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Abstract A critically important ethical issue facing the AI research community is

how AI research and AI products can be responsibly conceptualised and presented

to the public. A good deal of fear and concern about uncontrollable AI is now being

displayed in public discourse. Public understanding of AI is being shaped in a way

that may ultimately impede AI research. The public discourse as well as discourse

among AI researchers leads to at least two problems: a confusion about the notion of

‘autonomy’ that induces people to attribute to machines something comparable to

human autonomy, and a ‘sociotechnical blindness’ that hides the essential role

played by humans at every stage of the design and deployment of an AI system.

Here our purpose is to develop and use a language with the aim to reframe the

discourse in AI and shed light on the real issues in the discipline.

Keywords Artificial intelligence � Autonomy � Future � Robots � Sociotechnical

systems

1 Introduction

A critically important ethical issue facing the AI research community has to do with

how AI research and AI products are responsibly conceptualized and presented to

the public. The issue is most evident in the discourse around so-called ‘autonomous’

technologies. ‘Autonomy’ is used by AI researchers as a metaphor to refer to a
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variety of different types of computational behaviour, but the multiplicity of

meanings of the term (both for AI researchers and non-experts) can lead to

miscommunication: ‘autonomy’ suggests to those in the media and the lay public

something out of human control, something worthy of concern and even fear. In this

paper we want to argue for a reframing of AI discourse that avoids the pitfalls of

confusion about autonomy and instead frames AI research as what it is: the design

of computational artefacts that are able to achieve a goal without having their course

of action fully specified by a human programmer. We don’t claim that AI

researchers have full responsibility for public misunderstanding but we do claim

that AI researchers have some degree of responsibility for the way in which their

research is presented to and understood by non-experts (the public).

A good deal of concern has recently been expressed about the future of AI

research and its consequences for humanity. A salient example is the open letter,

signed not only by several AI researchers but also by a number of academics and

scientists from other fields, including entrepreneurs, policy makers and profession-

als. The main point of this letter [‘‘Research priorities for robust and beneficial

artificial intelligence’’ published by the Future of Life Institute (FLI 2015a)] is a

recommendation to widen the focus of research to include not only the objective of

‘‘making AI more capable’’, but also of ‘‘maximizing the societal benefit of AI’’.

The letter writers acknowledge the possibility of AI endeavors that are not beneficial

for society or humanity in general. The specter of harmful AI is also evident in some

researchers’ and entrepreneurs’ view of AI. If some see AI as a way for the human

mind to overcome the natural decay of the body and live forever in digital form

(Itskov 2016; Minski 2013; Kurzweil 2005), others are more keen on warning us

against the extinction of the human race by machines that are both stronger and

smarter than their creators (Barrat 2013; Carr 2014; Storm 2015; Gaudin 2015).

Between the extremes of the promise of eternal life and the threat of total

annihilation lie the AI artefacts of today: self-driving cars (Google 2016), package

delivering drones (Amazon 2016), fully automated hedge funds (Aidyia 2016), to

name a few. Every project, whether fully completed or still in development, is

accompanied by an array of questions, including compelling ethical questions: Who

is to be held responsible when accidents involving self-driving cars occur? (Hevelke

and Nida-Rümelin 2015). If drones can deliver medicines or drop bombs, are we

giving life and death powers over humans to artefacts that lack both morality and

mortality? (Heyns 2013; Berkowitz 2014). When some traders in a stock market are

high-speed computers, what is left to do for much slower humans? (MacKenzie

2014). Will it become impossible for individuals to make informed personal

decisions about how to invest their money in financial markets? (Metz 2016).

All of these questions arise from the simple idea that AI research and products are

designed to delegate traditionally human tasks to machines. Hence, the ethical issues

all center around the fundamental question: Given task x, what are the consequences

of having a machine perform x? This may be considered the most obvious ethical

issue in AI, the one to which many researchers are trying to draw attention.

However, the question cannot be answered adequately without better ways of

talking and thinking about AI and what happens inside AI artefacts. For one thing,

to understand the question as an ethical question requires that it be specified as
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follows: Given task x, what are the social consequences of having a machine

perform x? Answering this more specified question requires a conceptual shift that

allows the connection between AI and people/society to come into view. All the

human actors involved in an AI endeavour must be treated as part of AI, not only the

researchers, but those who make the decision to launch AI, those who set up the

institutional arrangements in which AI systems operate, and those who fill roles in

those arrangements by monitoring, maintaining, and intervening in AI systems.

Others have called for a similar shift. For example, David Mindell illustrates the

tight link between humans and technology with several examples of AI artefacts

deployed to explore extreme environments such as deep sea and space (Mindell

2015). Mindell analyzes existing technologies. We go a step further by using a

sociotechnical frame to examine discourse about futuristic AI; futuristic AI might

never come into existence but it is important because discourse about it influences

understanding of AI.

