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Abstract Despite intensive debates regarding action imitation and sentence imi-

tation, few studies have examined their relationship. In this paper, we argue that the

mechanism of action imitation is necessary and in some cases sufficient to describe

sentence imitation. We first develop a framework for action imitation in which key

ideas of Hurley’s shared circuits model are integrated with Wolpert et al.’s motor

selection mechanism and its extensions. We then explain how this action-based

framework clarifies sentence imitation without a language-specific faculty. Finally,

we discuss the empirical support for and philosophical significance of this

perspective.

Keywords Sensorimotor interactions · Action imitation · Sentence imitation ·

Word-referent mapping · Syntactic abstraction

Introduction

We defend the central proposal that the sensorimotor mechanism for action

imitation is necessary and in some cases sufficient to describe sentence imitation—

the human capacity of producing a more or less exact copy of an observed sentence.

More specifically, sentence imitation may involve: (i) duplicating the entire

sentence, (ii) copying the structure but changing some words, and (iii) changing

both the structure and words but retaining the general meaning of the sentence.

These different types of sentence imitation serve as important indicators of

linguistic competence among children and adults with specific language impair-

ments (Ratner and Sih 1987; Seeff-Gabriel et al. 2010; Silverman and Ratner 1997;
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Verhoeven et al. 2011) and those without impairment (Miller 1973; Nelson et al.

1973).

The human capacity for understanding and producing instrumental actions (i.e.,

intentional actions with means-end structures) is highly relevant to the ability to

understand and produce language (Byrne 2006; Garrod and Pickering 2008;

Kiverstein and Clark 2008; Wolpert et al. 2003). Thus, the extent to which the

mechanism that enables action imitation also facilitates language imitation is an

interesting question. However, despite the intensive debates regarding action

imitation and sentence imitation, relatively few reports have examined the

relationship between their underlying mechanisms.

Among the recent studies related to this issue, Over and Gattis (2010) described

verbal imitation with the intention-based account of action imitation, in which the

distributed process patterns of an utterance are recombined when the hearer detects

the speaker’s intention. Their experiment indicated that children do not correct

ungrammatical sentences (by not reproducing heard errors) until they recognize a

speaker as an intentional agent. Pulvermüller and Fadiga (2010) contended that

action and perception are functionally interdependent. Their data from transcranial

magnetic stimulation showed that sensorimotor circuits offer a cortical basis for

understanding phonemes, sentence structure, and grammar. Boza et al.’s (2011)

artificial control system emulates general sociocognitive capacities, which is an

engineering upgrade of Hurley’s (2008) shared circuits model (SCM)—a functional

model that specifies behavior-related skills in terms of dynamic sensorimotor

interactions. Tourville and Guenther (2011; see also Guenther and Vladusich 2012)

provided a nicely detailed neural network named DIVA to explain speech

acquisition and production. Likewise, Glenberg and Gallese (2012) proposed an

action-based theory of language acquisition, comprehension, and production.

Pickering and Garrod (2013; see also Garrod et al. 2014) elucidated language

comprehension and production in terms of action perception and production, in

which grasping a speaker’s words relies on the listener’s forward model. Hickok

(2014) also presented the hierarchical state feedback control (HSFC) model to

specify the architecture of speech production.

The above interdisciplinary research sheds light on different aspects of sentence

imitation. However, many significant issues remain to be investigated. Over and

Gattis (2010) insightfully identified the role of intention in the sense of sentence

imitation described in (iii) above, but they did not test the possibilities of (i) and (ii).

Pulvermüller and Fadiga’s (2010) brain imaging studies of motor activation are

important, but they have not revealed the causal links among the relevant functional

components of the mind. Boza et al.’s (2011) system does not concern a specific

human skill, and it operates primarily at Marr’s (1982) algorithmic level, which

concerns the ways in which the SCM can be implemented within various

algorithms. Hickok’s (2014) model greatly elucidated speech production, but

sentence imitation is not its focus. Finally, while their models are promising,

Tourville and Guenther (2011), Glenberg and Gallese (2012), and Pickering and

Garrod (2013) all ignored the extensive literature on the philosophy of language.

Thus, none of them have differentiated the literal meaning of a word token from a

speaker’s unconventionally implicated meaning when examining language
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comprehension and discussed conventional order and constituency when talking

about syntax.

