifacts for computation, it specifies nothing about the origins of agent capaci-
ties, functions, goals, or actions—or whether there is any sense in which these 
origins are, at bottom, themselves computational. The present theory thus has 
nothing to say about computational theories of cognition (e.g. Piccinini 2016), 
except that any notion of computational function invoked in such theories must 
necessarily be of a different nature than are the computational functions of arti-
facts (e.g. computing machines) adopted here. Instrumental computation—com-
putation achieved by agents through artifact use—thus differs distinctly both 
from computation achieved by agents via their own computational capacities and 
from would-be intrinsic computation defined exclusively in terms of physical 
transformations of inanimate objects. It accommodates the former and rejects the 
latter.

–	 While the present paper focuses on digital computation for concreteness, and 
while the IPA theory is consequently elaborated specifically for DCAs, the gen-
eral ideas about computing artifacts and instrumental computation presented 
here extend to non-digital forms of computation. Computation—digital or other-
wise—is a subclass of information processing, so digital and non-digital comput-
ing artifacts belong to different subclasses of information processing artifacts as 
they are defined and characterized by the present theory. This theory could thus 
be elaborated for non-digital computing artifacts just as it is elaborated for DCAs 
in this work, given a sufficiently precise characterization of the relevant non-digi-
tal form of computation.

3  For a discussion of instrumental artifact functions in the context of other philosophical notions of func-
tion, see Sect. 1 of Hughes (2009).



197

1 3

Information Processing Artifacts﻿	

The remainder of this paper is organized as follows. In Sect. 2, I sketch essentials 
of Ladyman’s ideal classical L-machines and Hughes’ theory of instrumental arti-
fact functions. Next, in Sect.  3, I provide an instrumental function ascription for 
ideal digital computing artifacts—artifacts based on physical realizations of ideal 
L-machines—that can be used by agents to evaluate logical functions, and I identify 
the essential ingredients of these ideal L-IPAs (3.1–3.4). I then discuss distinctions I 
recognize between physical evolution, computation and information processing, and 
how they enable distinction between L-IPAs and systems with identical computa-
tional capacities that are not computing artifacts (3.5). In Sect. 4, I then consider the 
ascription of deterministic computational functions to non-ideal computing artifacts, 
and discuss the implications of artifact non-idealities for the association of physical 
artifact capacities with unique logical functions. I briefly review Hughes’ notions of 
artifact failure, malfunction, and normality (Sect. 4.1), as well as Anderson’s gener-
alized (non-ideal) L-machines and associated efficacy measures (Anderson 2010). 
With this, I formally define non-ideal computing artifacts and associated reliability 
and effectiveness measures (Sect. 4.2). This definition clarifies the sense in which a 
real, imperfect artifact can unambiguously be ascribed the function of executing a 
particular computation (a) without possessing the capacity to reliably and effectively 
do so or (b) by possessing this capacity only in a trivial sense. Finally, I revisit the 
key distinction between function and capacity in instrumental computation, clarify 
its role in distinguishing computers from other physical systems, and discuss its 
implications for intrinsic, unconventional, and natural computation (Sect.  5). The 
paper concludes in Sect. 6.

2 � Preliminaries

For concreteness, I focus here on physical systems that can be used by agents to 
evaluate logical functions L—hereafter “logical transformations”. This is a restricted 
subclass of IPAs, and even of DCAs, but it is broad enough to include any artificial 
or natural system that can be used to evaluate a logical transformation L of arbitrary 
complexity for any input—suitably encoded in the artifact’s initial physical state4—
drawn from the domain of L. Formal characterization of any such artifact requires 
specification of what—beyond a physical system’s capacity for use in implementa-
tion of a logical transformation L—is required for a system to be ascribed the func-
tion of implementing L, including what an agent’s use of the system for this purpose 
entails.

4  This requirement would seem to exclude as L-IPAs those systems that respond to new external inputs 
during execution, such as finite-state automata (FSA) driven by external inputs, von Neumann proces-
sors that fetch instructions from and exchange data with an external memory, and Turing machines that 
interact with an external tape. However, such systems can be described as L-IPAs if the external sources 
and targets—the buffer holding an FSA input string, the von Neumann processor’s instruction and data 
memory, the Turing machine’s tape—is finite and is internalized as part of the artifact.



198	 N. G. Anderson 

1 3

2.1 � L‑Machines and Computational Capacity

The capacity of a physical system to implement an abstract logical transformation 
L is captured, at the right level of generality in idealized situations, by the concept 
of an ideal L-machine. An abstract M-input, N-output logical transformation L is a 
mapping

of M discrete logical inputs xi ∈ {x}L into N discrete logical outputs yj ∈ {y}L in 
accordance with a rule

where {i}j = {i|L(xi) = yj} . For example, the Boolean NOR function is a logical 
transformation that maps M = 4 inputs {x}NOR = {00, 01, 10, 11} into N = 2 outputs 
{y}NOR = {0, 1} according to the rule L(01) = L(10) = L(11) = 0 and L(00) = 1 (i.e. 
{i}0 = {01, 10, 11} and {i}1 = {00}).

A physical device  has the capacity for implementation of L if its dynamics sup-
port a mapping

from distinguishable physical input states D(in)

i
∈ {D(in)} of  into distinguishable 

physical output states5 D(out)

j
∈ {D(out)} of  such that

Here ΛL is an evolution operator describing the initial-to-final physical state trans-
formations of  generated by its dynamics. An L-machine, as defined by Ladyman 
(Ladyman et  al. 2007), is the four-tuple {, {D(in)}, {D(out)},ΛL} . I will call this 
construction an ideal L-machine to distinguish it from its generalization by (Ander-
son 2010) that also plays a significant role in this work. Note that specification of 
an M-input, N-output L-machine implementing an M-to-N logical transformation 
L requires specification of M distinct initial-to-final physical state transformations 
ΛL(D

(in)

i
).

Several aspects of ideal L-machines warrant emphasis at this stage. First, ideal 
L-machines are noiseless, which is to say that the physical output states D(out)

j
 corre-

sponding to the various logical outputs yj can be perfectly distinguished from one 
another. This ensures that, by performing an appropriate measurement on  , a user 
can unambiguously “read” the logical output from the evolved state of  . Noisy 
L-machines are non-ideal by definition: they are necessarily generalized L-machines.

L ∶ {x}L → {y}L

(1)L(xi) = yj ∀i ∈ {i}j

ΛL ∶ {D(in)} → {D(out)}

(2)ΛL(D
(in)

i
) = D

(out)

j
∀i ∈ {i}j.

5  The physical states D(in)

i
 and D(out)

j
 are generally statistical states.



199

1 3

Information Processing Artifacts﻿	

Second, ideal L-machines that implement surjective L—logical transformations L 
for which M > N6—do so faithfully. This is to say that for all logical inputs xi that 
map into the same logical output yj , the physical input states representing these xi 
(the D(in)

i
∈ {D

(in)

i
|i ∈ {i}j} ) evolve into the same physical output state via ΛL (i.e. 

ΛL(D
(in)

i
) = D

(out)

j
∀{D

(in)

i
|i ∈ {i}j} ). Faithful physical output states are purged of 

any structure that would reveal more about their “input of origin” than could be 
inferred from the logical function L being implemented: the physical state mappings 
mirror the “many-to-oneness” of L. Unfaithful L-machines are also non-ideal by def-
inition: they are necessarily generalized L-machines as well.

Third and finally, while the device  of an ideal L-machine clearly has the capac-
ity for implementation of L, the question of what it means to have the function of 
implementing L—or what all is involved in its use for this purpose—is not addressed 
in the definition of an L-machine. Computational capacities are obviously necessary 
for successful use of a system for computation, but they are insufficient. Here I will 
follow Anderson (2017) and refer to physical systems that possess computational 
capacities as protocomputing systems to clearly distinguish them from what we col-
loquially call “computers”—artifacts that not only possess such capacities, but that 
can also be regarded as having computational functions and used to execute compu-
tations. Characterization of this distinction requires a theory of artifacts that appro-
priately addresses function ascription and use.

2.2 � Artifacts: Function and Use

I address questions of artifact function and use through the artifact theory of Hughes 
(2009), augmenting and supplementing his theory as necessary for extension to IPAs 
and DCAs. Hughes’ theory is particularly well suited to this purpose7 for two rea-
sons. First, there is a natural fit between Hughes’ notion of artifact malfunction and 
the computational efficacy measures formulated for generalized L-machines (Ander-
son 2010), facilitating the formal characterization of non-ideal L-IPAs. Second and 
more generally, Hughes’ emphasis on instrumental user knowledge over explanatory 
knowledge seems appropriate in computational contexts. Real-world computation, 
as noted earlier, overwhelmingly involves users who are adept at using their devices 
for numerous tasks but have little or no explanatory knowledge of what gives rise to 
the devices’ enabling computational capacities. Many proficient users will not even 
recognize some of the tasks that they perform with digital devices as being of a 
computational nature.

According to Hughes’ artifact theory, an instrumental function ascription com-
prises four essential elements (Hughes 2009):

6  Note that while the definition of an ideal L-machine accommodates machines that implement logi-
cal transformations for which M = N (i.e. bijective, invertible, or logically reversible L), faithfulness is 
meaningful only for logical transformations for which M > N (surjective, noninvertible, or logically irre-
versible L).
7  This is not, however, to say that other artifact theories (e.g. Houkes and Vermaas 2010) could not be 
similarly applied to computing artifacts.



200	 N. G. Anderson 

1 3

1.	 Functional Goal � : The aim of the function, i.e. “a condition that can be realized 
by proper use” of the artifact. While the condition may be achieved with varying 
degrees of success, there is a fact of the matter of whether or not the goal has been 
achieved on any given use.

2.	 Use Plan � : A prescription for how one should manipulate the artifact and related 
objects in the context of use in order to realize the goal. The use plan includes 
specification of “allowable inputs.”

3.	 Contexts of Use C: Specification of normal contexts of use, including a set C of 
situations c ∈ C for which use of the artifact is likely to result in a suitable out-
come.

4.	 Artifactual Type T: The class of artifacts to which the instrumental function 
applies. Types are defined at a sufficiently narrow level that all tokens t of that 
type share a common use plan. Functions are ascribed to artifacts of type T, not 
to individual tokens t ∈ T .