In calling for a change in the nature of AI discourse, we are calling for concepts

and language that in particular clarify the multiple notions of autonomy that are at

play in referring to AI entities as autonomous. What may look like a mere

terminological issue reflects a much more serious semantic gap that affects the

discussion of AI on several levels and in multiple contexts. The gap misleads AI

researchers themselves as well as those in industry, policy makers, and, ultimately,

the people whose lives are affected by AI.

2 A New Frame for AI Discourse

Our proposal might be seen as a new ontology because we propose that AI discourse

recognize two distinct entities: computational artefacts and AI systems. Compu-

tational artefacts are digital entities and AI systems consist of such artefacts together

with human actors and social arrangements. Because AI always performs tasks that

serve human purposes and are part of human activities, we claim that AI should be

understood as systems of computational components together with human behaviour

(human actors), and institutional arrangements and meaning. This expanded

ontology, we claim, will allow ethical issues to be more readily seen and addressed.

When it comes to computational artefacts we propose a set of distinctions that are

quite familiar to AI researchers. Here our purpose is to develop and use language

that has the clarity necessary for avoiding (or at least diminishing) confusion and

miscommunication about the autonomy of AI. Our point is to demonstrate and

emulate the kind of clarity that will allow lay audiences to understand what is and is

not possible with AI.

2.1 Computational Artefacts

A computational artefact is an artefact whose operation is based on computation. AI

researchers are generally focused on a special type of computational artefact, that is,

those that are meant to mimic activities that are typically human, such as reasoning,

making decisions, choosing, comparing, etc.
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2.1.1 Programs in Computers

The first and simplest type of computational artefact is a program. Programs receive

digital input and produce digital output. The operations of a program remain in the

digital realm. Some authors call software an abstract artefact (Irmak 2012), but such

characterization better fits algorithms, which are conceived in the minds of human

designers and can exist outside the technological realm (e.g. in the form of a block

diagram on paper). On the other hand, programs need to be stored in computers in

order to operate, so there is a form of embodiment that distinguishes programs from

algorithms. Moreover, computers are typically equipped with peripherals that

enable them to exchange digital data with other computers (e.g. through network

cables) or with humans (e.g. through a keyboard for input, a monitor for output).

2.1.2 Programs in Computers with Sensors

We can distinguish a second type of computational artefact as having a form of

embodiment that allows it to receive input from the external environment, that is the

non-digital world. Computational artefacts of this kind have sensors. In a way, even

a keyboard could be considered a sensor that translates the mechanical movements

of a user’s fingers into digital data. This is only partially true: finger movements are

simply a non-digital way for a human to insert digital input (i.e. characters and

figures) into a computer, whereas here we focus on more sophisticated devices that

actually transform a non-digital phenomenon into digital data. Perhaps the simplest

example of this kind of entity—one that is often used—is the thermostat of a heating

system. The thermostat is connected to sensors that detect temperature; this analog

information is translated into digital form so that it becomes input to the program.

2.1.3 Programs in Computers with Sensors and Actuators

A third type of computational artefact both receives input from the external world

and moves in the external world. We generally call such entities robots. Robots have

mechanical parts that allow them to move and, of course, their programs include

instructions aimed at controlling those parts. The types of movements that these

artefacts can make depend on the forms of the actuators, i.e. their mechanical parts.

For example, some robots have wheels allowing them to move across floors, other

robots have arms allowing them to reach out and grab, others might have actuators

that are weapons. The most successful example of a robot, at least in terms of sales

(Morton 2014), is the Roomba, a robot that cleans floors.

2.2 Autonomy of Computational Artefacts

Humans build artefacts and endow them with the proper hardware and software with

specific goals in mind. By delegating the execution of the operations needed to

reach those goals to the artefact, humans are freed of that burden.

This is the basic idea behind automation. It characterizes all sorts of artefacts

including computational ones. Humans are happy to delegate tasks to computational
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artefacts since they are able to execute operations at super-human speed without

errors. If all computational artefacts are automatic, what makes some of them

‘autonomous’? What does it mean for an artefact to be ‘autonomous’?

Let’s start with an example from the first category, a program in a computer, and

imagine a software agent for trading that is supposed to connect to a server and buy

shares from the best company available. The criteria to compare companies and

establish the best one are fully coded into the agent, but there may be the possibility

that two or more companies have exactly the same best parameters. The designers

could write the software in a way that, in such a situation, it sends a message to the

human user on behalf of whom the agent is operating. The agent will then buy

shares from the company indicated by the user. A different way to implement the

agent is to write its code in a way that, faced with the above-mentioned decision, it

will perform a sequence of operations that makes the selection of the company

possible without human intervention. The designers have many choices on how to

implement the selection process: among the eligible companies, the agent could

pick the first one in alphabetical order, or the oldest, or the newest, and so on. The

agent might even pick the company, metaphorically speaking, by means of a ‘‘coin

toss’’, that is, based on the value of a randomly generated number.

