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Abstract
The epistemology of computer simulations has become a mainstream topic in 
the philosophy of technology. Within this large area, significant differences hold 
between the various types of models and simulation technologies. Agent-based 
and multi-agent systems simulations introduce a specific constraint on the types of 
agents and systems modelled. We argue that such difference is crucial and that simu-
lation for the artificial sciences requires the formulation of its own specific episte-
mological principles. We present a minimally committed epistemology which relies 
on the methodological principles of the Philosophy of Information and requires 
weak assumptions on the usability of the simulation and the controllability of the 
model. We use these principles to provide a new definition of simulation for the 
context of interest.

Keywords Agent-based simulation · Artificial sciences · Multi-agent systems · 
Constructionism · Controllability · Usability

1 Introduction

Computer simulations play an essential role in many scientific enterprises, from 
engineering to geography, from biology to social sciences, supporting research and 
even determining breakthroughs. In the last two decades, this increasingly impactful 
role has been considered by philosophers of science interested in establishing episte-
mological principles of computer simulations and in drawing comparisons with the 
classic scientific method. Here and in the following the term epistemological foun-
dation refers to a set of epistemological principles and methodological requirements 
formulated to qualify, clarify and guide the practice within a scientific field. One of 
the main issues in establishing an epistemological foundation for computer simula-
tions is their variety in technology and applicability: in this respect, the analyses 
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developed for equation-based simulation may differ from those required to analyse 
Monte-Carlo or agent-based simulations. This debate1 only recently focused on the 
use of agent-based simulations and their specific technical and methodological prob-
lems. Moreover, even within the specific approach of agent-based simulations, the 
application considered may require different characterisations.

Agent-based modelling and the accompanying computer simulations are used in 
a large variety of fields, and for several distinct aims. What makes this technique 
so vastly applicable is its simplicity of use and adaptability. Economics, population 
analysis, natural and environmental sciences, and biology have all been supported 
by agent-based modelling and simulation via computers. Agent-based models are 
usually presented in the literature as mimicking the behaviour of natural agents in 
naturally occurring environments. On the other hand, multi-agent systems (MAS) 
refer to agents defined in simulation to create and act in novel artificial environ-
ments. Here one typically refers to artificial agents, with applications especially in 
robotics. Nonetheless, it is common to provide a general characterisation of agents 
to accommodate both applications:2

• Autonomy: agents are autonomous information processing and exchanging units, 
free to interact with other agents;

• Heterogeneity: agents may have different properties and be grouped according to 
similar characteristics;

• Active: agents are goal-directed, reactive, endowed with (bounded) rationality, 
interactive, mobile, adaptive, with a form of memory or learning;

• Interdependence: agents influence others in response to the influence that they 
receive, or indirectly through modification of the environment.

While the definition of agent is shared, the distinction between natural and arti-
ficial agents is crucial. Agent-based modelling intends to create a plausible model 
of an existing system, often with explanatory purposes; this environment has some 
given properties and the agents coordinate and relate with those properties. This is 
the case for the natural and social sciences, using simulations to discover and predict 
new information about systems of which we have only partial knowledge. Multi-
agent systems, on the other hand, aim often at the creation of an entirely new model, 
definition and implementation of protocols: these models have mostly exploratory 
purposes. This is the case for the sciences of the artificial, like robotics and network 
theory. Despite this difference might appear obvious at first sight, the implications 

1 The literature on this topic is usually referred to as starting with Frigg and Reiss (2009).
2 For definitions of agents including these properties see for example Crooks and Heppenstall (2012, p. 
87) and Macy and Willer (2002, p. 146). Note that it is possible to argue that the following characteri-
zation of agents presents at least some overlapping with the definition of agents in other contexts, e.g. 
in game-theoretical analyses, although the latter would typically have stronger constraints like perfect 
rationality. The arguments presented in the following of this contribution rely strongly on the methodo-
logical principles underlying the simulation processes in which these agents are involved, their behaviour 
analysed and conclusions drawn, rather than on whether the assumed properties of agents are exclusive 
of Agent-based modelling and MAS.
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for the corresponding epistemological foundations are extensive, and they have been 
neglected so far in the philosophical literature. The aim of the present contribution 
is to provide such a reflection on the epistemological foundation of MAS, or simula-
tions for the sciences of the artificial like network theory and robotics. Our claim is 
that for this specific area of study, we can define a robust minimalist epistemology.3

The remaining of this article is structured as follows. In Sect.  2 we overview 
some of the literature on the Epistemology of Computer Simulation in general and 
of agent-based simulation in particular. In Sect. 3 we briefly overview some example 
uses of computer simulations, to extract some observations to guide the formula-
tion of relevant epistemological principles. In Sect. 4 we approach our task from the 
point of view of the relation between artificial models and their implementation. In 
Sect. 5 we accomplish this task, by showing that such an epistemological foundation 
is already available in the larger setting of the Philosophy of Information. We use 
the resulting analysis to formulate a definition of simulation in the context at hand.

2  Some Positions in the Literature

The epistemology of simulation methods has received large attention in the last few 
decades,4 and so has their relation with computer experiments and their epistemo-
logical nature in relation with laboratory practices.5

A first issue at stake is the definition of simulation. A broad sense of this notion is 
referred to by Frigg and Reiss:

In the broad sense, ‘simulation’ refers to the entire process of constructing, 
using, and justifying a model that involves analytically intractable mathemat-
ics [ … ] Following Humphreys, we call such a model a ‘computational model’.6

Within this setting, the authors argue notoriously against the following claims:

• Metaphysical claim: Simulations create some kind of parallel world in which 
experiments can be conducted under more favorable conditions than in the real 
world.

• Epistemological claim: Simulations demand a new epistemology.
• Semantic claim: Simulations demand a new analysis of how models/theories 

relate to concrete phenomena.
• Methodological claim: Simulating is a sui generis activity that lies ‘in between’ 

theorizing and experimentation.