Hughes denotes such a function ascription as ⟨�, �,C,T⟩ , and, in his initial sketch, 
states the following necessary and jointly sufficient conditions for an instrumental 
function ascription to be true (Hughes 2009):

IF(a) In situations satisfying C, using a T-token as prescribed by � is a means to 
�.
IF(b) Some causally-relevant persons value this capacity of T-tokens as above.

IF(a) specifies when and how tokens of a given artifactual type function as means to 
the end � . IF(b) ensures that would-be function ascribers are causally relevant to the 
physical systems upon which they confer functions. The causally-relevant persons 
of IF(b) recognize that there are actions one could take to realize �—to achieve this 
functional goal—through use of the artifact, not just passive observers who imagine 
how it might happen to come about or have happened to come about.

Hughes’ theory, adapted to computing artifacts, has the potential to capture both 
appropriately liberal and appropriately conservative aspects of computational func-
tion ascription. It would accommodate the ascription of computational functions 
to both conventional and radically unconventional physical substrates, with suc-
cessful use of artifacts based on these substrates realistically constrained by their 
intrinsic capacities to serve as means to the computational ends of the agents who 
would use them. Additionally, a Hughes-like theory of IPAs would unambiguously 
reject systems like rocks, walls, and pails of water—systems to which pancompu-
tationalists have attributed computational capacities—as computing artifacts (read: 
“computers”), and would do so on clear and principled grounds that supplement the 
usual objections to triviality arguments about computation.8 Whatever the alleged 

8  The usual triviality arguments about computation are really triviality arguments about computational 
capacity, which presumes that display of computational capacity amounts to implementation of com-
putation. By contrast, instrumental computation regards both intrinsic computational capacities—objec-
tively grounded in artifact structure and composition—and agent-ascribed computational functions as 
necessary components of implementation. In this work I argue separately against both the trivialization 
of computational capacities (Sect. 4.2) and the possession of intrinsic computational functions by physi-
cal objects (Sect. 5).



201

1 3

Information Processing Artifacts﻿	

capacities of these systems, a Hughes-like IPA theory would deny them compu-
tational functions because they lack plausible use plans and would-be users who 
regard these systems as potential means to their computational ends.

I show below how Hughes’ theory can be retrofitted to accommodate essential 
features of IPAs in general and DCAs in particular. The resulting theory, constructed 
specifically for DCAs based on ideal L-machines, addresses the roles that allowable 
inputs play in the specification of computational function and that auxiliary systems 
play in the use of physical systems for computation. It also addresses implications 
of the abstract nature of computational functions—and the multiple realizability of 
their physical implementations—for the characterization of DCAs and their use. 
This will lay most of the groundwork for characterization of more general and more 
realistic DCAs in Sect. 4.

3 � Ideal Computing Artifacts

I now consider the device  of an L-machine, regard it as an artifact that is to be 
ascribed the function of implementing the logical transformation L(x), revisit the 
essential elements of function ascription from Hughes’ theory in this context, and 
incorporate required modifications into a Hughes-like L-IPA function ascription.

3.1 � Functional Goal

The functional goal of an L-IPA can be stated simply as Evaluate L(x), where x is 
a user-selected input drawn from the set {x}L . This has superficial similarities to the 
functional goals of ordinary artifacts such as staplers, corkscrews, and hammers, but 
differs in two essential respects that are crucial for what follows. To highlight these 
differences, I contrast the functional goal Evaluate L(x) of an L-IPA with the func-
tional goal Fasten(x) of a stapler used as an example in Hughes (2009).

Both Evaluate L(x) and Fasten(x) accommodate multiple inputs, with x selected 
from the finite set {x}L of logical inputs to L(x) in the former case and from appro-
priate stacks of paper in the latter. Yet the nature of the allowable inputs differs fun-
damentally for these two functional goals, as do their relationships to the functional 
goals and the physical objects used by agents to realize these goals.

The first and most obvious difference is the categorical difference between the 
nature of the allowable inputs associated with L-IPAs and with staplers. The allow-
able inputs x to Evaluate L(x) are arguments of an abstract logical function, whereas 
the allowable inputs x to Fasten(x) are concrete stacks of paper. A consequence of 
this for L-IPAs is a type mismatch between the inputs associated with the functional 
goal (abstract logical inputs x ∈ {x}L ) and the corresponding inputs to the device 
 that an agent uses as a means to realize this goal (physical states D(in)

i
 of  ). This 

necessitates specification of a what is typically called a representation relation (or 
encoding) {xi → D

(in)

i
} for an L-IPA, which must be reflected in its use plan (see 

Sect. 3.2). There is no such type mismatch for Fasten(x) and thus no need for such a 
representation relation. The inputs referred to in the functional goal of a stapler and 



202	 N. G. Anderson 

1 3

the inputs to a physical stapler that will be used to realize this goal are of the same 
type—they are concrete stacks of paper.

The second (and perhaps less obvious) difference between the functional goal 
Evaluate L(x) and a functional goal like Fasten(x) is the difference in the roles that 
allowable inputs play in defining the artifact function. The functional goal Evaluate 
L(x), defined in terms of a mapping L(x) from the full set {x}L of logical inputs to 
the full set {y}L of logical outputs, is input selective: various x drawn from a given 
subset of {x}L may produce the same output, whereas various x drawn from multiple 
subsets of {x}L generally yield different L(x). Such is not the case for a functional 
goal like Fasten(x): the goal of “fastening” is defined without reference to various 
subsets of stacks of paper and the different ways that they must be acted upon to 
achieve the goal of fastening. Fasten(x) is achieved by producing the same result for 
all allowable input stacks of paper.9

It follows from the above that an input-selective functional goal like Evaluate 
L(x) cannot be achieved in a single use of an L-IPA. Because the functional goal is 
defined in terms of a set of inputs, an artifact that (by some representation relation) 
happened to map a single input xi into an output yj = L(xi) on a particular use could 
not establish that artifact as a means to the end Evaluate L(x). Nor could it estab-
lish as much on multiple uses involving inputs selected from any (proper) subset 
of the allowable inputs {x}L—multiple uses involving all possible inputs would be 
required.10 Clearly, this is not the case for an input-insensitive functional goal like 
Fasten(x). Even the single use of a stapler that fastens the papers in one particular 
stack demonstrates that the stapler can be used as a means to the end of fastening, 
and a (properly functioning) stapler will respond in precisely the same way to all 
stacks of paper that it can handle. A stapler can display its capacity to for fastening 
in a single use on one stack of paper.

The implication of this second difference for an L-IPA is that any appeal to its 
function as an implementor of the multiple-input logical function L(x)—or any claim 
regarding the efficacy with which it implements L or the resources this requires—is 
necessarily a statement about the artifact’s response to all of its allowable (logical) 
inputs. It is a corollary that its capacity to implement the function Evaluate L(x) can 
only be displayed over multiple uses that sample the full set {x}L of allowable inputs.

I accommodate this feature of an L-IPA functional goal �L simply by restating 
this goal as “Evaluate L(x) for arbitrary, user-selected input xi ∈ {x}L ”, provided 
that (i) �L is understood as a set �L = {�i}L of constitutive goals �i , where �i is the 
input-specific mapping xi → L(xi) , and (ii) specification of an appropriate, realiza-
tion-specific input representation relation {xi → D

(in)

i
} is reflected in the use plan. It 

is the constitutive goals �i that can, as a matter of fact, be met or fail to be met on 

9  While it is certainly the case that the limited capacities of a given type of stapler constrain the allow-
able inputs to the functional goal Fasten(x)—e.g. the thicknesses of stacks of paper than can be fastened 
by a particular model of stapler produced by a particular manufacturer—these constraints are not defin-
ing characteristics of the functional goal. They are parameters in the contexts of use for the stapler.
10  Analogously, the capacity of a mechanism for sorting coins could not be revealed by feeding it one or 
more pennies and seeing what happens, simply because the functional goal of sorting coins is defined in 
terms its response to all of its allowable inputs (e.g. {penny, nickel, dime, quarter}).



203

1 3

Information Processing Artifacts﻿	

any individual use, whereas achievement the functional goal �L = ��������L(x)—
dependent as it is on different artifact responses to different inputs—can not.

3.2 � Use Plan

An L-IPA’s capacity to implement L(x) is objectively rooted in the physical dynam-
ics that evolve initial states D(in)

i
 of device  into final states D(out)

j
 . Yet, an agent’s 

ability to make use of this capacity—and thus for an L-IPA to fulfill the functional 
goal Evaluate L(x)—requires more. Specifically, it requires additional capacities to 
prepare the initial state D(in)

i
∈ {D

(in)

i
} corresponding to any logical input xi selected 

by the user at will; to activate, drive, or enable the dynamical evolution of  via ΛL 
so its states are transformed in the desired manner (cf. Sect. 2.1); and to unambigu-
ously read the resulting D(out)

j
 corresponding to the logical output yj = L(xi) . Fur-

thermore, it requires elaboration of these operations in the form of an L-IPA use 
plan that would enable an agent to use the device  of an ideal L-machine to evalu-
ate L(x) for any input x ∈ {x}L of their choosing. Additional physical systems 
required for these operations—the “related objects” of Hughes’ use plan characteri-
zation—must also be introduced. These auxiliary systems must include components 
that are directly accessible to the user, since, without an appropriate physical inter-
face, users will generally not be able to access, manipulate, and observe the device 
 in a manner that would enable them to use it to evaluate L(x).

The essential ingredients of an L-IPA use plan are thus Load(x), Apply(ΛL ), and 
Read(y) operations. ����(x) and ����(y) are user-initiated physical operations that 
correlate the physical state of the device  to states of physical systems that are 
external to  but that (i) are also directly accessible to the user and (ii) that physi-
cally instantiate logical inputs and outputs by specified representation relations. 
����(x) brings the state of  into correlation with that of an external input referent 
system in , which physically instantiates the logical input xi in referent state ri of 
in . ( in is essentially part of a physical “input file”, e.g. a particular row and col-
umn of a ledger or a location in an input buffer or a computer memory holding input 
data.) ����(y) brings the state of an external apparatus  into correlation with the 
state of  , where  physically instantiates the measurement outcome yj in appara-
tus state mj (e.g. an alphanumeric display, computer screen, or location in an output 
buffer or computer memory storing output data). Apply(ΛL ) is the intermediate step 
in which input states are evolved into output states via the evolution operator ΛL . 
This step may require that the user take action, or, in some cases, that they simply let 
a specified amount of time pass between ����(x) and ����(y).