At first glance, the trading agent that does not require human intervention for the

purchase of the shares appears to be more ‘autonomous’ than the other. This is true

but not the whole picture. If autonomy in programs means simply no human

intervention, then software written to print the first one hundred prime numbers on a

screen would have to be considered autonomous since it does not require any human

intervention during its run.

So, we need a more precise account of autonomy in programs. In the prime

numbers printer, the execution is entirely established already at compile time, i.e.

when the code is written by a human designer, step by step from beginning to end.

By contrast, in the case of our trading agents, the course of action is established at

run time and depends on the data coming from the server the agent connects to. In

the case of the agent that comes back to its user to ask for a decision, at least one of

those run time conditions is an action/intervention by the user, while the other agent

will base its decisions solely on the basis of what is written in its code and the data

from the server.

It seems, then, that autonomy is a characteristic of artefacts in which the course

of action is established at run time, without human intervention and on the basis of

the conditions in the environment in which the artefact operates. Artefacts that

require human decision at run time—as with the trading agent requiring a user to

choose between two best companies—are less autonomous than the ones that

require no human input at run time.

From this perspective, endowing an artefact with sensors seems to increase its

autonomy, because the sensors decrease the need for human intervention. For

example, compare an artefact that triggers the watering of a garden at regular

intervals with another that acts on the basis of the level of humidity of the terrain as

measured by means of sensors. The owners of the garden need to intervene in the

operation of the time-based artefact in at least two possible ways: they have to

switch it off if there has been abundant rain, and they have to manually activate it
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for extra water during particularly hot and dry days. On the other hand, with an

artefact endowed with sensors, the owners are freed of the burden of interven-

tion/control: the artefact will see to it that the humidity of the terrain is always at the

optimal level, independent of the owner’s monitoring of the weather.

In the same way, the addition of actuators further increases autonomy. Imagine

the garden-watering artefact in the form of a robot with arms and wheels: it could be

programmed to move around all the gardens in the area, check the levels of

humidity in each terrain, and obtain and carry water or turn on nearby spigots where

needed. Even more autonomy could be achieved by means of additional peripherals,

be they sensors or actuators.

Needless to say, the additional peripherals would require additional code to

enable the artefact to use the peripherals. The additional code would elaborate the

input from the additional sensors and control the movements made possible by the

additional actuators.

Autonomy is, then, a function of how a computational entity operates at run time

when it draws on input from the environment. The entity’s autonomy has to do both

with its responsiveness to its environment and independence from human

intervention at run time and may also be a function of increased capacity for

movement. The less intervention needed by humans in its operation and the wider

its scope of action, the more autonomous the artefact.

2.3 Unpredictability of Artefacts

When autonomy is understood in this way, it becomes clear that people will likely

pay less attention to the artefact’s operation. This makes the artefact more

unpredictable. Imagine again the garden-watering robot. If its owners realize that it

is not in their garden, they may (correctly) think that the robot must be watering

some other garden in the area. However, they would not be able to predict where

exactly it is. If human users do not observe the artefact at work, and this happens

often when the artefact is supposed to be autonomous, they will not know what kind

of input the artefact received, hence it will be difficult, if not impossible, to predict

how the artefact will operate to achieve its goal.

There are many ways in which artefacts can be unpredictable. Consider some

examples. The random number generator used by the trading agent mentioned

before is a piece of software that applies a complex mathematical function to data

provided by the computer’s clock. The output of such software is a sequence of

numbers that seem not to have been determined by any mathematical function, and

thus appear to be randomly chosen by the software. Obviously, such a function

exists because a computer only operates through functions and mathematical

operations, but if a user does not know what the function is like, the output will

indeed look random. Even the programmers who designed the system are not able to

foresee the numbers in the output because the function is parametric and its results

depend not only on the function itself but also on numerical values from the clock,

such as the milliseconds of the time at which the software was launched. If this

piece of information is missing, not even the designer of a random number generator

can predict its output.
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This is a very important point that deserves attention: human users of

computational artefacts, including their designers, need a certain amount of

information to be able to predict the course of action of the artefacts. Some artefacts

are such that one only needs to know its code to predict the outcome (e.g. the prime

number printer), whereas other artefacts require observation throughout their run in

order to make predictions on how they will operate. For instance, in the case of our

software agent purchasing the best companies, we would be unable to predict its

behaviour unless we could know the situations of all the companies on the stock

market. In principle, however, if on our own we were able to find out which

company is the best (using the same criteria as the agent), we could anticipate

(predict) that our trading agent will buy shares of that company, provided that the

software is not faulty.