Therefore, to complement these valuable studies, we provide a philosophical

investigation into the sense of sentence imitation described in (ii) above—copying

the structure but changing some words (hereafter simply sentence imitation). We

present a framework at the functional-computational level, in which action

comprehension and production are clarified in terms of sensorimotor interactions

(“The Framework” section). We then extend this framework to sentence imitation

and show how it handles word segmentation, syntactic abstraction, meaning
interpretation and sentence reproduction (“Sentence Imitations” section). We next

argue for the framework’s advantages and philosophical significance (“Advantages

and Empirical Support” section) and conclude that the proposed framework is

necessary and in some cases sufficient to describe sentence imitation.

The Framework

What is the relationship between action imitation and sentence imitation? Although

the overlap of action and language capacities is assumed (Hurley 2008; Pickering

and Garrod 2013), the premise of language as action is not explicitly justified. We

have argued elsewhere that conversation is literally an action because verbal

communication belongs to communicative action and hence instrumental action;

therefore, a mechanism of understanding and producing the instrumental action

Fig. 1 The overall view of the proposed framework. It contains two main components: a convertor for
transforming intention to desired motor states and a hierarchy for generating action in light of the desired
states. It may operate in action production mode (black lines) and in action comprehension mode
(information routes of the 1st method for action comprehension are marked with dotted lines and those of
the 2nd method are marked with dashed lines)
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should be applied to that of conversation (Hung 2014). The present paper advances

this view via the following argument:

1. Action imitation involves segmenting continuous (visual) flow into constituents

(e.g., movements), abstracting the sequence of the constituents, and reproducing

the observed action with variation.

2. Sentence imitation also involves segmenting continuous (auditory) flow into

constituents (e.g., words), abstracting the sequence of the constituents, and

reproducing the heard sentence with variation.

3. Empirical data show that certain motor selection models functionally describe

action imitation.

4. Therefore, these models can likely be used to functionally describe sentence

imitation as well.

Based on the above argument, our framework borrows key concepts from Hurley’s

(2008) SCM and integrates them with Wolpert et al.’s (2003) hierarchical modular
selection and identification for control (HMOSAIC) and its extensions (Haruno et al.

2003; Oztop et al. 2005). First of all, the framework contains a shared space (Fig. 1,
grey box) between perception and action. This shared space receives the actor’s

intention and sensory stimuli as input and outputs motor commands for muscle

contraction to generate actual behaviors. Within the space, there is a convertor that
transforms the actor’s intention (e.g., quenching thirst) to desired motor states (e.g.,

walk to a table, pick up the beer, and drink it)1 and a hierarchy of combined forward
and inverse models for executing the desired states.

More specifically, the convertor contains the mechanisms of control variable
processing and motor planning. The former receives the intention and sensory

stimuli as input and outputs control parameters (e.g., the distance between the beer

and the actor’s hand) to the latter. Motor planning synthesizes the parameters and

intention and then outputs desired motor states for execution (see Appendix section

“The Convertor” for the convertor’s mathematic description).

Next, the desired motor states are sent to the hierarchy to determine what motor

commands should be issued to complete the entire action of drinking the beer.

Within each combined model, numerous pairs of predictors and controllers are

working in a competitive manner. In each pair, the controller receives a desired

motor state and an actual state, and it outputs a motor command (i.e., inverse

model). The efference copy of this command is send to the paired predictor to

simulate the possible next state (i.e., forward model). Only a motor command

leading to a minimal difference between possible and actual states will be output by

each model (see Appendix section “A Combined Forward and Inverse Model” for

the mathematic description of a combined model).

These models are arranged hierarchically to enable more accurate motor control

and prediction. Wolpert et al. (2003) argued that humans can produce a number of

compensating movements to preserve the kinematics of writing across different

1 Human intention is not flat but multi-layered. According to Hurley (2001), it can be roughly divided

into nonbasic intention (the goal of an actor) and basic intention (desired means to achieve that goal).
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instruments, suggesting the existence of high-level reference signals (e.g.,

intentions) that have many ways of activating low-level controllers. Accordingly,

the framework’s high-level models receive desired states and output motor

commands in a certain sequential order (which determine the behavior of

subordinate models). The subordinate level then outputs the commands of

generating movements needed for completing the entire action (which determine

the activation of the low-level models). The low-level models then compare the

predictive state of the efference copy with the actual state to revise the next motor

command.

The hierarchy’s levels may have arbitrary depth, depending on the complexity of

a task. When Bayesian terms are used to describe this cross-model communication,

controllers at higher levels receive only posterior probabilities from models at

subordinate levels. Predictors at higher levels generate prior probabilities for models

at subordinate levels (see Appendix section “The Hierarchy of Models”).