3 The validity of this analysis for the simulation of natural agents should be put under strict scrutiny and 
shall not be considered here.
4 See in particular Humphreys (1990, 2004); Hartmann (1996).
5 See respectively Guala (2002), Morrison (2009), Winsberg (2010) and Barberousse et al. (2009), Tal 
(2011). For a brief overview of several debates concerning the epistemology of computer simulations at 
large, see Durán (2013).
6 See Frigg and Reiss (2009). The reference to Humphreys is to his (2004, pp. 102–104).
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According to this view, simulation does not offer more favourable conceptual results 
than experiments; it does not need to be explained and guided methodologically in 
any different way than standard scientific enterprises; it does not present a different 
relation between model and theory, and its methodological nature is not any more 
complex than what scientific practice knows from the standard theory-experiment 
relation. This position can be considered at one end of a conceptual spectrum: it 
maintains that computer simulations do not offer, from the epistemological view-
point, any novelty when compared with standard experimental practices in the sci-
ences. In doing so, we are looking at the relation between the computational model 
underlying the simulation and the corresponding mathematical or theoretical tem-
plate abstracted from reality.7

An intermediate position on the relation between standard scientific knowledge 
and practice based on computer simulations can be characterised as follows:

[Computer simulation] carries with it problems, techniques and methods 
which are clearly new, such as debugging methods. [ … ] The difficulties with 
sorting out the epistemology of experimental science are not yet adequately 
resolved; but there is no reason to believe that that epistemology won’t have 
rich enough resources to accommodate what scientists are today doing with 
their computers.8

This position relies on a homomorphic relation between simulation and the simu-
lated process: the latter is at the outset of the scientific research, the former is con-
ceptually posterior to it. Under this assumption, computer simulation requires some 
specific epistemological characterization, representing a variant of standard experi-
mental sciences. This status is justified by some characteristics:

• Visualization: according to this view, the process of setting up an experiment in a 
standard scientific setting and observing the behaviour of the system under given 
initial conditions has analogies with the practice of observing a simulated sys-
tem through the use of visualization techniques dealing with massive amount of 
data (number of agents, environment conditions and so forth); obviously, under 
this reading, analytical tools miss this aspect because no observational process is 
involved in the resolution of equations providing predictions for a given model.

• Approximation: distortions are true of any scale model and, more generally, of 
any physical system not strictly identical to the target system; in this sense, a 
simulation approximates the reality of the simulated system in a manner compa-
rable to the approximation of experiments in the standard scientific practice.

• Discretization: in a real-world experiment, both the experimental and target pro-
cesses may well both be continuous processes, but the experimenter will use 
them (in either manipulation or observation) only with some finite degree of 
error.

8 See Korb and Mascaro (2009, Section 6).

7 See Humphreys (1990, pp. 499–500).
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• Calibration: calibration in simulation serves the same purpose as in a physical 
experiment, of finding the settings to support previously observed measurements 
of a target system under given initial conditions.

These aspects shared by simulations and experiments are related to the process of 
verification, i.e. the act of determining whether the simulation correctly implements 
the theory being investigated, requiring processes like design verification, debug-
ging, and consistency checks.9 In conclusion, experimentation with computer simu-
lations is ‘full-blooded experimentation’, but it also shows new problems related to 
the techniques in use and it is moreover limited by computability theory, rather than 
by physical limits.

On the opposite side of the conceptual spectrum we find the position maintaining 
that computer simulations are a true novelty with respect to standard experimental 
science, with which it has only a metaphorical or analogical relation:

computer simulations often use elements of theories in constructing the under-
lying computational models and they can be used in ways that are analogous to 
experiments.10

According to this position, simulation offers major epistemological novelties com-
pared to other experimental approaches:

• Epistemic Opacity: a process is epistemically opaque relative to a cognitive agent 
X at time t just in case X does not know at t all of the epistemically relevant ele-
ments of the process; this is to say that within simulation a specific set of vari-
ables is chosen and the methodological validity of the process is confined to such 
limited set of elements, other aspects and their influence remaining inaccessible 
to the investigation;

• Semantics: the way in which simulations are applied to systems is different 
from the way in which traditional models are applied: while the latter ones are 
required to denote the model of reality under analysis, in simulation the relation 
is less rigid and proceeds more by approximation;

• Temporal Dynamics: while in a traditional scientific setting one requires a tem-
poral representation of the dynamical development of the system under observa-
tion, in the case of simulations there is additionally a temporal process involved 
in actually computing the consequences of the underlying model, thus inducing a 
different, over-imposed temporal dynamics;

• Practice: finally, the computational setting in which simulations occur, illustrates 
a separation between what can be computed in theory and what can be computed 
with the available resources; this aspect must be considered also in the opposite 
direction, with computational means allowing more than what the system of ref-
erence can.

9 See Korb and Mascaro (2009, Section 4.2).
10 See Humphreys (2009, p. 625).
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With respect to the problem of epistemic opacity, the level of knowledge that the 
cognitive agent X can exhibit with respect to the epistemically relevant elements of 
the process can vary, depending on the level of access and competence that X has 
with the implementation, and in particular depending on whether X is the designer, 
the programmer or only the user. This analysis can be better formulated by quali-
fying which level of access is granted to which agent. From the semantic point of 
view, the gap between system of reference, model and implementation suggests that 
a layer of complexity is added by simulations being different technical artefacts than 
their models: in this case, our analysis should consider whether the implementation 
is posterior to the model and whether the relation is one of isomorphism, analogy 
or just similarity. For the temporal characterization, a simulation compared with an 
underlying (theoretical) model, for which it acts as inferential engine, will import a 
different notion of time and the relation between the temporal representation of the 
process of interest at the two levels needs to be addressed. The last aspect, concern-
ing the distinction between applicability in practice and in principle must be consid-
ered in view of the design and the implementation.

2.1  Positions on Agent‑Based Simulation

A similar tripartite positioning of views can be identified in the literature on the 
epistemology of agent-based computer simulations, with particular attention to their 
explanatory power.