In order to predict which of two top companies our trading agent will choose in

the event of a tie, we will have to know the specific criteria that are coded into the

trading agent. If the criteria are based on the names of the companies or the years of

their founding, we need to acquire this information to know what the agent will do.

Now suppose that the agent is designed to use a random number generator: it runs

the generator to pick a number between 0 and 9; if the output is between 0 and 4 the

agent will buy shares from the first company, whereas if the output is between 5 and

9 it will buy from the second company. In this case, we will need a different kind of

information to be able to predict the outcome: as said before, we need to know what

the mathematical function used in the generator looks like and the exact time at

which the generator was launched. Since this last piece of information is extremely

difficult to acquire, it is likely that we will fail at our task, and that the agent’s

decision will have the appearance of a random act.

Indeed, random number generators exist that, just like a thermostat, rely on

events that happen in the external environment: a computational artefact can be

endowed with a light sensor that contains a ‘‘beam splitter’’, that is, a half-mirror

that splits light in two orthogonal rays. The device includes two photon sensors that

can detect where each photon from the split ray goes: one way or the other,

according to which a 0 or a 1 will be generated by the device. The trading agent may

be implemented so to buy shares from the first company in case of a 0, and from the

second company in case of a 1. Unpredictability is increased here in the sense that

no human can predict where a photon will go (i.e. a quantum mechanical

phenomenon) and, thus, which figure will be generated. This is why devices that are

based on physical phenomena are called ‘true’ random generators as opposed to

computational ‘pseudo’-random generators (Jennewein et al. 1999). This is the

fundamental mechanism that enables software engineers to create programs that

operate stochastically: they have the possibility to make the completion of an

instruction depend on the result of a pseudo-random or a truly random event.

This kind of operation is often used to randomly explore different possibilities, in

search of an optimal solution. Google, for instance, has set up some experiments to

train robotic arms in the task of opening a door. The computers controlling the arms

have been provided with code with commands that should roughly guide the

hardware with the right moves. Every time these commands are executed, a random

small numerical value is added to the parameters that determine the positions of the
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parts of the robotic arms, resulting in new, slightly different movements at each

round. The movements with the best outcome are then registered in the system for

future use (Levine et al. 2016).

Lack of information on behalf of the human users make computational artefacts

unpredictable, but the unpredictability stems from several different kinds of

ignorance: ignorance of the functions used or of the time of their activation (as in

the pseudo-random number generators), impossibility of predicting quantum

mechanical phenomena (as in the true random number generators), or simply

ignorance of the circumstances in which the artefact operates (as when we cannot

predict which shares the trading agent will buy if we do not know the market, or the

whereabouts of the garden-watering robot if we have not been observing it).

Since autonomous artefacts need little to no human intervention at run time,

indeed, since they are often conceived to free humans from the burden of several

tasks, it should not be surprising that users do not have a full knowledge of the

environment in which the artefacts operate. Hence, the autonomy of artefacts is

linked to their unpredictability. Computational artefacts are unpredictable because

humans don’t and can’t know the input on which the operation of the artefact

depends.

2.4 Limits to Unpredictability

The unpredictability of computational artefacts is important for our purposes here

because, rightly or wrongly, it plays into public fear and concern about

‘autonomous’ machines. However, it is important to note that the unpredictability

of the operations of an artefact, even when intrinsic because based on quantum

mechanical phenomena, is limited by at least two factors. Firstly, the designer had to

specify the kind of analog input that could be received by the artefact: the choice of

endowing the artefact with a temperature sensor or with a light sensor determines

what kind of environmental factors will influence the operations of the device.

Secondly, whatever the randomness in the input that affects the operation of the

artefact, the range of its course of action is bounded by its actuators which in turn

are bounded by the set of operations specified by human designers, i.e. the

operations that control the capabilities of the artefact.

A Roomba, for example, is ‘autonomous’ in the sense that its course of action

(e.g. in terms of movements of its wheels) at any given moment depends on the

input it receives about the environment and because this input is used, in accordance

with the robot’s software, to compute subsequent movements. Although the

movement of the Roomba is unpredictable (because so is the input from the

environment and an average Roomba user does not know its internal computations),

one can, nevertheless, predict (and be confident) that the Roomba will not behave in

certain ways. For example, we know the Roomba will not climb up the walls or fly

because we can see that it doesn’t have the mechanical parts necessary for such

behaviour. Moreover, if we had the possibility to examine its software and saw that

nowhere in its code was an operation to compute the square root of 2, then we would

be able to predict that the Roomba will never perform such an operation.
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Unpredictability is often thought to occur or increase when software is

programmed to learn. Learning can play a significant role in seeming to expand

the autonomy of computational artefacts. If the artefact is able to acquire new

patterns of behaviour by means of proper training, then the system’s autonomy may

increase over time. Imagine a futuristic Roomba whose hardware includes a camera

able to capture an image of every object the robot is about to suck up, and a sensor

that detects when an object is too big and will likely clog the robot’s mouth. With

the proper software, including instructions to compare the current input of the

camera with stored images of previously encountered objects, this Roomba might

learn to avoid certain objects just like it already avoids furniture. Moreover, a

Roomba might learn by receiving negative feedback from its owner (e.g. because it

has sucked up a piece of Lego that was supposed to stay on the floor). The negative

feedback takes the form of new inputs for the operation of the learning software.