The use plan for the elementary L-IPAs considered here can thus be expressed 
simply as the ordered set �L = (����(x) , Apply(ΛL ), ����(y)) , where the input 
states of  are evolved to the output states in the Apply(ΛL ) step. The ����(x) and 
����(y) operations and associated physical systems provide the interface required 
for use, differentiating a system with physical capacities for implementation of 
L(x) from an device that could be used as an L-IPA for this purpose. After each use 
of an L-IPA implementing a logical transformation L(x), the joint state of in 
physically instantiates the input-output pair (xi, L(xi) = yj) relevant to that use and 



204	 N. G. Anderson 

1 3

accessible the user. Note that the preparation and measurement processes required 
for artifact use incur their own physical costs—some unavoidable even in princi-
ple—giving physical teeth to the distinction between display of computational 
capacity on the one hand and use for computation on the other.

3.3 � Contexts of Use and Artifactual Types

In Hughes’ theory, artifact types are associated with function ascriptions. For an L-
IPA, an artifactual type TL would thus be associated with a type of device  that, 
when used according to �L in contexts CL , is a means to evaluation of L(x). Addi-
tionally, for reasons discussed by Hughes, it is important that artifactual types are 
defined at a “suitably narrow” level. He takes this to be a level sufficiently narrow 
that “a single user plan suffices for every token of that type”—at the level of the arti-
fact design (Hughes 2009). For an L-IPA, this would suggest specification of types 
roughly as narrow as “Consolidated Semiconductor Corporation’s standard-cell 
two-input NOR gate realized in their 22 nm silicon CMOS process technology.” For 
every type defined at this level of narrowness, there will be very specific contexts 
of use CL specifying the environmental and operating conditions (e.g. temperature, 
power supply) that tokens of that particular type require to play their intended roles 
in ideal L-machines.

Because computational implementations are multiply realizable, however, these 
two features of Hughes’ theory are in conflict for L-IPAs. There may be many kinds 
of devices of radically different design, configuration, and composition that can all 
serve as means to the same computational end of evaluating L(x). But L-IPAs based 
on each kind of devices will have its own L-machine specification ( {D(in)

i
} , {D(out)

j
} 

and ΛL ), use plan, and contexts of use, and these may differ wildly for different kinds 
of devices. There are, for example, radical differences between what it takes to 
implement the logical NOR function with a silicon electronic NOR gate and what it 
takes to implement NOR with, say, DNA (Okamoto et  al. 2004) or slime mold 
(Adamatzky 2015). Yet, all three realize the same functional goal of implementing 
NOR, and all three could even draw their inputs from the same input referent in 
and register their outputs in the same measurement register  without an observer 
(of in ) being to able to tell which particular NOR gate realization is “under the 
hood”.

Since the defining functional goal of an L-IPA can be realized by multiple 
means—multiple kinds of devices each with their own idiosyncratic use plans—it 
cannot be the case that a single use plan suffices for every L-IPA token. Thus, an L-
IPA function ascription cannot be both common to all artifacts with the goal Evalu-
ate L(x) and at the same time sufficiently narrow to specify how the artifact is to be 
used to achieve this goal. A Hughes-like L-IPA function ascription can apply to a 
very specific type of L-IPA that implements L(x) in its own specific way, but not to 
all L-IPAs that can realize the same functional goal.

This is easily remedied by defining L-IPA artifactual types at two levels. At the 
higher (user) level, I associate the broad artifactual type TL with the functional goal 
Evaluate L(x) so it includes all devices that can be used to realize this goal (if in 



205

1 3

Information Processing Artifacts﻿	

various device-specific ways). At the lower (device) level, I associate a narrower 
artifactual subtype T (k)

L
 with artifacts of type TL that are based on devices (k) of 

a particular design, structure, and composition. Every token of artifactual type TL 
belongs to some subtype T (k)

L
∈ TL . Every token of artifactual subtype T (k)

L
 is based 

on a device (k) that can be used—via application of appropriate use plan �(k)

L
 in 

appropriate contexts C(k)

L
—to achieve the goal Evaluate L(x). Thus, although an L-

IPA type TL is defined at the higher level of functional goal, use plans and conditions 
of use for specific realizations—and therefore instrumental function ascriptions—
are defined at the lower, realization-specific level.

Through this association of artifact types with functional goals and artifact sub-
types with use plans, Hughes’ theory is thus extended to accommodate the multiple 
realizability of computational implementation. With this and the other considera-
tions discussed above, I now specify Hughes-like function ascriptions for L-IPAs.

3.4 � Function Ascription for Ideal Computing Artifacts

I denote the instrumental function ascription for an ideal L-IPA of type TL and sub-
type T (k)

L
 as

with the elements

1.	 Functional Goal �L = {�i}L : Evaluate L(x) for arbitrary, user-selected input 
xi ∈ {x}L , where �i is the constitutive goal xi → L(xi).

2.	 Use Plan �(k)

L
 : (Load(k)(x) ; Apply Λ(k)

L
 ; Read(k)(y)) , where Load(k)(x) is a state-

preparation procedure that conditionally prepares device (k) in state D(in)

i
 when 

the user-selected logical input is xi , Λ
(k)

L
 is an evolution operator that governs 

transformation of the physical states of device (k) , and Read(k)(y) is a specified 
measurement process—a measurement performed on device (k)—that always 
yields a discrete outcome mj associated with one of the possible logical outputs 
yj.

3.	 Contexts of Use C(k)

L
 : Specification of normal contexts of use, including a set C(k)

L
 

of situations c ∈ C
(k)

L
 for which use of an artifact of subtype T (k)

L
∈ TL according 

to �(k)

L
 is likely to result in a suitable outcome.

4.	 Artifactual Subtypes T (k)

L
 : Artifacts of type TL based on devices (k) of subtype k, 

defined by their particular design, configuration, and/or composition.

Note that two conditions must be met for an ideal L-IPA is to serve as a reliable 
means to the end of evaluation L(x). First, the readout measurement must be prop-
erly selected. Specifically, on every use of the L-IPA that produces the output state 
D

(out)

j
 of device (k) , the outcome mj of the Read(k)(y) operation corresponding to the 

logical output yj must always registered. The output states of ideal L-machines are 
mutually distinguishable by definition, so such readout measurements necessarily 
exist. Second, the operating conditions must conform to those specified in the 

⟨�L, �
(k)

L
,C

(k)

L
, T

(k)

L
⟩L



206	 N. G. Anderson 

1 3

contexts of use C(k)

L
 , so the device (k) transforms states precisely in the manner 

required by the ideal L-machine definition.
This theory of ideal L-IPAs comports with the commonsense view of what distin-

guishes computers from other physical systems—that they are used by agents to per-
form particular computations—while explicitly addressing less obvious challenges 
faced in supporting this view. Specifically, L-IPAs are distinct from other physical 
systems in the extrinsic sense that they are used by agents for computation, with 
nothing about the dynamics of the device taken to be intrinsically computational. 
L-IPAs are computational precisely because they are ascribed computational func-
tions by agents and are used by agents to realize their computational goals—the 
evaluation of particular logical functions.

Two significant challenges remain. First, although physical artifact dynamics are 
not taken to be intrinsically computational in the ideal L-IPA theory, ideal L-IPAs are 
defined so they include only those systems with dynamics that are ideally suited for 
use in implementing L. The device (k) of an ideal L-IPA does evolve the physical 
input states in a manner that objectively mirrors the computational state mapping asso-
ciated with a particular computation—the logical function L. This rules out applicabil-
ity of the ideal L-IPA theory to most real L-IPAs. As noted in Sect. 1, physical state 
transformations in real computing artifacts may mirror computational state mappings 
quite imperfectly, sometimes even by design as a concession to energy efficiency, cir-
cuit complexity, and/or other considerations. In Sect.  4, I show how the dynamical 
restrictions that define ideal L-IPAs can be relaxed—with the consequences of this 
relaxation for computational success rigorously quantified—generalizing L-IPAs with-
out introducing ambiguity into the notion of computational artifact function.

Second, because L-IPAs are distinguished from other physical systems only in 
the extrinsic sense, they are computers only because they have agent-ascribed com-
putational functions. They are denied computational functions even if they possess 
the intrinsic capacities required for their use in executing computations. By the same 
token, L-IPAs perform computations only when they are being used for this purpose. 
L-IPAs not in use by agents for computation cannot be considered to execute compu-
tations even when they evolve exactly as they do when they are so used. This obvi-
ously counterintuitive aspect of instrumental computation requires justification, and 
will be discussed further in Sect. 5.

3.5 � Dynamics, Computation, and Information Processing

I close this section by highlighting several key distinctions that locate ideal digital 
computing artifacts (like L-IPAs) in the broader context of evolving physical sys-
tems. This will serve to clarify the relationships between the ideas presented so far. 
I also consider how these relationships generalize to—and are modified for— non-
digital computing artifacts, as well as for the non-ideal digital computing to be arti-
facts discussed in Sect. 4. Figure 1 provides a visual guide.

The first of these key distinctions is the distinction between physical systems that 
possess computational capacities and those that do not. This distinction relies upon 



207

1 3

Information Processing Artifacts﻿	

a physical characterization of computational capacity like that provided by the defi-
nition of an ideal L-machine (Sect. 2.1). I define Protocomputing Systems as physi-
cal systems that possess such computational capacities. They may or may not also 
be artifacts and may or may not process information, as indicated in Fig. 1. What 
counts as a protocomputing system is, of course, relative to a particular type of com-
putation (e.g. digital computation).

The second key distinction is the distinction between physical systems that are 
used by agents to achieve functional goals and those that are not. This distinction 
is made in theories of artifacts, as they are in Hughes’ theory (Sect.  2.2) and its 
extension to computing artifacts provided by this work. Such systems are denoted 
simply as Artifacts in Fig. 1. Note that not all artifacts are taken to have capacities 
for information processing or for computation, as per common sense but contrary to 
the claims of pancomputationalism.