A first position11 maintains that artificial models based on agents cannot provide 
full explanations of the phenomena they investigate, because their models cannot 
be validated. In particular, it is not possible to exert explanatory potential from the 
agents’ behavioural rules applied in a precisely specified environment. These rules 
could not exclude other sets of rules generating the same explanandum, as well as 
from agents defined by different properties. Hence, simulations have none of the 
essential qualifications of the potential sources for evidential support: direct obser-
vation, well-confirmed theory, or results from externally valid behavioural experi-
ments. What simulations cannot provide, therefore, is ground to believe that the dif-
ferences between the experiment and the target system do not create an error in the 
transfer of results from one to the other. At most, computer simulations can provide 
candidates or contributions to explanations, and in general are not useful because 
too permissive. Here the problem of epistemic opacity returns in the form of a cri-
tique of permissible generalizations through simulation.

An intermediate position maintains that agent-based simulations are explanatory 
but do not provide predictions:

In the social sciences, [in] generative explanation [ … ] macroscopic explananda 
[ … ] emerge in populations of heterogeneous software individuals (agents) 

11 Exemplified in  Grüne-Yanoff (2009).
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interacting locally under plausible behavioral rules [ … ]. I consider this model 
to be explanatory, but I would not insist that it is predictive.12

What this specific type of simulations can offer is to guide data collection, to create 
abstractions capturing qualitative behaviours, to suggest analogies for the identifica-
tion of correct models and finally to help rising new questions directing research. It 
is notable here the stress on the role that simulations have in shaping the model of 
analysis, not only in explaining it.

A final approach maintains a positive stand towards the novelty represented by 
agent-based modelling and simulation in their relation with experimental sciences 
and the ability to provide explanations for them.13 This approach strongly criticizes 
the first one for making any abductive inference from simulation, identifying limits 
that are general of the social sciences (like data inputting, partiality and unreliabil-
ity) as proper of agent-based modelling. While this approach rejects the capacity 
of agent-based modelling to provide causal explanation, it identifies in mechanistic 
explanation the result of simulation:

Seeing the social sciences as concerned with mechanisms means to not allow 
‘black-box explanations’ such as statistical correlations. Although statistical 
correlations can be used as evidence for causal associations, they are not an 
explanation in themselves as they do not lay open the ‘cogs and wheels’ oper-
ating to produce the phenomenon in question. [ … ] A mechanism approach nei-
ther reduces social entities to physical entities nor sees social mechanisms as 
the same as physical mechanisms.14

By the use of mechanisms, i.e. through the identification of a set of patterns in 
particular contexts with associated entities and activities at work, agent-based mod-
elling offers the ability to generate predictions which can be tested in experimental 
settings. Also, when predictions turn out to be false, mechanisms are revisable for 
local faults. In summary, according to this last view:

• Data problems are shared by all approaches to social sciences;
• Retro-fitting is required by the dynamics of running the model, but it does not 

mean falsification;
• Level-distinctions are required by agents’ behaviours, but they are only a part of 

the explanation;
• Mechanistic explanation accounts for functional explanation as well and helps us 

generate predictions and identify faults.

Here again, we wish to stress the acknowledgement of a dynamic relation 
between simulation and model (retro-fitting) which seems to question the priority 
order between the two, or at the very least to illustrate the different influence that 

12 See Epstein (2008, sec.1.10).
13 See e.g.  Elsenbroich (2012).
14 See Elsenbroich (2012, sec.2.7).
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agent-based simulations (and MAS in particular, as we will argue) seem to exert on 
the design of models.

This brief review shows that the variously held positions on the epistemologi-
cal novelty of computer simulations in general rely on one main assumption: there 
exists a system of reference which requires an explanation, from this system a model 
is extracted by abstraction and as such its definition is prior to the implementation in 
a simulation for explanatory purposes. This assumption seems to be much weaker in 
the debate on the epistemological and methodological basis of agent-based simula-
tions. One aim of the following sections is to argue that such an assumption is espe-
cially misleading in the case of the artificial sciences, like network theory and robot-
ics. We argue that in these contexts, only in a partial sense one can talk of a model 
defined prior to the implementation. While all modelling exercises are influenced 
by the results of experiments, we argue that the explorative nature of simulations 
strongly contributes to shaping the model itself when such a model is an artificial 
one which is aimed at for optimal results design. On this basis, our quest will be 
to determine a minimal epistemological committment for agent-based simulations 
in the artificial sciences. This will also allow us to return to the arguments and cri-
tiques exposed in this section.

3  Some Examples

In this section we want to provide some examples to compare the working relation 
between model and simulation as it happens in both natural and artificial sciences. 
Our claim is that in the case of the natural sciences, this relation is more static, 
with a given computational model from which the analysis starts and which is then 
explored through the design and use of (computer) simulations. On the other hand, 
in artificial sciences like robotics and network theory and analysis, the dynamics 
between the studied phenomenon, the constructed theoretical model of such phe-
nomenon and the simulation of the model is very different. In particular, we argue 
that in such cases:

1. an artificially designed and constructed model establishes the reality of reference; 
in the strongest case, this can be a formal model (e.g. a logic);

2. the implemented simulation feeds back into the model design: in this sense, the 
model of reference is not a given structure to simulate, but it is dynamically 
redefined by the results provided by the simulation;