Nevertheless, even when robots learn in this way, their autonomy is a matter of

programmed instructions—instructions that may make the behaviour of the robot

difficult for some to predict, but not difficult to predict in the sense that the

behaviour will be within the boundaries specified in the program as well as the

boundaries of the hardware. Even in an extreme case of unpredictable results like

Microsoft’s Twitter-bot (a learning software that was taken offline because it had

learned racial slurs from Twitter users and started tweeting them around), the

unpredictability was limited to the content of the tweets (e.g. the software did not

learn new actions like accessing internet banking services). Its learning racial slurs

might have been avoided if designers had tested the program for this quality or

observed it more carefully when it was first operating.

So, autonomous computational artefacts have a certain kind of unpredictability

that is related to their autonomy. However, because their unpredictability derives

from the limitations of human users and observers, it is important to remember that

autonomous computational artefacts are still bounded by their programming—even

when they learn—and their embodiment.

2.5 AI Systems

So far our analysis of autonomy has focused on computational artefacts. Indeed,

most of the literature on autonomous systems focuses on this component of AI.

However, AI that perform tasks on behalf of humans consist of much more in

addition to computation by artefacts. We propose that the ontology of AI discourse

be expanded to include AI systems. An AI system consists of a computational

artefact together with the human behaviour and people who make the artefact a

useful and meaningful entity. Drawing on a concept and a term from the field of

Science and Technology Studies (STS), AI systems should be thought of as

sociotechnical ensembles (Bijker 1993, 1997) or sociotechnical systems. Sociotech-

nical ensembles are combinations of artefacts, human behaviour, social arrange-

ments and meaning. For any computational artefact to be used for a real-world

purpose, it has to be embedded into some context in which there are human beings

that work with the artefact to accomplish tasks. Human actors may be required to

launch (turn on) the computer in which the computational artefact resides, monitor
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the artefact’s operation, give it input, use the output, and so on. Moreover, the

artefact will have meaning to the humans involved. Imagine here an extremely well

designed AI program for a new form of monetary exchange, e.g. bitcoin, airline

miles. Unless the program is connected to other computers, it has no real-world

functionality. Moreover, for it to become a new monetary system, networks of

people have to recognize computer configurations in the system as having value,

and they have to accept these configurations as a form of money (Johnson and

Miller 2008).

Human actors might be understood to be part of the external environment of AI

in that they give input to the computational artefact. However, what humans do is

more than that. For example, a drone that has been programmed to select targets and

fire under certain conditions will be part of a military operation. In the military

operation, humans will decide when to launch the drone and what initial input to

give to the drone; humans will monitor the drone and decide if and when to change

its instructions or when to have it return to the home base. Even if decisions to

change instructions or return to home base are programmed in, a person has to

decide whether or when to launch a drone and in what conditions or context.

Moreover, a strike by a drone counts as an act of war because of the meaning

associated with such behaviour by institutional actors (e.g. the governments of the

nations at war). Indeed, recent conflicts in which drones were used have taught us

that drones have different meanings in different cultural contexts (Ahmed 2014).

The design of AI systems like the design of other sociotechnical systems involves

decisions about how to delegate sub-tasks among humans and non-humans (Latour

1992; Callon 1999). Taking a very simple example, when it comes to heating a

building, the furnace is assigned certain tasks and the thermostat others. These

components work together with humans who have been delegated the task of

deciding where the controls will go and the task of setting the temperature on the

thermostat, not to mention those who manufacture and install the device. Even in an

office building, where individuals cannot control the temperature in their own

offices, a maintenance person may control the temperature. Of course, this might be

done with a program, but even here a person would have to set the parameters of the

program.

Unquestionably, more and more tasks are being delegated to computational

artefacts and that is why it is so important to remember that humans are always part

of the system.

3 Confusion about Autonomy

Given what has been said about computational artefacts, the fear and concern being

expressed in the public discourse about AI do not seem justified, or more accurately,

the fear and concern seem misdirected since the behaviour of computational

artefacts is in the control of the humans that design them. The range of possible

outputs in a computational artefact, even those with sensors and actuators and

embedded in social arrangements, are specified by the parameters in the instructions
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of the program and are limited both by the programming and the limitations of the

hardware.