Finally, this framework operates in the mode of not only action production but

also action comprehension. When seeing someone move a beer toward his or her

mouth, an observer’s low-level models will segment the action into constitutive

movements;2 these constituents are then sent to a higher level to determine whether

they contradict any learned sequence.3 The testing result will be sent to the highest

models to identify the desired motor states.4 If the actor’s movements are in the

observer’s repertoire of motor states, the observer’s motor planning can easily

associate estimated desired states with the actor’s possible intention through

mirroring.5 However, if the actor’s action is unfamiliar to the observer (e.g., moving

a hammer toward the mouth), a second method is needed to infer the actor’s

intention.

For example, research has shown that understanding the goal in an unfamiliar or

complicated situation largely depends on the observer’s inferential processes;

otherwise, mirroring is more important (Brass et al. 2007; Hamilton 2013).

However, how does the observer’s framework identify the actor’s intended goal by

inference? According to Oztop et al. (2005), an actor’s intention parameterizes the

motor control system to generate actions. Hence, the observer can analyze observed

actions to predict the actor’s motor parameters and subsequently the goal. In the

framework, through control variable processing, the observer receives sensory

stimuli and encodes them into observed parameters. If the observed parameters

match with the (prior) predictive parameters generated by the hierarchy, then the

2 Low-level controllers will generate commands needed to complete an action similar to the observed

one. If the paired predictions match with actual subsequent states, then these commands represent the

appropriately segmented movements of the observed action (Wolpert et al. 2003).
3 According to Haruno et al. (2003), the higher level can learn the pattern (sequence) of movements on a

probabilistic base. Please see Appendix section “Abstraction of the Sequence of Constituents”.
4 To identify the actor’s desired states Xt

*, the observer’s highest level needs to issue predictive states X̂t

that have the least mismatch with actual states Xt . This final prediction’s paired command Ut can be

described by Eq. (5) in Appendix “The Hierarchy of Models”.
5 In the debate regarding what mirror neurons mirror, there are three main hypotheses (Oztop et al.

2005): mirror neurons encode (i) the detailed low-level motor parameters of the observed action; (ii) the

higher-level motor plan; or (iii) the actor’s intention. In this paper, we presuppose view (iii).
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estimated intention of the actor can be derived from the comparison result (see

Appendix section “Control Variable Processing for Estimated Intention”). The

estimated intention is sent downward through the hierarchy for motor executing and

calibration. If the low-level commands are inhibited, then the framework enables

action comprehension. If the low-level commands are not inhibited, the observer

duplicates the actor’s action. These two methods can work both together and

independently, especially when method is impaired.

To sum up, our framework is action oriented and based on several well-

established models for action imitation. However, how is this framework extended

to sentence perception and production, and how does it explain sentence imitation?

Sentence Imitations

Sentence imitation requires a hearer to understand the speaker’s utterance before

reproducing it. To comprehend an utterance, the hearer needs to segment the speaker’s

speech flow into phonetic words and map them onto appropriate referents (Hickok and

Poeppel 2004).6 Since a word’s referent may depend on its position (e.g., indexicals)

and its relationship with other words in the sequence (e.g., anaphora), the sequential

order ofwords (i.e., syntax) should alsobeunderstood.Themeaning and arrangement of

words determine the semantic value of the entire sentence (Dever 2012). However, the

semantic properties of a sentence are not the only clue to understand the sentence.

People sometimes infer what speakers say (i.e., semantics) by grasping their intention

(i.e., pragmatics), but they sometimes infer the intention based on what they say.

Accordingly, we divide sentence imitation into followingmain explananda (Fig. 2) and

explain each:7 segmenting phoneticwords (“SegmentationofPhoneticWords” section),

abstracting the syntax (“SyntacticAbstraction” section), comprehending semantics and/
or pragmatics (“Meaning Comprehension” section), and reproducing the sentence
(“Sentence Reproduction” section).