3. all resulting properties (of both model and implementation) are limited in appli-
cability to a limited class of systems they help shaping: while in the natural sci-
ences certain behaviours can be sometimes applied to a large class of systems that 
share certain structural properties (e.g. defined by the same physical or biological 
properties), in the artificial sciences there are often stronger initial constraints 
established by the intended application and defining the model of reference and 
guiding its implementation; the set of systems that share the same initial con-
straints is often very limited.
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We argue that the conceptual priority of the theoretical (mathematical) model over 
the simulation is only partial. The definition of a logical or mathematical model as 
the first step in this process is an abstraction on reality: what the modeller does in 
this case is to select a set of axioms and rules which provide an interpretation of 
the model assumptions under which the analysis is performed. The application of 
rules to the axioms (i.e. syntactically the definition of a given set of derivable sen-
tences, or semantically a consequence set) defines the expected validities of that 
model, i.e. the model prediction. While this process in the definition of a logic can 
be shared between modellers of natural and artificial phenomena, the former ones 
are constrained by the model assumptions, as these are what is to be modelled in the 
first place. Instead, provided some actual constraints that the designer of an artificial 
model needs to preserve in view of the intended application (e.g. the environment 
of interest, the available technology used, etc.), her initial model assumptions are 
often stronger than those required: the simulation then can be used not just to predict 
behaviours of the given model, but rather to tune the model assumptions in order 
to obtain the intended behaviours. The ability to manipulate the simulation offers 
freedom in the design of the actual agents, and this provides guidance for optimal 
results.

To support these arguments, we briefly describe below a known case in physics 
and two cases in multi-agent systems. Thereby, we hope to provide supporting evi-
dence to identify essential principles for an epistemological foundation of simula-
tion in the artificial sciences.

3.1  An Example of Computer Simulations in Physics

Consider, as an example, a computational simulation of the orbital motion of a 
planet around the sun and the corresponding implementation on a computational 
system.15 Such simulation will require:

• the choice of appropriate coordinates (e.g. the angle and the distance between 
the centers of the Sun and the Earth, with appropriate abstractions like the rotat-
ing of the Sun around its mass);

• the selection of the relevant definitional equations (e.g. for kinetic energy, poten-
tial energy, gravitational constant and Lagrangian equation);

• the determination of significant and useful known equations for derivability pur-
poses (e.g. the Euler–Lagrange equation and appropriate derivatives);

• the inference of relevant equations (e.g. the equations of motion);
• the computation of the values of interest (e.g. of angle and distance at some 

point).

The initial conditions of the system are set to some significant value (e.g. the 
average distance between the two bodies), with the first time derivative and speed 

15 For a concrete example, see e.g. https ://evgen ii.com/blog/earth -orbit -simul ation /.

https://evgenii.com/blog/earth-orbit-simulation/
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set to zero, an arbitrary initial value for the angle and a fixed angular speed. The 
simulation of the orbital motion then consists in successively computing position 
and velocity at discrete time intervals based on the given initial conditions and the 
chosen relevant equations. The outputs are then represented as the planet’s motion, 
converting the atemporal properties of the mathematical model in the temporal com-
putation of the simulated movement: this, according to Humphreys, represents the 
relation between the drive and constraints of experiments in the physical sciences 
by the development of tractable mathematics. Always according to Humphreys, the 
temporal nature underlying the target system is reflected by computer simulations, 
despite their limitations, while the representation offered by theories and models is 
more limited in this respect.16 In doing so, the simulation resembles instruments in 
allowing humans amplifying their epistemic reach beyond what is for them naturally 
feasible.

3.2  An Example of Computer Simulations in Network Science

Consider an agent-based model of ideal information distribution in networks of 
agents. The model can be formulated first at the abstract level as a logical system of 
axioms and rules establishing respectively the properties and behaviour of agents, 
then translated to an algorithmic protocol and implemented in a simulator. The 
analysis of the network can be concerned with problems like: conditions for con-
sensus-reaching transmissions; epistemic costs induced by confirmation and rejec-
tion operations; the influence of ranking of the initially labelled nodes on consensus; 
complexity results.17

To start with, it is essential to note here that an investigation of this kind does 
not have an absolutely stable phenomenon to account for: there is no observed sys-
tem whose behaviour is modelled and reproduced through simulation. Instead, sev-
eral network topologies can be simulated to analyse different models of informa-
tion transmission to determine which one is the most effective to maximise a certain 
property (e.g. consensus in the network) and under which conditions a behaviour 
with certain characteristics occurs (e.g. trust in information coming from nodes with 
higher ranking).

The second observation concerns the formal model. The design of a logic aims at 
determining necessities in the model, i.e. formulas expressing properties that should 
always be displayed by the model (conclusions) whenever the corresponding initial 
conditions (premises) hold. As such, a logic is also a limiting tool, in that such valid-
ities are always bound to the axioms or rules defined. This model is not a reference 

16 See Humphreys (2004, p. 109).
17 In Primiero et al. (2017) such a model is offerd where relations are characterised by positive and nega-
tive trust. Several topologies of networks are explored, where agents are ranked and have different epis-
temic attitudes, roughly corresponding to lazy agents (accepting information without control) and sceptic 
agents (accepting information under a computational cost corresponding to a verification process). Posi-
tive trust is a property of the communication between agents required when message passing is executed 
bottom-up in the hierarchy, or as a result of a sceptic agent checking information. Negative trust results 
from refusing verification, either of contradictory information or because of a lazy attitude.
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to be reproduced by the simulation, it is rather an idealised benchmark against which 
to compare the results of the experimental runs of the simulation. Values matching 
against the provable formulas of the calculus can be interpreted as a confirmation 
of the simulation with respect to the formal model, rather than one of the model 
against some outside reality. When experiments provide values that conflict with the 
formal results, these can be seen as properties of the current implementation which 
are not in the scope of the formal model. Note that this latter case does not necessar-
ily mean that those behaviours are always undesirable. In the context of properties 
optimization (e.g. when one aims at knowing under which conditions it is easier to 
obtain consensus), the simulation provides exploratory information with respect to 
the model. It is possible that a series of simulation runs offers an indication that a 
certain intended behaviour is not covered by the formal properties designed by the 
logic, and so certain choices are made to modify the latter in order to accommodate 
the desired results. If this happens, the designer typically moves back to the for-
mal model, to modify rules and axioms in order to provide the intended behaviour: 
this can also happen in the simulation first, i.e. by implementing this in the code, 
checking what the resulting model offers and then translating it at the higher level of 
abstraction provided by the formal model.