So, why such public fear and concern? Those who don’t understand how

computers work have a very different notion of autonomy, one that is associated

with human beings (in normal conditions). Here autonomy refers to the charac-

teristic of human beings of having the capacity to make decisions, to choose, and to

act. ‘Autonomy’ is here tied to ideas about human freedom. This notion of

autonomy has traditionally been used to distinguish humans from other types of

animals. Importantly, this form of autonomy is what makes human beings moral

beings. Only beings with autonomy can be expected to conform their behaviour to

rules and laws. Indeed, when it comes to morality a distinction is made between

entities that behave according to the laws of nature (e.g. the leaves of a tree turning

towards the sun) and entities that behave according to the conception of law (e.g. a

person choosing to keep a promise or tell the truth or not) (Kant 1785/2002).

Admittedly, this form of autonomy is somewhat mysterious and is intertwined with

notions of what it means to be human. Nevertheless, it is this notion of autonomy

that seems to come into play in the fear and concern about autonomous machines or

robots. When non-experts hear that machines have autonomy, they attribute to

machines something comparable to the autonomy that humans have, something

close to the freedom to behave as one chooses.

When the public, the media, and anyone who is not familiar with the workings of

computers is told that machines have autonomy, it conjures up ideas about an entity

that has freewill and interests of its own—interests that come into play in decision

making about how to behave. They infer that programming will be insufficient to

control such entities, that is, to ensure that they will behave only in specified ways.

Such entities will, they fear, behave in unpredictable ways, i.e. ways that serve their

own interests.

Although human autonomy may in certain contexts be a useful metaphor for the

autonomy of computational artefacts, some scholars get caught up in the metaphor

and seem to forget the difference between the thing and its metaphorical parallel. An

example of this can be seen in Omohundro’s chapter in Risks of Artificial

Intelligence (2016). In describing the possible harmful behaviours of an advanced

AI, Omohundro adopts the approach of presenting scenarios in which an artefact

behaves like a (possibly sociopathic) person who harms others in the blind pursuit of

its own objectives. He describes, for example, a chess-playing robot and a human

trying to unplug it: ‘‘Because nothing in the simple chess utility function gives a

negative weight to murder, the seemingly harmless chess robot will become a killer

out of the drive for self-protection (Omohundro 2016, p. 15)’’. The drive for self-

protection, a natural characteristic of humans and many other biological entities, is

presented by the author as a property of advanced AI artefacts. The drive is then

supposed to lead to resource acquisition behaviour: ‘‘The chess robot (…) would

benefit from additional money for buying chess books (…) It will therefore develop

subgoals to acquire more computational power and money. The seemingly harmless

chess goal therefore motivates harmful activities such as breaking into computers

and robbing banks (ibid. p. 16)’’. Omohundro also attributes other human properties

to machines, for example, the drive for efficiency: ‘‘(Autonomous systems) will aim
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at making every joule of energy, every atom, every bit of storage, and every moment

of existence count for the creation of expected utility (ibid. p. 17)’’. Something

similar is done with the drive for self-improvement: ‘‘…autonomous systems will be

motivated to completely redesign themselves to take better advantage of their

resources in the service of their expected utility (ibid. p. 17)’’.

Omohundro attributes to the chess playing program a set of characteristics that

are associated with the behaviour of humans. He uses language and concepts used in

talking about humans. He leaves entirely out of the picture that, at the current state

of technological development, something like self-protection in the robot would be

produced computationally through instructions given to it by humans. Attributing to

robots the quality of self-protection is a metaphor. It is like saying ‘‘let’s treat this

chunk of computational behaviour as if it were something like self-protection in

humans’’. This way of discussing AI has the purpose of depicting a possible future

scenario, but it is misleading and dangerous insofar as it distorts what is currently

possible in AI thereby suggesting to non-experts that some dangerous form of

computation is in the making.

Omohundro is, of course, speculating and extrapolating from the current state of

computation to the future but does not bother to explain that the kind of robotic

behaviour he envisions would require computational forms of a radically different

kind from current computation. Although the public comes to believe such scenarios

are possible, the possibility of such new computational forms is neither probable nor

improbable, but simply unknown.

The absence of any real understanding of how imagined, futuristic robots will

work gives futuristic thinkers a free hand to present misleading and sometimes

contradictory scenarios. Here is an example of a futuristic superintelligent machine

designed with the directive to ‘‘make all people happy (Yampolskiy 2016, p. 131)’’

proposed by Yampolskiy. Among the many alternative ways that such a machine

could ‘autonomously’ calculate to reach its goal, the author lists killing all people,

performing lobotomies, affixing permanent smiles by means of forced plastic

surgeries, a daily dose of ecstasy. According to Yampolskiy, the machine has an

infinite number of approaches to choose from, and the chosen one ‘‘may be anything

but desirable for humanity (ibid. p. 132)’’. He seems to forget to mention that, in

existing machines, choosing means computational processes that are programmed

by giving the machine instructions, and that for that choice to become something

comparable to the freedom of action that human beings have, a radical technological

breakthrough [something like Kurzweil’s singularity (Kurzweil 2005)] must occur.