The third key distinction, not yet discussed in this work, is the distinction between 
physical systems that process information and those that do not. This distinction 
clearly relies upon a definition of information processing, and, for present purposes, 
one that is distinct from computation. Here I adopt the physical conception of infor-
mation elaborated and defended in Anderson (2017). Three essential features of this 
conception of information are relevant to the present work: information is physical, 
relational, and observer relative. Specifically, the amount I of information that 
an observer-accessible physical system  holds about another observer-accessible 
physical system  is associated with physical correlations between the states of  
and  , and is quantified by a suitable measure defined on the joint physical state of 
.

On this physical conception of information, any dynamical evolution of a sys-
tem  that holds -information ( I > 0 ) processes  information.11 All evolving 
information-bearing systems are thus Information Processing Systems. As indicated 
in Fig. 1, information processing systems need not have computational capacities—
either used or unused—nor do they need to be used or usable by any agent for infor-
mation processing. However, because physical correlations are necessarily created 
and/or destroyed in use of an artifact for computation, use for computation necessar-
ily entails information processing while display of computational capacity (proto-
computing) does not.

With this, we can more clearly define information processing artifacts and com-
puting artifacts and see how they are related. Information Processing Artifacts are 
physical systems that process information and are used by agents to achieve infor-
mation processing ends. Computing Artifacts (including but not limited to DCAs) 
are those information processing artifacts that possess computational capacities 
and are used by agents as means to their computational ends. All computing arti-
facts are IPAs: the use of a physical system (e.g. the device  of an L-machine) 

11  This includes, as trivial special cases, evolutions that simply preserve information. While it may seem 
counterintuitive to regard the preservation of information as even a trivial form of information process-
ing, there are many familiar information processing systems whose function requires that they preserve 
information. These include noiseless communication links, reversible computers, and memory systems.



208	 N. G. Anderson 

1 3

for computation requires establishment of correlations between the physical state of 
the device and an external instantiation of the computational input (e.g. in the input 
referent in ) as discussed in Sect. 3.2. The converse is, however, not true: artifacts 
obviously need not possess or display computational capacities for them to be used 
by agents to implement information processing tasks that are not of a computational 
nature.12

Note that, on this characterization of digital computing artifacts, computational 
functions have a semantic dimension while computational capacities do not. The 
possession and display of an artifact’s computational capacities are rooted solely in 
its structure, composition, and state-transformation characteristics. However, use of 
an artifact by an agent as a means to computational ends has an inescapably seman-
tic dimension: computing artifacts process (non-natural) semantic information13 

Fig. 1   Visual representation of key definitions used in this work and the relationships between them. 
Computing Artifacts—colloquially “computers”—are physical systems with computational capacities 
(read: are Protocomputing Systems) that are used by agents (read: are Artifacts) as means to their com-
putational ends. They are a subclass of Information Processing Artifacts, since their use for computation 
entails processing of information about inputs that are instantiated in an external source

12  A garden-variety audio amplifier under normal use is, for example, an IPA—it unambiguously pro-
cesses information about an input source—but it is not a DCA since it does not perform digital computa-
tions.
13  Non-natural and natural semantic information are discussed and distinguished in Piccinini and Scaran-
tino (2011) and Piccinini (2015). Note that computing artifacts necessarily process non-natural semantic 
information when they are in use, but the same is not true of evolving protocompting systems even when 
they are displaying their computational capacities. Evolving protocomputing systems that are not com-
puting artifacts may bear and process natural semantic information—bare physical correlations between 
their states and the states of external systems—or they may bear and process no information at all. This, 
among other things, distinguishes the present work from the abstraction/representation theory of Hors-
man et al. (2018), which requires representation for computation but only in the sense of natural semantic 
information. Their “representational entities” are, like the referent systems of this work, necessarily phys-
ical, but in their theory the physical processing of natural representations counts as computation with no 
role for agents.



209

1 3

Information Processing Artifacts﻿	

when they are so used. Use plans for computing artifacts necessarily include the rep-
resentation relations that would imbue physical states with semantic content, ena-
bling abstract logical functions to be evaluated through the use of concrete physical 
objects. Agents imbue artifact states with semantic content just as they imbue arti-
facts with computational functions.14

Finally, I consider adjustments to the framework of Fig. 1 that would be required 
for two other classes of computing artifacts. First, consider computing artifacts that 
are used to perform non-digital computations of some specified type. The subset 
of evolving physical systems that have the requisite capacities would differ from 
the subset with capacities for digital computation, so the Protocomputing Systems 
region of Fig.  1 would differ for this type of non-digital protocomputing systems 
and digital computing systems. The intersections of that region with the regions 
representing Info Processing Systems and Information Processing Artifacts would 
consequently differ, but these two regions themselves would not—they include all 
systems and artifacts that process and are used to process physical information as 
defined above. Second, consider DCAs that do not have the capacity to reliably 
transform states as required for execution of a particular digital computation, but 
that are unambiguously used by agents for execution of that computation with some 
degree of success. All real digital computing devices are strictly speaking of this 
nature, as noted earlier. This would severely blur the boundaries in Fig. 1 between 
digital Protocomputing Systems and all other Physical Systems, which are sharp only 
for ideal DCAs, but again would leave the Info Processing Systems and Informa-
tion Processing Artifacts regions unchanged—they are not defined with reference 
to any particular form of computation. The boundaries of the Information Process-
ing Artifacts and digital Computing Artifacts regions would remain sharp, as artifact 
functions are agent ascribed and are unambiguous even when capacities are not. The 
Computing Artifacts region would also be larger for non-ideal DCAs than it would 
be for ideal DCAs, as it would include all real, imperfect artifacts used for digital 
computation.

This second case is relevant to the next section, where I formally characterize 
non-ideal L-IPAs. Computational functions are ascribed to non-ideal L-IPAs as 
unambiguously as they are ascribed to their ideal counterparts, but shades of grey in 
computational efficacy are recognized, accommodated, and rigorously quantified in 
the theory of non-ideal L-IPAs.

14  The central role of agents in defining artifact function, and the distinction between artifact function 
and capacity, is perhaps easiest to see in the case of natural systems appropriated by agents to achieve 
their goals. Agents use fallen trees to cross rivers and use canaries to detect lethal gasses in coal mines, 
having recognized that trees and canaries intrinsically possess the required capacities. Yet, we would not 
say that trees inherently have the function of bridging rivers, or that canaries have the function of detect-
ing lethal gasses, independent of agents that appropriate and use them for these purposes.



210	 N. G. Anderson 

1 3

4 � Non‑ideal Computing Artifacts

Users of ideal L-IPAs realize their constituent functional goals �i on every use. 
Load(x) always prepares the device in the state D(in)

i
∈ {D(in)} corresponding to the 

user-selected input xi , Apply (ΛL) always evolves this state into the output state 
D

(out)

j
∈ {D(out)} corresponding to the logical output yj = L(xi) , and Read(y) always 

correctly registers the outcome mj in the measurement apparatus  . The ideal 
L-machine on which an ideal L-IPA is based is consistent with realism about compu-
tation in the qualified sense of Ladyman (2009): “it is an objective fact that it imple-
ments a particular transformation structure since its ability to do so depends on the 
structure of the system and the laws governing its time evolution and is independent 
of exactly what the physical states of the system are taken to represent.” The trans-
formation structure of an ideal L-machine uniquely and unambiguously mirrors that 
of the logical transformation L that it is used to implement.

However, real information-processing artifacts—subject as they are to environ-
mental noise, design flaws, token-to-token variations, non-optimal use plans, and/or 
breakdown of expected behavior at the nanoscale—cannot live up to this standard; 
they realize their functional goals only imperfectly. While this reduced functional 
efficacy is undesirable, and great effort is typically expended to minimize it in man-
ufactured computing artifacts, it is unavoidable. It is even tolerated or embraced in 
some emerging computing paradigms—e.g. approximate, noise-tolerant, nanoscale, 
quantum, and probabilistic computing paradigms—as a concession to other consid-
erations such as design simplicity, energy efficiency, artifact-application compatibil-
ity, feasibility, and cost. Whatever the nature or extent of their imperfections, no real 
digital computing artifacts are ideal in the sense of ideal L-machines.

Ideal L-machines are thus an inadequate basis for realistic L-IPAs, in which 
physical state transformations do not objectively and uniquely mirror the abstract 
logical transformation the artifact is used to implement. This motivates relaxation of 
the conditions on physical state transformations in the definition of an L-machine, 
appropriately generalizing this definition so it accommodates the imperfections of 
real devices and serves as a basis for characterizing non-ideal IPAs. Relaxation of 
these conditions, realistic as it is, forfeits the unambiguous association of the state 
transformation structure of physical devices with specified logical transformations 
L. This opens the question of what distinguishes “computers” from other physical 
systems if particular computations cannot be uniquely associated with a system’s 
physical capacities. Does it render computational capacities subjective or in some 
sense trivial, opening a door to pancomputationalism? Or does it imply that no real 
physical artifact can have the function of evaluating a particular L? If neither, then 
how can an artifact unambiguously have the function of evaluating a particular L 
without having the unambiguous capacity to do so?

Hence the challenge for a theory of non-ideal L-IPAs. If such a theory is to distin-
guish real computing artifacts that have the function of evaluating a particular L(x) 
from all other physical systems, it must justify ascription of the function of imple-
menting L(x) to systems that cannot be singled out for their unique capacity to do 
so. If it is to succeed in this regard without trivializing the notion of computational 



211

1 3

Information Processing Artifacts﻿	

capacity, it must furthermore provide the means to meaningfully quantify “how 
well” non-ideal artifacts implement specific logical transformations L(x). Below I 
extend the ideal L-IPA theory of Sect. 3 to addresses these challenges, drawing from 
Hughes’ characterization of artifact reliability and effectiveness (Hughes 2009) and 
Anderson’s generalized L-machines (Anderson 2010).

4.1 � Failure, Malfunction, and Normality

In his characterization of unreliable or ineffective artifacts—what we here call non-
ideal artifacts—Hughes distinguishes failure from malfunction as follows (Hughes 
2009):

Failure: A token t fulfills its function in a particular application just in case the 
functional goal � was realized as a result of that application. Otherwise, it fails 
to do so.

Malfunction: A token t is malfunctioning with respect to a proper function if 
it is unable to reliably or effectively realize � in some situations c satisfying C 
when used according to � , i.e. if �(t) is not a reliable or effective means to � in 
such situations.