Differently from other explanations of the model-simulation relation, our under-
standing refers to a strong initial model formulated as a logic with valid or refutable 
properties. The logic can either be used as a practical benchmark (i.e. this formula in 
the logic is derivable and any implementation of the logic should preserve it) or as 
a variable system of hypotheses (i.e. the behaviour in simulation is desirable, hence 
we should change the logic so as to accommodate it). This seems to be a fairly dif-
ferent understanding than the notion of observable system which needs to be mod-
elled by simulation in order to be explained.

3.3  An Example of Computer Simulations in Robotics

As a second example, consider a classical problem in swarm robotics: an unsuper-
vised community of robotic agents relying only on local rules to explore the world 
and communicate to other agents, until a member of the swarm can assess that a 
certain property � holds or not for the world, and on that basis trigger a collective 
action. Also in this case, the development can start from a logic, followed by its 
implementation in a simulation to provide an experimental setting in which to test 
the validities of the logic and verify which further properties can be added to the 
model.18

A first observation on such an example concerns a possible deviation of the 
implementation from the formal model in the representation of the agents’ mem-
ory. While in the formal model one looks at formal structures (e.g. logical deriva-
tions) to establish at which point in the derivation a certain proposition holds true; 
in the implementation, the agents’ memory can be represented as an hashmap table 

18 For example, in Battistelli and Primiero (2017) this problem is treated in terms of a multi-agent tem-
poral logic of weighted beliefs, with rules for distributed knowledge formation and conditional action.
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to record their computed beliefs. In other words, while the formal model requires 
memory to be extracted from properties of its structure, the simulation makes this a 
property of agents.

Another interesting observation concerns the temporal dynamics of the model, a 
point already stressed by Humphreys. A formal logic can express time evolution as 
a set of indices on propositions or as predicates. In a simulation like the one referred 
here, timestamps can be used to indicate the starting of the swarm action, the reach-
ing of a given threshold, the reaction to such threshold being obtained and the termi-
nation of the action. This implementation is an abstraction on a continuous percep-
tion of time in the real world. In other words, in order to structure and render the 
results intelligible, a fictional and less continuous notion of time for the agents can 
be created in the simulation, such that it can help identifying characteristics of inter-
est of the constructed model. Notoriously, this is a problem affecting several model-
ling techniques and many analytical methods that focus on the equilibria of a model 
are unable to account for the dynamics leading to them. These models also lack a 
clear correspondence to real time, but this weakness remains hidden. In general, 
models that might lack a meaning of time often allow at least to derive hypotheses 
about the relative duration of processes and to compare process durations under dif-
ferent parameter conditions.19 The present observation, nonetheless, does not repre-
sent a critique to the treatment of time by formal models in general, but rather a con-
sideration on the artificiality of formal models in expressing appropriate continuous 
and layered notions of time, more easily modelled by the simulation. In this sense, 
the latter offers a better and more reliable analysis of this property.

Finally, and similarly to what happens with temporal properties, also epistemic 
properties (like beliefs) can be expressed in simulation by numerical values on prop-
erties holding for family of agents, which can be modified depending on applica-
tions, but can also be investigated separately for different groups of agents. Belief 
degrees can be arbitrarily set to determine when agents start performing actions, 
thus indirectly determining the state of their environment. These design choices con-
cern mainly the intended investigation, but are not dictated by some fixed model 
of reference that the simulation has to faithfully represent: on the contrary, it is the 
simulation which can help assessing which of the several possible parameters is the 
most helpful in reaching the intended optimal results.

4  On Artificial Models and Their Implementations

The observations extracted from the two examples above in agent-based simulation, 
and for MAS in particular, are useful to formulate some remarks on the nature of the 
relation between models and implementation.

A standard way to define a simulation in its narrowest sense is by referring to the 
program that is run on a computer and that uses step-by-step methods to explore 
the approximate behaviour of a mathematical model: usually, this corresponds to 

19 I wish to thank an anonymous reviewer for this specific comment.
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a model of a real-world system. On the contrary, in the type of systems we have 
considered, the target is only a hypothetical system to be engineered. This means 
the model has properties that are designed rather than discovered: for example, the 
temporal evolution of the system is determined by possibly ad hoc thresholds and 
parameters. The corresponding simulation is developed to obtain the optimal (and 
not in some sense real) configuration of the intended model. Moreover, as we have 
seen, it can be the simulation to offer insights on the features that the model has to 
take into account.

This seems to suggest that agent-based simulations for the artificial sciences can-
not be included in a famous definition by Humphreys:

any computer-implemented method for exploring the properties of mathemati-
cal models where analytic methods are not available.20

Humphrey’s narrow definition of simulation appears problematic in the context of 
the sciences of artificial: it assumes the existence of a static mathematical model, 
whose properties can be explored by the computer implemented method, and 
because an analytic one cannot be provided. If one accepts the methodological pro-
cess illustrated by the two examples above, the simulation does not just explore the 
model but rather it contributes to its design; hence, a full definition of the model 
assumptions is not conceptually prior to the simulation, but rather results from the 
analysis of the model predictions (at any given stage of its design) and their feeding 
back into the model assumptions, until the optimal design is reached. The narrow 
sense of simulation given by this definition seems in this sense unsatisfactory.

A broader definition of simulation notoriously refers to a comprehensive method 
for studying systems, which includes:

1. choosing a model;
2. finding a way of implementing that model in a form that can be run on a computer;
3. calculating the output of the algorithm;
4. and studying the resultant data (possibly aided by some visualization technique).

The crucial difference with the cases mentioned above is that there is not neces-
sarily a target system for which inferences are to be drawn through the execution 
of the simulation. In our case, the presence of a logic underlying the implementa-
tion allows to establish which inferences are valid, and hence which instances of 
the model would be ideal. The task is then to find out which of these validities can 
be satisfied by an implementation, assuming it is possible (if not likely) that such 
implementation might not reflect all the properties of the artefact model. As illus-
trated above, sometimes the execution of the implementation provides insights that 
feed back in the design model, thus allowing to adjust it.