Whether or not such technological advancement will be possible in the future, its

hypothetical results will have to be substantially different from AI systems of today.

Futuristic thinking has an important role to play in the development of new

technologies—in stimulating thinking about what is possible and what new

technologies might mean. We might take these AI scenarios to be cautionary tales

about how not to design AI. However, many of the descriptions of this kind are

irresponsible insofar as they hide how computational artefacts actually work and

how the workings of the hypothetical artefacts of the future are as yet unknown and,

in fact, impossible with the kind of computing available today and for the

foreseeable future.
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4 Sociotechnical Blindness

Absence of discussion of the role played by programmers and other human actors in

creating AI is another problem in current AI discourse that leads to misunder-

standing and fear. What we call sociotechnical blindness, i.e. blindness to all of the

human actors involved and all of the decisions necessary to make AI systems,

allows AI researchers to believe that AI systems got to be the way they are without

human intervention. As with confusion about autonomy, this blindness facilitates

futuristic thinking that is misleading. It entirely leaves out of the picture the fact that

to get from current AI to futuristic AI, a variety of human actors will have to make a

myriad of decisions. Human actors will have to decide what sort of AI research to

invest in, what kind of parameters to put into the instructions of programs, what kind

of hardware to develop and connect up to computers. Human actors will have to

decide what contexts to embed the artefacts in and what social arrangements to set

up to launch, monitor, and maintain the artefacts. Moreover, in order to get to a

future in which computational artefacts exhibit behaviour that might be called

‘kind’, ‘malicious’ or ‘self-preserving’, human actors will have to agree (implicitly

if not explicitly) to use language in that way. They will have to accept the use of

these terms when applied to computational entities.

4.1 (Un)Predictability

Neglecting the human actors in the development of a computational artefact makes

the artefact seem more unpredictable than it actually is. Let us consider again

Omohundro’s chess-playing killer robot, and let us compare it to the Roomba,

which is a current system that is autonomous according to our definition. Even if the

chess-playing killer robot has much more advanced and complicated programming,

if its operations are regulated by the same basic principles as the Roomba’s, our

analysis of the limitations to the unpredictability of the Roomba also apply to the

futuristic robot.

Imagine questions about the possibility of the futuristic chess-playing artefact

unpredictably killing a human. Is such an event possible? Omohundro himself asks:

why would a chess-playing robot kill the human who is trying to shut it down? His

answer is that such an act might turn out to be in accordance with its goal of

maximizing its utility function: the robot will take any possible action to be able to

play chess. This answer is wholly misleading because a chess-playing robot would

be directed at playing chess. To imagine that the chess-playing robot could do more

than make moves on a chessboard requires that we imagine the robot to have been

built with sensors and actuators that detect and operate on embodied human

behaviour. Aside from the fact that this would likely be well beyond what would be

required to play chess, if the chess playing robot did have the sensors and actuators

necessary to kill, they would have had to have been put there, that is, put into the

software (programming) and hardware of the robot.

With regard to the software we can ask: Where does the chess-playing robot’s

goal come from? Either it was provided by a human programmer or, in a futuristic
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scenario, by another machine, which, in turn, was designed either by a human or

another machine, and so on. The origin of the drive guiding the operation of the

artefact can always be traced back to the choice of a human designer. Is the designer

aware of the fact that the robot is going to play chess no matter what, even at the

cost of a human life? If so, then it would seem the designer would be irresponsible

in building particular sensors and actuators into it and then unleashing such a robot

on innocent chess players.

Yampolskiy’s futuristic example of a robot killing because it is directed at

happiness suffers from the same sociotechnical blindness. He warns that humans

might set an artefact’s goal and the artefact might try to reach it in harmful ways.

However, is it possible to have pre-established goals attained in unpredictable ways?

In other words, could a chess-playing robot become a killer robot? As already

suggested, what kind of actuators would it have to be endowed with? Would it have

a gun attached to its body? Would it have an arm with which it could grab and use a

knife? If so, would its software include instructions to control these mechanical

parts? For a robot to pull a trigger, the relevant instruction must be in the program

controlling its behaviour. Such instruction must have been written in the robot’s

memory, either directly by a programmer, or indirectly by means of machine

learning. Even if these ‘superintelligent’ machines of the future can learn at

unprecedented speeds, in order for them to act, a command must be present in their

software and the command must be connected to embodied actuators. To think

otherwise is to fall into an even greater fallacy than the autonomy confusion,

because it involves imagining that such machines not only can act the way humans

do, they can even conjure up acts out of nothing. If this is what ‘superintelligence’ is

about, then it is nothing short of magic!