Note that failure is an all-or-nothing proposition, relevant to individual uses, 
whereas malfunction accommodates shades of grey in realization of the functional 
goal through the definitions of reliability and effectiveness (Hughes 2009):

Reliability: The reliability of � as a means to � in c is the probability � that, 
under conditions c, execution of the plan � will realize �.

Effectiveness: The effectiveness is the degree to which the functional goal � 
would be realized as a result of �.

Reliability quantifies failure rate, presupposing a fact of the matter as to whether a 
functional goal is or is not achieved on each use of an artifact, whereas effective-
ness more broadly quantifies the degree to which the functional goal of an artifact 
is achieved through its use. Hughes emphasizes the relative nature of these notions, 
taking a normal token of type T—a token “with all of the requisite features neces-
sary to realize each of the functional goals of T in the manner intended” (Hughes 
2009)—as the standard by which failure and malfunction are to be judged for tokens 
t ∈ T .

I now interpret these notions for generalized L-IPAs, specifying a normal token in 
this context and identifying measures that appropriately accommodate the multiple-
input functional goals of L-IPAs. This involves choices of whether normal tokens, 
reliability and effectiveness should be defined for the device  of a generalized L-
IPA or for the user-accessible composite in through which the user accesses .

Normality: I take the appropriate normal token for an L-IPA to be any realization of 
an L-IPA of type TL that is, to an exceedingly good approximation, an ideal L-IPA 



212	 N. G. Anderson 

1 3

of that type, or an appropriate stand-in for the same.15 A token belonging to any 
subtype T (k)

L
 of an effectively ideal L-IPAs will suffice: after every use, the relation-

ship between the input source in and the apparatus  will be identical for all ideal 
L-IPA realizations evaluating the same L(x) for the same input. Thus, one can always 
compare the joint state of in for a generalized L-IPA to the joint state of in 
for an ideal L-IPA processing the same logical input xi to see if the constitutive goal 
�i was achieved on that use. At this user level, there will always be a fact of the 
matter.

Reliability: I define L-IPA reliability at this same user level, where, on any use 
of an L-IPA token, the outcome yj produced in the final readout either is identical to 
that of a normal token under the same input xi or it is not.

A quantitative multi-input reliability measure defined at this level must sat-
isfy two requirements: first, the measure must obviously reflect all possible inputs 
xi ∈ {x}L if it is to capture an L-IPA’s ability to reliability implement the multi-input 
function L(x). Second, the measure must account for the likelihoods or relative fre-
quencies with which the various inputs are applied in a use case of interest if, as in 
Hughes’ reliability measure for single-input functions, it is to properly reflect the 
overall probability of success in a single numerical measure. Both requirements are 
met by the following multi-input reliability measure:

Reliability (multi-input): The reliability of � as a means to � = {�i} in c is 
the average

of the probability �i that, under conditions c, execution of the plan � will real-
ize the constitutive goal �i , where pi is ith input probability.

This measure, specialized to L-machines, has the form of the success probability 
measure used widely for characterization of noisy and faulty logic circuits. Note 
that ⟨�i⟩ depends explicitly on the choice of readout measurement selected for the 
Read(y) step of the use plan, and also on the set {�i} of use-case-specific input 
probabilities.

Effectiveness: Defining the effectiveness of an L-IPA is a more subtle matter. At 
the user level, where there are only discrete inputs and outputs instantiated in in , 
constitutive goals are either met on any particular use or they are not; there is no 
middle ground between success and failure and thus perhaps no apparent need to 
consider effectiveness. However, at the level of the device —where computational 
capacities are displayed—there are varying degrees to which device state transfor-
mations contribute to the achievement of functional goals. They are simply obscured 
by the measurement processes that generates and registers only discrete outcomes—
outcomes that are intended to register the correct logical outputs but can in practice 
can be correlated to transformed states of  to varying degrees and in non-obvious 

(3)⟨�i⟩ =
�

i

pi�i

15  A physical instantiation of a lookup table could, for example, stand in as a normal token for an ideal 
L-IPA.



213

1 3

Information Processing Artifacts﻿	

ways.16 Because of its implications for the definition of L-IPA effectiveness, this 
crucial feature of measurement processes warrants further discussion.

In the earlier discussion of ideal L-IPAs (Sect.  3), readout measurements were 
assumed to be selected so their outcomes simply reveal the identities of evolved 
device output states and do so without ambiguity. The existence of such measure-
ments is guaranteed by the presumed distinguishability of the various output states 
D

(out)

j
 in ideal L-machines, and such measurements are implicitly assumed to be used 

for readout. With this assumption, all computational work done by the L-IPA is nec-
essarily done in state transformations of the device  , with measurement providing 
nothing more than a computationally benign bridge. Measurement neither adds nor 
subtracts from the device’s contribution to realization of the functional goal.

In the general case, however, there exist no physically possible measurements that 
can perfectly distinguish transformed device states. When transformed device states 
corresponding to different logical outputs are not mutually distinguishable because 
of noise and/or quantum effects, then the input-output relationship instantiated in 
in—the relationship evident to the user—will not mirror that of any determin-
istic logical transformation. Computational capacity becomes a relative notion—
devices display capacities for implementation of various computational functions to 
varying degrees. Furthermore, whether the transformed device states are perfectly 
or imperfectly distinguishable, there generally exist measurements that do compu-
tational work left undone by a device or that incompletely reveal computational 
work that was done by a device. At one extreme, there exist measurements that can 
produce outcomes corresponding to the correct logical outputs in L-IPAs based on 
devices that produce completely unfaithful output states—e.g. that simply imple-
ment the identity operation—by doing the required computational work in the meas-
urement step of the use plan that was not done in the device evolution stage. At the 
other extreme, radically non-optimal measurements can produce completely random 
outcomes even when the device has flawlessly completed all of the desired com-
putational work in the device evolution stage and the transformed device states are 
perfectly distinguishable from one another. All intermediate shades of grey between 
these extremes are, of course, generally possible.

Thus, in non-ideal L-IPAs, state transformations at the device level contrib-
ute to the achievement of L-IPA functional goals to varying degrees. Device-level 
capacities for implementation of a given L, themselves imperfect, can be mirrored, 
enhanced, or diminished by the readout measurement that bridges the device and 
user levels. While measurement is an essential ingredient for use of a device  for 
computation, and choice of measurement plays a non-trivial role in user achievement 
of computational goals, this role is generally far more complex than a benign and 
unambiguous reading of the results of computational processes already completed 

16  There can be cases where achievement of constituent functional goals cannot be considered a fact 
of the matter on any given use at the device level. If distinguishable input states are transformed into 
quantum-mechanically indistinguishable output states, as may be the case in nanoscale realizations, few 
interpretations of quantum mechanics would presume any such fact of the matter prior to readout meas-
urement.



214	 N. G. Anderson 

1 3

by the device. A theory of L-IPAs should recognize as much while accounting for 
the contribution of the device proper toward achievement of the functional goal of 
evaluating L. This motivates definition of L-IPA effectiveness at the level of the 
device  , independent of the measurement processes selected to bridge the device 
and user levels. The necessary ingredients can be found in the theory of generalized 
L-machines (Anderson 2010).

With this, I introduce generalized L-machines and computational efficacy meas-
ures that quantify their inherent capacities for implementation of L. I then extend 
the theory of ideal IPAs developed in Sect. 3 to non-ideal L-IPAs based on gener-
alized L-machines, which includes appropriate artifact reliability and effectiveness 
measures.

4.2 � Generalized L‑Machines and Non‑ideal L‑IPAs

A generalized L-machine is an M-input machine {, {D
(in)

i
},Λ} supplemented by 

an M-input, N-output L-referent L (Anderson 2010). The L-referent is a physi-
cal instantiation of the transformation structure associated with L, such as a nor-
mal token of an ideal L-IPA that implements an M-input, N-output transformation 
L, providing a physical standard by which degree of success in implementation of L 
by an imperfect device  can be gauged. Generalized L-machines differ from their 
ideal counterparts in that, even when the M input states {D(in)

i
} are distinguishable 

from one another, the evolved states {Λ(D(in)

i
)} need not be mutually distinguish-

able nor must they faithfully represent logical output states of any deterministic logi-
cal transformation. Thus, in generalized L-machines, there is no objective basis for 
associating a unique logical transformation L with the evolution operation Λ or for 
unambiguously associating particular logical outputs with evolved states Λ(D(in)

i
) as 

is the case in ideal L-machines. The best one can do in the general case is to quantify 
how well a generalized L-machine implements a function L. Appropriate quantita-
tive measures are discussed below.

The inherent contribution of the device  to the evaluation of L in generalized 
L-machine—unobscured by the role of the readout measurement employed in any 
specific use plan—is quantified by two computational efficacy measures: the com-
putational fidelity and the representational faithfulness. Formal definitions of these 
physical-information-theoretic measures are provided in Anderson (2010); here I 
discuss their meaning and connection to computational capacity to motivate their 
adoption as device-level L-IPA effectiveness measures.

According to the notion of computational capacity employed here, an L-machine 
displays the capacity to implement a logical function L(x) to the extent that the 
transformation of physical input states D(in)

i
 to physical output states Λ(D(in)

i
) mir-

rors the abstract mapping of logical input states xi into logical output states L(xi) . 
Ideally, the mirroring of abstract logical transformations by physical state transfor-
mations implies two conditions: first, it implies that evolved device states associated 



215

1 3

Information Processing Artifacts﻿	

with different logical outputs17 should be perfectly distinguishable from one another. 
Second, it implies that evolved device states associated with the same logical out-
put should be exactly similar to (or perfectly indistinguishable from) one another.18 
Both conditions are met in ideal L-machines, as discussed in Sect. 2.1, where the 
capacity of a device  for implementation L is unambiguous: every evolved machine 
state is either exactly similar to or perfectly distinguishable from every other evolved 
machine state. Either or both of these conditions is, however, imperfectly met in a 
generalized L-machine, where various evolved machine states are similar to or dis-
tinguishable from one another only to some intermediate degree. The computational 
fidelity and representational faithfulness measures individually quantify the degrees 
to which the first and second conditions are met in generalized L-machines,19 cap-
turing and quantifying shades of grey in these two complementary aspects of physi-
cal capacity for implementation of a logical function L. They are, for this reason, 
appropriate as graded measures of computational capacity and of device-level effec-
tiveness for generalized L-IPAs.