The first immediate consequence is on the notion of reliability. Consider the fol-
lowing remark by Winsberg:

20 See Humphreys (1990, p. 500).
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Successful simulation studies do more than compute numbers. They make use 
of a variety of techniques to draw inferences from these numbers. Simulations 
make creative use of calculational techniques that can only be motivated extra-
mathematically and extra-theoretically. As such, unlike simple computations 
that can be carried out on a computer, the results of simulations are not auto-
matically reliable. Much effort and expertise goes into deciding which simula-
tion results are reliable and which are not.21

In the case of simulations in the artificial sciences, the relation with the model is 
dynamic, and the reliability of the implementation cannot be asserted only by com-
parison with the model.

An intermediate position in the literature understands computer simulations to 
be about the use of computers to (approximately) model a system (either real or 
hypothetical). Then a simulation is any system that is believed, or hoped, to have a 
dynamical behavior that is similar enough to some other system such that the former 
can be studied to learn about the latter. According to this view, a simulation

imitates one process by another process. In this definition the term ‘process’ 
refers solely to some object or system whose state changes in time.22

A more comprehensive definition, taking into account the above constraints, is due 
to Humphreys:23

Definition 1 (Simulation) A system S provides a core simulation of an object or 
process B just in case S is a concrete computational device that produces, via a tem-
poral process, solutions to a computational model [...] that correctly represents B, 
either dynamically or statically. If in addition the computational model used by S 
correctly represents the structure of the real system R, then S provides a core simula-
tion of system R with respect to B.

Our question is whether this definition matches the intuition of the type of simu-
lation theory and practice illustrated by the examples above. One limitation seems to 
be the unidirectionality of the process, whereby the simulation is understood to pro-
vide computable solutions to the model offered by B of the system R. The aim of the 
next section is to formulate epistemological principles that can suggest a rephrasing 
of the above definition for the specific case of artificial systems.

21 See Winsberg (2003, p. 111).
22 See Hartmann (1996, p. 83).
23 See Humphreys (2004, p. 110). With core simulation Humphreys refers to the temporal part of the 
computational process, which differentiates it from the underlying model consisting of atemporal logical 
or mathematical representations.
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5  Epistemological Principles for Simulation in the Artificial Sciences

In the present section we formulate a number of epistemological principles to 
clarify and support the observations made above. These principles reflect the 
methodological approach of the Philosophy of Information (Floridi 2011) which 
subsumes that the analysis of any system is expressed in terms of semantic data. 
The methodology of the Philosophy of Information can be summarised by the fol-
lowing principles:

Principle 1 (Minimalism) Models should be controllable, implementable, predict-
able. Problems are relative to a given problem space.

Principle 2 (Levels of Abstractions) Models are relative to a set of interpreted vari-
ables; several Levels of Abstractions (LoAs) over the same set of observables are 
possible (part of a so-called Gradient of Abstraction—GoA); a LoA allows to ana-
lyse the system and elaborate a related model.

Principle 3 (Constructionism) Because the model is constructed, it can be 
controlled.

Let us briefly consider these principles. The duality between model and real-
ity is given by the epistemic status of an external observer with respect to data: 
the observer is the privileged knower of the model in virtue of being its creator; 
this act of creation invests the knower with epistemic abilities: the model can be 
controlled, implemented and is predictable. The design of the model needs to be 
restricted to a given set of variables of interest in order to be functional. Accord-
ingly, the selected LoA establishes the limits of the observer’s ability to modify 
the reality and to control phenomena in it: the model is the only element that 
can be directly controlled. Discovery proceeds from the constructed model to the 
reality, not the other way around. As the exploratory activities of the observer are 
limited to the model, any epistemic statement concerns only the model and refers 
to reality only in an indirect way. Other associated principles concern the concep-
tual economy that a good modelling activity should always guarantee: resources 
defining the model should be no more than those used to analyse its results; infer-
ences from the model analysis should not be generalised beyond the limits of the 
model itself.

In the remaining of this section, we shall illustrate how these principles are 
satisfied in the context of our analysis, organising our arguments in three main 
areas:

1. the relation between reality, model and simulation;
2. the verification of the simulation and the validation of its model;
3. the explanatory ability of simulations.
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5.1  Designing the Model to Understand Reality

One central aspect in the epistemology of computer simulations understood in 
their broad sense is the relation between the implemented simulation, its model 
and the modelled reality. It is a generally accepted view that the modeling pro-
cess often reveals relationships with—and helps our understanding of—reality: 
in other words, constructed models allow to qualify relationships between some 
elements of the reality which would otherwise remain hidden. In this sense, the 
simulation of a complex situation often provides a solution to a problem formu-
lated in the space of that situation, even if it is not an analytical but a numerical 
solution, created by a computer. To this aim, the reliability of the results provided 
by a simulation standardly has to go through the design of a good model.

The standard theoretical approach to building a good model consists in starting 
from observations of the real world, transform them in formal expressions, imple-
ment the formalization in a system that allows to analyse the dynamic aspect of the 
model (eventually in the code of some simulation software) and finally evaluate the 
results of the simulation and compare to expected outputs:

the simulations play a key heuristic role in the refinement and development of 
models. In this process, however, a crucial constraint is that adjustments in the 
model have to result in numerical solvability of the model.24

In this context, simulations for the artificial sciences are characterised often by 
the absence of initial observations. The principle stating that only the model is 
known, while the modelled is only hypothesised, assumes here its strongest mean-
ing: there is no reality to be known, the model produces a possible interpretation of 
a world to be built.25