By keeping in sight the human actors who make AI systems what they are, the

connection between the seeming unpredictability of artefacts and the issue of

responsibility becomes much clearer, and fallacies like the so-called ‘‘responsibility

gap’’ can be effectively countered.

4.2 Responsibility

The responsibility gap is a concept introduced by Matthias to describe a situation in

which no person can be held responsible for the consequences of the behaviour of an

artefact (Matthias 2004). Instead of depicting far-fetched futuristic scenarios,

Matthias focuses on the possible development of existing artefacts, like the AIBO

dog-shaped robot. He writes: ‘‘With a little experimentation [the AIBO] will be able

to find out that its battery life can be prolonged by galloping…the robot, while

running around the apartment, collides with a small child and injures him (ibid.

p. 177)’’. According to the author, this is an ‘‘unforeseeable’’ development for which

nobody can be justly said to be responsible. However, from the perspective of

responsibility, the same designers who programmed the robot to have the goal to

save battery power and endowed it with the capability to gallop should have added

also programmed in the goal to avoid obstacles. Matthias has hidden from view the

human actions (or inactions) that would be necessary to produce the dangerous

AIBO.
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The same ascription of responsibility can be applied to Omohundro and

Yampolskiy’s killing machines. However, the point is not to play the blame game,

especially because such scary artefacts do not exist (yet, according to these authors).

Rather, the point is that putting into the world a robot that has the capability of

harming humans is a human act, and the human actors who release such

computational artefacts will be responsible for the consequences, not the

computational artefact itself. This shifts the focus from futuristic computational

artefacts to those who design and build them and embed them in social contexts.

5 Conclusions

In this paper we began with the idea that there is an ethical issue with regard to how

AI researchers conceptualize, talk about, and present AI. We have argued that

discourse about AI leads to misunderstanding and ultimately fear of AI because of

two problems in the way AI is discussed and presented. The first problem is

confusion about autonomy and the second is blindness to the human actors and

human behaviour that are part of AI systems. We have tried to show that these

problems can be tackled by distinguishing AI computational artefacts and AI

sociotechnical systems, which include computational artefacts. When this shift in

thinking is made the nature of autonomy in AI systems can be clarified and the

human actors who are an indispensable part of AI systems can be kept in sight. Our

claim is that AI research and researchers will be better served and will provide

better public understanding of AI by framing the discourse in this way.

From this perspective, a document like the open letter issued against the

indiscriminate use of autonomous weapons (FLI 2015b) makes much more sense

than expressions of fear about the so-called uncontrollability of future AI. The letter

warns that this new kind of artefact might be extremely harmful if it ends up in the

wrong hands. This is another way of saying that we should be concerned about the

human actors (and their autonomy) who are part of AI systems. Who is deciding

which AI systems to build and put in a context? Who is deciding and how are

decisions being made about which tasks to delegate to humans and which to

machines? How are the humans that work within AI trading systems, self-driving

transportation systems, or drone systems being trained? Indeed, there are many

reasons for concern and even fear about autonomous systems, but these reasons

have to do with the human actors in AI systems and not merely the computational

artefacts in them.

References

Ahmed, A. (2014). The thistle and the drone: How America’s war on terror became a global war on

Tribal Islam. Noida: Harper Collins Publishers India.

Aidyia. (2016). Aidyia: About us. Retrieved from www.aidyia.com/company/

Amazon. (2016). Amazon Prime Air. Retrieved from www.amazon.com/primeair/

Barrat, J. (2013). Our final invention: Artificial intelligence and the end of the human era. New York City,

NY: Thomas Dunne Books.

Reframing AI Discourse 589

123

http://www.aidyia.com/company/
http://www.amazon.com/primeair/


Berkowitz, R. (2014). Drones and the question of ‘‘The Human’’. Ethics & International Affairs, 28(2),

159–169.

Bijker, W. E. (1993). Do not despair: There is life after constructivism. Science, Technology and Human

Values, 18(1), 113–138.

Bijker, W. E. (1997). Of bicycles, bakelites, and bulbs: Toward a theory of sociotechnical change.

Cambridge, MA: MIT Press.

Callon, M. (1999). Actor-network theory—The market test. The Sociological Review, 47(S1), 181–195.

Carr, N. (2014). The glass cage: Automation and us. New York City, NY: W. W. Norton & Company.

Future of Life Institute. (2015). Research priorities for robust and beneficial artificial intelligence.

Retrieved from http://futureoflife.org/ai-open-letter/

Future of Life Institute. (2015). Autonomous weapons: An open letter from AI & robotics researchers.

Retrieved from http://futureoflife.org/open-letter-autonomous-weapons/

Gaudin, S. (2015). Stephen Hawking fears robots could take over in 100 years. ComputerWorld, 14 May

2015.

Google. (2016). Google self-driving car project. Retrieved from www.google.com/selfdrivingcar/
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