A final note is in order regarding the notion and quantification of computational 
capacity—and thus of L-IPA effectiveness—that I have adopted here, which is 
straightforward in one respect and perhaps counterintuitive in another. It is straight-
forward in that it associates capacity with some reflection of computational state 
transformations in physical state transformations, which would seem—in some 
form or another—to be an essential ingredient of any physically grounded notion 
of computational capacity. One may wonder, however, if the present view of capac-
ity—which regards both fidelity and faithfulness as essential aspects of computa-
tional capacity—is overly restrictive. Consider, for example, a machine that evolves 
input states into distinguishable physical representations of both the logical out-
put of a some surjective function L(x) together with a copies of the logical input x. 

17  Here, we say that an evolved device state Λ(D(in)

i
) is “associated with” logical output yj if yj = L(xi) , 

where D(in)

i
 is the initial device state representing the logical input xi.

18  Two (generally statistical) evolved machine states Λ(D(in)

i
) and Λ(D(in)

i�
) are perfectly distinguishable if 

there exists any measurement consistent with physical law that could distinguish them perfectly, which is 
to say that they occupy disjoint regions of the machine’s physical state space. The two states are, on the 
other hand, exactly similar (or perfectly indistinguishable) if there exists no measurement consistent with 
physical law whose outcomes could distinguish them in any way, which is to say that they are the same 
statistical state.
19  The computational fidelity L quantifies the distinguishability of device output states evolved from 
input states that are associated different logical outputs. This selective physical state distinguishability is 
reflected in the amount of information about the output of an L-referent—the “correct output” for a nor-
mal L-machine token—that is in the evolved device states, as captured via a physical correlation entropy 
measure. The fidelity is normalized to the amount of correlation achieved for an ideal L-machine, so 
0 ≤ L ≤ 1 with L = 1 only when the first condition is met (as it is in ideal L-machines). The represen-
tational faithfulness fL , on the other hand, quantifies the similarity of device output states evolved from 
input states that are associated with the same logical outputs. This selective physical state similarity is 
reflected in the average lack of information about the input of an L-referent—a record of the input state—
that is in the evolved device states associated with each logical output. The faithfulness is also based on 
the correlation entropy and properly normalized with reference to L-machines, so 0 ≤ fL ≤ 1 with fL = 1 
when the second condition is met (as it is in ideal L-machines). Both L and fL account for all possi-
ble inputs, appropriately weighted by the input probabilities relevant to a given use case. See Anderson 
(2010) for details and elaboration.



216	 N. G. Anderson 

1 3

The present view of computational capacity would take the machine to be a non-
ideal implementation of L(x), since transformation of the physical states by such a 
machine is bijective and thus does not mirror transformation of the logical states by 
the surjective function L(x). Noting that the machine does generate the the correct 
output of L(x)—leftover copies of the inputs notwithstanding—one may reasonably 
argue that the machine does unambiguously display a perfectly good capacity for 
implementation of L(x) and thus that faithfulness is not an essential aspect of com-
putational capacity.20

Comprehensive recognition of computing machines as physical systems reveals 
strong physical grounds for recognizing both fidelity and faithfulness as necessary 
ingredients of computational capacity. By the present view of capacity—which 
again reflects how well computational state transformations are mirrored by physical 
state transformations in a physical device—the machine described above is indeed 
a non-ideal ( fL < 1 ) implementation of the surjective function L(x). However, it 
does regard this example machine as a perfectly ideal implementation of the bijec-
tive function L�(x) ∶ x → L(x)◦x (where ◦ denotes concatenation), since it is this 
bijective function L�(x)—not the surjective function L(x)—that is perfectly mirrored 
in the machine’s (bijective) physical state transformations. The notion of capacity 
endorsed here thus emphasizes logical-physical mirroring of transformation struc-
ture, with the generation of correct outputs contributing incompletely to the display 
of physical capacity for implementation of a specified logical transformation. This 
emphasis on transformation structure may very well seem arbitrary or unnecessary 
if computation is viewed exclusively in abstract terms. Why, after all, should the 
retention of leftover inputs downgrade the machine’s capacity to implement L(x) if 
the correct output is to be found in the final machine state? The physical answer is 
that information can be shed from a physical system only at a dissipative energy 
cost, so there are real physical differences between a machine’s capacity to faith-
fully mirror L(x) [to generate L(x) while erasing x] and its capacity to faithfully mir-
ror L�(x) [to generate L(x) while retaining x]. Full acknowledgement of computing 
devices as real physical systems thus favors a notion of capacity like that presented 
here and codified in the fidelity and faithfulness measures. Indeed, these two meas-
ures provably provide a direct physical link between the minimum dissipative cost 
of implementing a logical transformation L(x) in a generalized L-machine and the 
machine’s capacity for implementation of L(x), with capacity regarded and quanti-
fied as the degree to which the abstract input-output structure of L(x) is mirrored in 
the transformations of physical states by the machine (Anderson 2010).

With this, the pieces are in place to define generally non-ideal L-IPAs:

L-IPA (non-ideal): An L-IPA of type TL and subtype T (k)

L
∈ TL is a physical 

device (k) that is ascribed the instrumental function of evaluating an M-input, 
N-output logical function L(x) and that, through execution of a specified use 
plan �(k)

L
 , realizes the functional goal of evaluating L(x) with some reliability 

and effectiveness.

20  The author thanks an anonymous reviewer raising this potential objection.



217

1 3

Information Processing Artifacts﻿	

The key elements are as follows:

–	 Relevant Physical Systems: A physical device (k) of subtype k and two related 
physical systems that can be controllably coupled to (k) : an input referent sys-
tem in that physically instantiates the ith of M logical inputs xi in the physi-
cal referent state ri of in , and a measurement register system  that physically 
instantiates the jth of N logical inputs yj in the physical register state mj of  . 
An L-referent L is also presumed when a standard for physical quantification of 
reliability and effectiveness is of interest.21

–	 Instrumental Function Ascription: An ascription 

of the function Evaluate L(x)—expressed as a set �L = {�i}L of M constitutive 
functional goals �i ∶ xi → L(xi)—to the L-IPA when used according to use plan 
�(k) in specified contexts of use c ∈ C

(k)

L
 (see Sect. 3.4).

–	 Reliability: The reliability of �(k)

L
 as a means to �L = {�i}L is the average 

of the probability �i that, under conditions c ∈ C(k) , execution of the plan �L will 
realize the constitutive goal �i , where pi is ith input probability (see Sect. 4.1).

–	 Effectiveness: The effectiveness with which evolution of (k) alone contrib-
utes to realization of the L-IPA functional goal Evaluate L(x) is quantified by 
the computational fidelity L and representational faithfulness fL . L quantifies 
the mutual distinguishability of physical output states resulting from inputs that 
“belong to”—i.e. that, by L(x), would ideally map into—different logical outputs. 
fL , on the other hand, quantifies the average similarity of physical output states 
resulting from inputs that belong to identical logical outputs.

This theory of non-ideal L-IPAs addresses the challenges associated with dis-
tinguishing computers from other physical systems that were outlined at the begin-
ning of this section, at least for digital computing artifacts used to implement logi-
cal transformations. The function Evaluate L(x) is unambiguously ascribed to an 
L-IPA—whether ideal or non-ideal—by an agent. The capacity for evaluating L(x) 
is, on the other hand, objectively rooted in the design, structure, and composition 
of the physical artifact, but is generally limited and is not uniquely identifiable with 
any particular L. This decoupling of function and capacity—and recognition of their 
differing origins—addresses the one challenge that was not addressed by the ideal 

⟨�L, �
(k)

L
,C(k)

, T
(k)

L
⟩L

⟨�i⟩ =
�

i

pi�i

21  While L-IPAs necessarily include an input referent in —a physical instantiation of the inputs that is 
external to the device—an L-referent L is not required for use of an L-IPA by an agent. In practice, the 
results of computations performed through the use of artifacts almost always go unchecked. This is to say 
that most users of nontrivial computing artifacts “fly blind”, placing their trust in artifact reliability with-
out actively verifying artifact efficacy during use.



218	 N. G. Anderson 

1 3

L-IPA theory of Sect.  3: the accommodation of L-IPAs whose intrinsic computa-
tional capacities are not up to realization of their user-ascribed computational func-
tions but that are unambiguously used by agents to perform these functions anyway. 
This decoupling grants agents wide latitude in the ascription of computational func-
tions to physical systems—artificial and natural—with the recognition that success 
in realization of the ascribed function is ultimately constrained both by the physi-
cally rooted capacities of the artifact and by the manner in which the artifact is used. 
The theory includes provisions for quantifying contributions to success at the user 
and device levels through the reliability and effectiveness measures, respectively. 
Capacity and use requirements essential for reliable realization of ascribed func-
tions, reflected in these measures, serve as sturdy bulwarks against trivialization. 
Trivialization of computational function, which could be a concern when functions 
are agent ascribed, is further resisted by Hughes conditions for instrumental func-
tion ascriptions to be true (see Sect. 2.2).

It remains to address the most obviously counterintuitive implication of the 
instrumental view of computation underlying the IPA theory of this work: that com-
puters do not perform computations when they are not being used by agents for 
computation, even when they display the same computational capacities that enable 
such use. I address this issue in the following section.

5 � Instrumental Computation: Capacity, Function, and Use

According to instrumental computation, physical objects do not have “intrinsic” 
computational functions. Objects may have intrinsic computational capacities, but 
computational functions are ascribed to objects by agents who wish to use them to 
achieve computational goals. Functions do not belong to artifacts independent of the 
agents who ascribe functions to them and use them accordingly. The role of comput-
ers in computing is thus as artifactual means to the computational ends of agents 
with computational goals: Artifacts don’t compute, agents compute.