In this process, an essential step is the characterization of the level of detail to 
implement, directly following from the choice of interesting properties and behav-
iours for the agents as a function of the intended application. Formally, this cor-
responds to setting the Levels of Abstraction (LoA) one wants to see realised in 
the implementation. While often the artificial sciences can rely on a wealth of data 
(think of the amount of data that can be extracted from networks to design optimal 
protocols to address several issue), it is also not entirely strange to start from insuffi-
cient, incomplete data, up to no data at all, in the case of an entirely artificial model. 
Sometimes, the data available is limited to the environment in which the system is 
to function, but there is no data available about the system, which is still to be for-
mulated and implemented. This means that one almost always faces a sub-optimal 
understanding of the working conditions of the system one is trying to simulate, i.e. 
of its intended behaviour in that environment. In these cases, a purely formal model 

24 See Humphreys (1995, p. 507).
25 For example, in the multirobots system from Battistelli and Primiero (2017), the simulation allows to 
explore several possible configurations of reality that can be obtained, in order to choose the one that best 
resolves the intended task. Strictly speaking, the model is used to investigate the hypothesis [also known 
as Principle of Constructability in Floridi (2011)].
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(as in our case) has the aim of providing optimal benchmarks, which can be approxi-
mated through a simulation implementing corresponding rules.

An optimality criterion reflects a balance between too little and too much 
detail, between too many and too few LoAs. This dynamics of optimal conditions, 
expressed by the formal model and approximated by simulation from the sub-opti-
mal initial understanding conditions, reformulates the standard description from the-
ories with fewer details and greater generality (potentially useless) to more detailed 
potential simulations (of possibly uncommon theories, or impractical or uninterest-
ing).26 Under such description, a model that accounts for too few LoAs, and accord-
ingly implements too litte details, is understood as a tool to explore the behaviour of 
the system, imposing as little constraints as possible; the more LoAs and details are 
added, the more the model is determined and so the role of the simulation becomes 
explanatory; a model with a full set of details (for a given Gradient of Abstraction) 
becomes descriptive (and hence predictive) of the behaviour of the system with 
respect to the set of variables of interest.

A further clarification is required for the theory under which the model is con-
structed. In the process under consideration, there is no assumption of truth about 
the theory, only a correctness requirement. Also this dynamics is expressed in terms 
of levels of abstraction: the designer chooses which variables the formal model 
has to include and the simulation must be able to implement them. In its explora-
tory work, the simulation may provide additional variables, which are in turn to be 
added to the model. In this sense, there is no stable homomorphism between model 
and simulation, and it is possible that properties expressed by the simulation are 
not available in the model but still desired by the designer, and hence added to it a 
posteriori.

5.2  Verification and Validation as Controllability

In the previous section, we have argued that the standard view on the modelled real-
ity of simulations should be discarded in the case of the artificial sciences: our the-
sis is that a reality of reference should not be assumed in general to exist before 
and independently of the construction of the model; rather, it should be intended as 
emerging from the processes of modelling and implementation.

If this view is accepted, also another aspect of the standard epistemology of com-
puter simulations fails, namely the two-steps process composed by validation and 
verification:

Verification is the process of making sure that an implemented model matches 
its design. Validation is the process of making sure that an implemented model 
matches the real-world.27

If validation is obtained by checking homomorphisms between model and real-
ity,28 we need to have a full, stable understanding of the simulated system and as 

27 See North and Macal (2007, pp. 30–31).
28 This is the view held in Korb and Mascaro (2009).

26 Cf. Korb and Mascaro (2009, p. 10).
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such the simulating model cannot function either as explanatory nor as predictive: 
the model needs to be descriptive. In view of such obvious critique, graded valida-
tion can be admitted:

The existence of an approximate homomorphism is crucial: it underwrites the 
relevance of the simulation for the system being simulated and, in particular, 
its use both for explaining events in the real world and in predicting them.29

This position30 claims that no ‘perfect mimesis’ is required between simulations and 
physical systems. As an alternative, an account of how validation proceeds can be 
offered as follows:31

• first testing of low-level submodels are performed, which describe non-emergent 
phenomena in the simulation;

• then higher-level systems are considered, including properties of the simulation 
that emerge from interactions between submodels; at this stage simulated ver-
sions of controlled experiments are considered.

For the artificial sciences, validation cannot be defined by comparison with an exist-
ing real-world system, as we are working under the assumption that such a system 
is shaped dynamically by the explorative indications offered by the simulation itself. 
Instead, validation must be understood as the process of checking that the model 
abstracted from the current implementation approximates (up to some admissible 
degree of variation, see more below on this) the intended system. The latter can 
be described as (possibly a subset of) the validities of a formal model. This means 
that the appropriate level of abstraction is chosen for the model, which has to be 
endowed with the right semantic description and the appropriate inferential power to 
extract information for the relevant variables. This gives us the minimal indication 
for good model building in this context:

Definition 2 (Validation) A model is valid sensu lato if it is:

• valid (sensu stricto), i.e. defined at the appropriate level of abstraction (seman-
tics);

• correct, i.e. providing the right inferential values to the relevant variables (syn-
tax).

Verification is usually defined as the test checking that the simulation properly 
implements the model.32 In the presence of an idealised formal theory which sets 
optimal benchmarks (but it does not reflect a reality to be mimicked), verification 

29 See Korb and Mascaro (2009, p. 9).
30 Also maintained in Winsberg (2003).
31 Cf. Railsback and Grimm (2011, p. 316).
32 See e.g. Korb and Mascaro (2009, p. 13).
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requires unit and integration testing to establish that the program does what it is sup-
posed to do. This is assessed against the selected parameters of the formal models 
that are considered essential for the simulation to exemplify properties of the system 
of interest. Here the appropriate criterion of evaluation is fitness-for-purpose of the 
simulation, i.e that the simulation encodes the same (relevant) levels of abstraction 
of the model, while design choices can be made to provide the model with character-
istics which arise only in simulation. But the simulation has to reflect also usability, 
i.e. that a sufficient level of well-functioning is guaranteed. This process illustrates 
how the designer in this case does not aim at discovering a given pre-existing model, 
but rather at calibrating or fine-tuning the simulation with respect to a particular 
context, to increase its level of fit for the resolution of a given task. To sum up:

Definition 3 (Verification) A simulation is verified if it is:

• usable, i.e. it guarantees a minimal level of well-functioning;33

• fit-for-purpose, i.e. defined at the LoAs appropriate to the corresponding model.

The combination of (model) validation and (simulation) verification does not aim 
at checking whether the theory represents some reality of reference, a relation usu-
ally named confirmation. The combined roles of verification and validation is to aim 
at the controllability of the constructed model, i.e. the ability of changing the param-
eters of reference and lead the simulation in a desired direction, or in other words to 
provide predictability.

5.3  Problem Solving Instead of Explanation

The principles of Economy and Context-Dependency in the Philosophy of Informa-
tion state that conceptual resources in formulating the model need to be less than 
those used to obtain the result of the model and that the isomorphism between the 
model and the modelled reality is local, not global. They help clarifying our epis-
temological analysis for the artificial sciences in the context of the debate on the 
explanatory power of simulations.

One aspect of this debate is related to the role of simulations in exploring the 
deductive consequences of theories; another one is their role in empirical sciences.34 
In our analysis, we have assumed a formal theory to provide optimal benchmark-
ing for the simulation’s results. In this sense, simulations respect the principle of 
economy set out by the designer in terms of information containment with respect to 
the benchmarking offered by the theory. If the simulation is good at approximating 
the optimal benchmarking of the model, we can say accordingly that the design of 
the model is optimal:

33 Usability is to be considered weaker than reliability, which substitues truth in Winsberg (2006).
34 See e.g. Korb and Mascaro (2009, p. 11).
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Definition 4 (Optimality) The design of a model is optimal if it maximizes the 
amount of correct data inferred from the simulation while preserving the appropriate 
level of abstraction.

On the other hand, we have left it open to the simulation to provide the theory 
dynamically with new properties: in doing so, the simulation acts as an empirical 
experiment, in the special characterization of exploratory experiments.35 In Defini-
tion 1, this aspect was captured by the ability of simulation S to control the intended 
model B of an artificial system R. In this sense, simulations reflect a principle of 
information expansion justified by a local isomorphism between experiment and 
model, i.e. that the experiment cannot be considered valid in all contexts in which 
the theory can be. If the simulation is good at offering useful information without 
exceeding the limits of its model, we say that the design of the model is efficient:

Definition 5 (Calibration or Efficiency) The design of a model is efficient or cali-
brated if it minimizes the amount of correct data required by the simulation to be 
useful while still preserving the appropriate level of abstraction.

Bringing together these two trends of economy and context-dependency, reflected 
by information containment and information expansion, we can reconsider the role 
of agent-based simulation in providing explanation. As we have given up their role 
in a theory-driven understanding of experimentation, simulations in the artificial sci-
ences perform in the first place an explorative role in shaping the model. Only when 
a stable model is reached (optimal and efficient), the corresponding simulation anal-
ysis can be said to provide an explanation of such model.36 The role of simulations 
in the exploratory phase is better expressed in terms of their ability to solve well-for-
mulated problems that fall within the benchmarking given by the formal model, and 
eventually modified by the recursive design of the simulation. This is, essentially, a 
characteristic of the sciences of the artificial, where a computational model can be 
formulated but often no system is already available against which the simulation can 
be assessed.

6  A Novel Definition and Final Remarks

To conclude, in this section we recollect briefly the main aspects of our analysis to 
evaluate their impact on the definition of simulation in the artificial sciences.

First, we have highlighted how the relation of representation betwen computa-
tional model and the represented object or process has a different, if not inverted, 
conceptual order, in that the object or process of reference may not exist before 

35 The characterization of experiments as exploratory in the artificial sciences and in robotics in particu-
lar is due to Schiaffonati (2016).
36 This position complements the semantic interpretation of simulations given in Barberousse et  al. 
(2009) through the addition of the essential exploratory phase.
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the development of the model. Second, the confirmation of the model is substi-
tuted by its (dynamic) controllability by the simulation. Third, model controlla-
bility may be construed locally from partial relations within the simulation and 
it has to reach the appropriate equilibrium between semantic expressiveness and 
inferential power. Finally, the aim of simulation is to provide solutions to prob-
lems formulated in terms of the variables at the levels of abstraction of interest.

We note that these observations significantly depart from the notion of simula-
tion considered in Definition 1. On this basis, we offer a tentative definition of 
simulation for an artificial system:

Definition 6 (Simulation of an artificial system) A system S provides a core simu-
lation of an artificial system R just in case

1. S is a concrete computational device implementing a valid and correct computa-
tional model B of R, and

2. S is a verified simulation of a model B, offering a usable and fit-for-purpose 
interpretation of the system R, and

3. S controls the intended model B of R, and
4. S provides solutions to problems formulated within the model B of R.

In this paper we have considered the epistemological foundation of computer 
simulations for the artificial sciences. We have argued how the latter have a spe-
cific characterization, which is not necessarily shared by natural sciences and 
which in turn determines our understanding of computer simulations in their con-
text. In particular, such characterization is due to the peculiar relation that mod-
elled, model and implementation present in sciences like robotics and network 
theory. Our aim has been to illustrate an appropriate epistemological foundation 
in terms of the principles formulated within the Philosophy of Information. These 
principles are identified as knowability and constructability of the model in terms 
of appropriate levels of abstraction; controllability and confirmation of the simu-
lation in terms of fit-for-purposeness and predictability; and finally economy and 
context-dependency of the simulation-model relation, in terms of information 
containment and information expansion, where problem-solving is a more appro-
priate context than explanation to investigate.

Future work in this area will focus on a precise, formal characterization of the 
isomorphism relations and their scope between simulation, model and system of 
reference. Note that this allows in turn to qualify the proper meaning of a simula-
tionist theory in the context of the Artificial Sciences.
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