This view is in obvious conflict with the commonsense notion of computations 
as processes “performed” by artifacts themselves, rather than by agents who use 
them for computation. This commonsense notion—that “computers do the comput-
ing”—is deeply embedded in the way we think and talk about computation, both 
informally and formally.22 We are, for example, much more likely to say that IBM’s 
Deep Blue computer beat Garry Kasparov at chess than we are to say that IBM’s 
engineers used the Deep Blue computer to beat Mr. Kasparov at chess. This seems 
natural enough. In most realistic scenarios involving use of a computing artifact by 
an agent, the artifact does vastly more of the heavy lifting than does the agent (and 

22  Even in formal accounts and technical discussion of implementation that accommodate user roles, 
authors routinely refer to computations as being performed by physical systems (e.g. Horsman et  al. 
2014; Teuscher 2014; Konkoli 2015). Computer engineers, whose concerns necessarily include provi-
sions for use by agents (i.e. I/O), routinely do the same.



219

1 3

Information Processing Artifacts﻿	

typically does far more than the agent could ever do).23 This is certainly the case for 
Deep Blue: IBM’s engineers and programmers presumably did not themselves have 
the capacity to evaluate the consequences of possible chess moves as efficiently or 
effectively as Garry Kasparov. Since Deep Blue “did most of the work”, and since 
its use was decisive, it seems only natural to credit the win to the artifact.

By the present theory, however, the complex artifact called Deep Blue, when 
properly prepared (energized and programmed), has the capacity to “play” chess but 
was ascribed the function of playing chess by the IBM engineers who used it to beat 
Mr. Kasparov. This construes computation as an activity of agents with computa-
tional goals who use artifacts to extend their capacities for realization of these goals, 
not as an inherent function of artifacts that is automatically inherited from their 
capacities: no agent, no function. It even allows that an artifact not being actively 
used to execute a computation can display the associated capacity—evolving exactly 
as it would if it were being used for this purpose—without executing that computa-
tion. Display of computational capacity is necessary but insufficient for execution of 
a computation.

This construal of “computation” and its relationship to the associated artifact—
a “computer”—can be illustrated through analogy with other familiar artifacts that 
extend the capacities of human agents. Consider, for example, the binocular devices 
mounted on the observation deck of the Empire State Building. Each of these “view-
ers” is an artifact that can be used by an agent—in her role as a “viewer”—to extend 
her own capacities for “viewing”. We say that the agent is “viewing” the Statue of 
Liberty when she looks at it through the device—when she is using the (artifact-)
viewer in her role of (agent-)viewer—and we regard the artifact as performing its 
function if its use enables her to better view the landmark. Without contradiction, 
however, we understand “viewing” to a role played by the agent and not by the bin-
ocular device. We do not say that the (artifact-)viewer is viewing the Statue of Lib-
erty when the observation deck is closed and nobody is around, even though photons 
entering the “input” side of the device are focused to spatial points just behind the 
eyepieces exactly as they are when an agent is making use of it. Viewing is some-
thing that agents do, sometimes unaided and sometimes through the use of artifacts, 
but it is not something that artifacts do.

Instrumental computation recognizes computation as being of a similar nature. 
My “computer” is an artifact that I, in my agent role as a “computer”, use to extend 
my computational capacities. I say that I am “computing” when I, as (agent-)com-
puter, am doing computations—executing computational functions—through the 
use of my (artifact-)computer. I take my laptop to be fulfilling its computational 
function if, through its use, I am successfully realizing computational goals that I 
could not (or that I choose not to) achieve unassisted. But, when my laptop is doing 
nothing at my behest or anyone else’s, nothing requires that my laptop is “comput-
ing” any more than the binoculars at the Empire State Building are “viewin” when 

23  Indeed, the term “computer” became predominantly associated with a type of artifact (a computing 
machine) rather a human vocation around the time that computing machines meaningfully extended their 
users’ computational capacities.



220	 N. G. Anderson 

1 3

nobody is looking through them. Of course, the controlled redistribution of elec-
tronic charges in my laptop and the concentration of photons behind the eyepieces 
of the viewer give these artifacts their respective capacities. But without agents who 
purposefully harness these capacities, a redistribution of electric charge does not 
amount to “computing” any more than a concentration of photons amounts to “view-
ing”—they are simply displays of capacity. Computing, like viewing, is something 
that agents do—sometimes unaided and sometimes through the use of artifacts—but 
not something that artifacts do. As Searle has put it24

(N)othing is intrinsically computational, except of course conscious agents 
going through computations (Searle 1992).

and

The brute physical state transitions in a piece of electronic machinery are only 
computations relative to some actual or possible consciousness that can inter-
pret the process computationally. It is an epistemically objective fact that I am 
writing this in a Word program, but a Word program, though implemented 
electronically, is not an electrical phenomenon; it exists only relative to an 
observer (Searle 2014).

Intrinsic computation, as a claim that inanimate objects objectively perform com-
putations independent of agents, seems comparatively difficult to defend. The key 
difficulty is identifying the source of would-be “intrinsic” computational functions 
that give this claim its force.25 Without identification of an intrinsic source of com-
putational functions, intrinsic computation can only be the claim that a system’s 
dynamics can be given a computational interpretation. Even if the given computa-
tional interpretation is based on a rigorously articulated computational description 
of physical systems, and even if such a description provides compelling metaphors 
and useful models of the behavior of complex systems, a claim that a system’s 
dynamics can be given a computational interpretation is much weaker than a claim 
that the system “does computations” or “is a computer”—i.e. that it intrinsically 
executes computational functions.

One might look for a defense of intrinsic computation in teleological functions. 
One could claim that a computing machine has the teleological function of per-
forming a particular computation because it was designed and manufactured for 
that purpose, but this provides an inadequate defense even if it is correct. An agent 
might execute a given computational function with equal success using an artifi-
cial system designed for this purpose (e.g. a silicon integrated circuit) and a natu-
ral system appropriated for this purpose (e.g. a DNA Okamoto et al. 2004 or slime 
mold Adamatzky 2015 computer). Unless natural systems like DNA and slime mold 

24  This view is similar to views long expressed by Searle, but the overall view of the present work is far 
more restrictive in the role it grants interpretation in deterimining what amounts to computation in physi-
cal systems.
25  Piccinini’s mechanistic account stands out as a well developed existing account that does offer an 
explicit physical definition of computation and identifies an intrinsic source of computational function.



221

1 3

Information Processing Artifacts﻿	

are claimed to have the teleological function of performing this computation, e.g. 
because they were evolved to execute this function, the source of the shared compu-
tational function must lie elsewhere.

Intrinsic computation is perhaps most easily defended if the distinction between 
capacity and function is ignored or denied. Indeed, accounts of computational imple-
mentation commonly equate “computation” with display of computational capacity. 
However, the attribution of computations to physical systems is problematic even if 
only computational capacities are considered. Real systems do not support capaci-
ties for implementation of unique computational functions, because of the nonde-
terministic nature of the underlying physical processes (see Sect. 4). If a system’s 
capacities are not unique to a particular computation, and if there is nothing more 
to the implementation of computations than display of computational capacity, then 
real physical systems intrinsically implement vast numbers of computations.

There are reasonable and rigorous criteria for singling out particular computa-
tions for which a system displays the most natural capacities,26 and their accept-
ance alone amounts to a rejection of pancomputationalism. However, satisfaction of 
such criteria does not amount to acceptance of intrinsic computation. The display of 
a system’s capacity for implementation of a particular computation, even if unam-
biguous, does not distinguish implementation of that computation from the enabling 
spatiotemporal patterns of physical activity that underwrite this display of capacity. 
If such a distinction meaningfully exists, then there must be more to computation in 
physical systems than display of capacity. After all, agents do unambiguously use 
physical artifacts to implement particular computations.

Instrumental computation provides the required ingredient. The computational 
functions of artifacts originate in the goals and intentions of agents. Agents unam-
biguously use computing artifacts to implement particular computational func-
tions—to compute—and they do so even when no particular computational function 
can be singled out for which the artifact unambiguously displays a unique capacity 
to implement.

To summarize, the view outlined here—instrumental computation—regards com-
putational functions as freely ascribed to physical artifacts by users. It regards com-
putational capacities—whether adequate to an ascribed function or otherwise—as 
objectively rooted in artifact design, structure, and composition. This goes beyond 
the obvious recognition that use of an artifact for computation requires both an arti-
fact with computational capacities and a user. It explicitly recognizes that users with 
functional goals give artifacts their computational functions,27 and denies that the 
display of a physical system’s computational capacities alone constitutes imple-
mentation of a computation. On this view, the implementation of a computational 
function requires both intrinsic capacity and ascribed function—it is at the nexus 

26  See, for example, Joslin (2006), Anderson (2010), Konkoli (2015), and Millhouse (2017).
27  This holds even for “intelligent” machines that can learn and operate autonomously, which are arti-
facts that are ascribed functions of learning and operating autonomously. Adaptive evolution of behavior 
in response to training data and accumulated memory of environmental influences is itself an ascribed 
function.



222	 N. G. Anderson 

1 3

of physically rooted artifact capacities and the computational goals and intentions 
of users. Instrumental computation naturally recognizes the multiple realizability of 
computation, accommodating conventional manufactured computers and unconven-
tional computers based on artificial and natural systems. Computing artifacts built 
on radically different physical substrates can share common computational func-
tions, even when the origins of their computational capacities—and the require-
ments for harnessing these capacities—differ wildly. Such differences are rightfully 
ignored at the level of computational function, which is agent-ascribed and appro-
priately agnostic about the origins of enabling artifact capacities.

I emphasize again that instrumental computation applies only to computations 
executed by agents through the use of artifacts. Its denial of intrinsic computation 
in inanimate objects does not deny that agents themselves compute intrinsically, i.e. 
with their inherent cognitive capacities. In fact, the present theory has nothing to 
say about the “intrinsic” computational capacities or functions of agents, other than 
that they are necessarily of a different nature than the artifact functions considered 
here. As instrumental functions, the artifact functions defined here are ascribed to 
artifacts by agents but not to agents themselves. They presume that agents have their 
own intentions, goals, and capacities, but assume nothing about the nature or source 
of these intentions, goals, and capacities. Consequently, the theory of computational 
function developed in this work is neutral on questions of whether agent capacities 
are intrinsically computational and whether agents have computational functions 
in some other sense. Thus, any notion of computational agent function compatible 
with the present theory would require a pluralism about computational functions28: 
use of a computing artifact by an agent would necessarily involve multiple interact-
ing notions of computational capacity and function. Perhaps the analysis of agent-
intrinsic computation as conceived in computational theories of cognition, consid-
ered jointly with instrumental computation in the context of artifact use, can provide 
further insight into the respective notions of computation.

6 � Conclusion

Computers, as we know them, are technical artifacts. Specifically, they are informa-
tion processing artifacts (IPAs) that objectively possess physically rooted compu-
tational capacities and are used to execute agent-ascribed computational functions. 
Execution of a computation is a functional goal of an agent, which an agent may 
realize with their own cognitive capacities (if possible) or through the use of a com-
puter. As such, computations achieved through the use of artifacts are more than the 
physical processes that enable their use for computation. Those physical processes 
can not themselves constitute computations, contrary to familiar habits of thought, 
to the notion of intrinsic computation, and to the claims of pancomputalism.

28  This contrasts with efforts to seek a unifying notion of computational function that apples equally well 
to artifacts and their users (Vermaas 2009; Maley and Piccinini 2017).



223

1 3

Information Processing Artifacts﻿	

So it is according to instrumental computation, the view of computation that 
underlies the general theory of IPAs I have developed in this paper. I started with 
two essential ingredients: a minimal physical description of machines that have 
capacities for implementation of logical transformations (L-machines) and a the-
ory of artifacts that can account for the the ascription of computational functions 
to these machines (Sect. 2). I then considered computing artifacts based on ideal-
ized L-machines (ideal L-IPAs) in detail. I augmented and specialized the defini-
tions of functional goals, use plans, contexts of use, and artifactual types in Hughes’ 
theory of instrumental artifact functions as required to accommodate IPAs based on 
L-machines, and discussed distinctions between dynamical evolution, computation, 
and information processing that are relevant to this context (Sect. 3). Next, I con-
sidered computing artifacts based on generalized L-machines (non-ideal L-IPAs). 
Unlike their ideal counterparts, the capacities of generalized L-machines cannot be 
uniquely associated with deterministic logical transformations because of structural 
imperfections, physical randomness (e.g. fluctuations and noise), and physical inde-
terminism (e.g. quantum state indistinguishability). I showed how such artifacts can 
unambiguously be ascribed the function of executing deterministic computations 
that they do not have the capacity to implement reliably, and introduced efficacy 
measures that appropriately quantify how well they implement functions ascribed 
to them (Sect.  4). I finally examined essential distinction between artifact capaci-
ties and functions in instrumental computation, and showed how it clarifies the dis-
tinction between computers and other physical systems (Sect. 5). I have emphasized 
distinctive features of instrumental computation throughout the paper, and noted 
contrasting views, but did not attempt a systematic, point-by-point comparison with 
other accounts of computation in this work. My focus here has been on articulation 
of the IPA theory and the notion of instrumental computation.

The present work is unique in its commitment to exploring the view that com-
putations are functional goals of agents—not just spatiotemporal patterns of physi-
cal activity—and to elaborating the consequences of this view. The key conclusion 
is that devices used by agents for computation—computers—are technical artifacts 
with intrinsic computational capacities but without intrinsic computational func-
tions. The display of a physical object’s computational capacities thus does not—
can not—alone amount to implementation of a computation. I have offered a con-
crete account of what does amount to computation in artifacts—i.e. what is required 
by and involved in the the use of artifacts by agents to realize their computational 
goals—and of what it does mean for physical systems to have computational func-
tions if they do not have them intrinsically. While I emphasized digital computing 
artifacts for concreteness, and elaborated the IPA theory only for a specific class of 
such artifacts (L-machines), instrumental computation provides a generic account of 
artifact-assisted computation and the IPA theory presented here could be similarly 
elaborated both for broader classes of digital computing artifacts and for artifacts 
that implement non-digital computations.

Instrumental computation is inherently compatible with emerging viewpoints in 
unconventional and natural computation, accommodating systems that would make 
for very unconventional computing devices as potential substrates for future com-
puting technologies. It offers an inclusive but rigorous answer to the question of 



224	 N. G. Anderson 

1 3

what counts as a computer—an answer that supports a liberalism about the ascrip-
tion of computational functions to physical systems and at the same time enforces a 
conservatism about the physically rooted artifact capacities that are required for reli-
able execution of computational functions. Such a mindset seems essential for the 
open-minded but scrupulous consideration of radically unconventional computing 
technologies, such as that reflected the ‘unconventional computation catechism’ of 
Teuscher (2014).

Acknowledgements  I am grateful to Gualtiero Piccinini, Jesse Hughes, Corey Maley, İlke Ercan, and two 
thorough and constructive anonymous reviewers for valuable comments on earlier versions of this manu-
script. I also thank Mike Cuffaro, John Norton, and other attendees at the Twenty-Fifth PSA Biennial 
Meeting poster forum for insightful discussions on a poster presentation of this work.

References

Adamatzky, A. (2015). Slime mould processors, logic gates and sensors. Philosophical Transactions of 
the Royal Society A, 373(2046), 20140216.

Anderson, N. G. (2010). On the physical implementation of logical transformations: Generalized 
L-machines. Theoretical Computer Science, 411(48), 4179–4199.

Anderson, N. G. (2017). Information as a physical quantity. Information Sciences, 415–416, 397–413.
Anderson, N. G., & Piccinini, G. (2017). Pancomputationalism and the computational description of 

physical systems. PhilSci Archive, ID: 12812.
Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108(3), 309–333.
Ganesh, N., & Anderson, N. G. (2013). Irreversibility and dissipation in finite-state automata. Physics 

Letters A, 377(45), 3266–3271.
Horsman, C., Stepney, S., Wagner, R. C., & Kendon, V. (2014). When does a physical system compute? 

Proceedings of the Royal Society A, 470(2169), 20140182.
Horsman, D., Kendon, V., & Stepney, S. (2018). Abstraction/representation theory and the natural sci-

ence of computation. In M. E. Cuffaro & S. C. Fletcher (Eds.), Physical perspectives on computa-
tion, computational perspectives on physics. Cambridge: Cambridge University Press.

Houkes, W., & Vermaas, P. E. (2010). Technical functions: On the use and design of artefacts (Vol. 1). 
Dordrecht: Springer.

Hughes, J. (2009). An artifact is to use: An introduction to instrumental functions. Synthese, 168(1), 
179–199.

Joslin, D. (2006). Real realization: Dennett’s real patterns versus Putnam’s ubiquitous automata. Minds & 
Machines, 16, 29–41.

Konkoli, Z. (2015). A perspective on Putnam’s realizability theorem in the context of unconventional 
computation. International Journal of Unconventional Computing, 11(1).

Ladyman, J. (2009). What does it mean to say that a physical system implements a computation? Theo-
retical Computer Science, 410(4), 376–383.

Ladyman, J., Presnell, S., Short, A. J., & Groisman, B. (2007). The connection between logical and ther-
modynamic irreversibility. Studies In History and Philosophy of Science Part B: Studies In History 
and Philosophy of Modern Physics, 38(1), 58–79.

Maley, C., & Piccinini, G. (2017). A unified mechanistic account of teleological functions for psychology 
and neuroscience. Integrating Psychology and Neuroscience: Prospects and Problems.

Millhouse, T. (2017). A simplicity criterion for physical computation. The British Journal for the Phi-
losophy of Science, forthcoming. https​://doi.org/10.1093/bjps/axx04​6.

Okamoto, A., Tanaka, K., & Saito, I. (2004). DNA logic gates. Journal of the American Chemical Soci-
ety, 126(30), 9458–9463.

Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.
Piccinini, G. (2016). The computational theory of cognition. In Fundamental issues of artificial intelli-

gence (pp. 201–219). Springer International Publishing.

https://doi.org/10.1093/bjps/axx046


225

1 3

Information Processing Artifacts﻿	

Piccinini, G., & Anderson, N. G. (2018). Ontic pancomputationalism. In M. E. Cuffaro & S. C. Fletcher 
(Eds.), Physical perspectives on computation, computational perspectives on physics. Cambridge: 
Cambridge University Press.

Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of 
Biological Physics, 37(1), 1–38.

Putnam, H. (1991). Representation and reality. Cambridge, MA: MIT press.
Searle, J. R. (1992). The rediscovery of the mind. Cambridge, MA: MIT press.
Searle, J. R. (2014). What your computer can’t know. The New York review of books. www.nyboo​ks.com/

artic​les/archi​ves/2014/oct/09/what-your-compu​ter-cant-know/.
Teuscher, C. (2014). Unconventional computing catechism. Frontiers in Robotics and AI, 1, 10.
Turner, R. (2018). Computational artifacts: Towards a philosophy of computer science. Dordrecht: 

Springer.
Vermaas, P. E. (2009). On unification: Taking technical functions as objective (and biological functions 

as subjective). In Functions in biological and artificial worlds: Comparative philosophical perspec-
tives, Vienna Series in Theoretical Biology, pp. 69–87.

Vermaas, P. E., & Houkes, W. (2006a). Technical functions: A drawbridge between the intentional and 
structural natures of technical artefacts. Studies in History and Philosophy of Science Part A, 37(1), 
5–18.

Vermaas, P. E., & Houkes, W. (2006b). Use plans and artefact functions: An intentionalist approach to 
artefacts and their use. In A. Costoll & O. Dreier (Eds.), Doing things with things: The design and 
use of everyday objects (pp. 29–48). Abingdon: Routledge.

Vissol-Gaudin, E., Kotsialos, A., Groves, C., Pearson, C., Zeze, D. A., & Petty, M. C. (2017). Comput-
ing based on material training: Application to binary classification problems. In Proceedings of the 
2017 IEEE international conference on rebooting computing (ICRC 2017) (pp. 274–281). IEEE.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://www.nybooks.com/articles/archives/2014/oct/09/what-your-computer-cant-know/
http://www.nybooks.com/articles/archives/2014/oct/09/what-your-computer-cant-know/

	Information Processing Artifacts
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 L-Machines and Computational Capacity
	2.2 Artifacts: Function and Use

	3 Ideal Computing Artifacts
	3.1 Functional Goal
	3.2 Use Plan
	3.3 Contexts of Use and Artifactual Types
	3.4 Function Ascription for Ideal Computing Artifacts
	3.5 Dynamics, Computation, and Information Processing

	4 Non-ideal Computing Artifacts
	4.1 Failure, Malfunction, and Normality
	4.2 Generalized L-Machines and Non-ideal L-IPAs

	5 Instrumental Computation: Capacity, Function, and Use
	6 Conclusion
	Acknowledgements 
	References