Segmentation of Phonetic Words

First, suppose when a speaker utters “Ella saw Sue”; the utterance will be produced

as a continuous speech flow (e.g., [ɛ]-[l]-[ə]-[s]-[ɔ]-[s]-[u]). Meanwhile, the

framework of a competent hearer needs to decide how to segment the flow into

appropriate constituents (e.g., whether [ɛlə]-[sɔ]-[su] or [ɛl]-[əs]-[ɔsu] is properly

segmented). To do so, the hearer’s framework produces different motor commands

for phonation (e.g., to utter [ɛlə] or [ɛl]) at each round of segmentation. Each

command results in a prediction of the next possible state, and each prediction will

6 Hickok and Poeppel (2004) show that the brain’s speech perception is realized in two processing

streams: dorsal stream maps sound into articulation-based representation and ventral stream maps sound

into meaning, which are interfaced by the posterior region of the middle temporal gyrus.
7 For simplicity, although a hearer’s visual perception of a speaker’s lip movements might affect how the

speaker’s sound is perceived (e.g., the McGurk effect), we consider only auditory input, which by no

means indicates that the framework is not applicable to the visual processing of written sentences.
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be tested with the actual next state. If they match and if the testing result shows no

contradiction with higher models,8 then that command (e.g., the command for

producing [ɛlə]) is a properly segmented constituent (e.g., “Ella”) of the utterance.9

This testing process would be difficult if the speaker’s words are not in the hearer’s

repertoire of words. For competent hearers, however, prior linguistic knowledge

increases the accuracy of the initial prediction and hence reduces the testing time.

Nonetheless, in some phonetically ambiguous cases (e.g., “ice cream” and “I

scream”), lower-level prediction alone may be insufficient to determine the

segmentation, so it has to work with a higher-level prediction of word meaning (see

3.3) to fix this problem.

Syntactic Abstraction

Outputs from the low level are then sent to a higher level to abstract the syntax of

the utterance. Haruno et al. (2003) argued that the HMOSAIC’s high level functions

as a pattern generator with which to learn movement sequences by implementing

recurrent neural networks. We argue that the same method can be used to abstract

word sequences from continuous speech. Briefly, the higher level receives a

sequence of input [x0; x1; . . .; xt] from a subordinate level and generates a predictive

sequence [x̂1; x̂2; . . .; x̂tþ1]. If the predictive sequence matches with the next actual

sequence [x1; x2; . . .; xtþ1], then the predictive sequence is the correct one. The

testing result (responsibility signal) can be sent to an even higher level to identify

the speaker’s desired motor state (see 3.3). It can also be used to revise higher-level

Segmenting 
phonetic words

Abstracting the
sequence of words

Mapping words to 
referents (semantics)

Comprehending the
speaker’s intention 

(pragmatics)

Reproducing the sentence

Speaker’s
speech

Fig. 2 Components of sentence imitation. The big grey box indicates the hearer’s sentence
comprehension, while the small one indicates the hearer’s sentence reproduction

8 As the hearer’s perception of the number of syllables in a word is also determined by the sequential

arrangement of phonemes (Mannell et al. 2014), the low level needs to check its output with sequence

processing at a higher level.
9 To describe this process computationally, the framework activates low-level controllers 1, 2, 3,…, n
and generates commands u1t ; u

2
t ; u

3
t ; . . .; u

n
t . Each efference copy of a motor command is send to its paired

predictor to generate a prediction x̂itþ1 ¼ U wi
t; xt; ut

� �
. Each prediction is then compared with the sensory

input to generate responsibility signal kit ¼ e
� xtþ�x̂i

tj j2
�

r2

Pn

j¼1
e
� xtþ�x̂i

tj j2
�

r2
. Each signal helps a controller to revise its

motor command, and the final command of the entire framework can be generated through

ut ¼
Pn

i¼1 k
i
tu

i
t . This final motor commands is a properly segmented constituent (usually a word or

free morpheme) of the utterance.
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commands in order to regulate the behavior of models at the subordinate level

(Appendix section “Abstraction of the Sequence of Constituents”). As the sequential

order determines whether words are formed into sentences, it functions as syntax.

However, one might argue that syntax concerns not only word order but also

constituency (i.e., “the bracketing of elements (typically words) into higher-order

elements”; Evans and Levinson 2009, p. 440). Thus, a noun [apple] is a constituent

of a noun phrase [[the] [apple]], which is a constituent of a sentence [[Ella] [[saw]

[[the] [apple]]]]. Our reply is that the framework can also learn constituency. When

uttering, the speaker’s motor control system is parameterized by the speaker’s

intention, in which the syntactic conventions (e.g., constituency) of the speaker’s

speech community are also encoded. Thus, the hearer will encounter “Ella saw Sue”

more frequently than “Ella Sue saw” because English language conventions forbid

the latter. If the hearer’s framework detects sentences such as “Ella saw Sue,” “John

saw Sue,” and “Ella saw John,” then it will predict that it is highly probable that the

first element in the sequence (i.e., the subject) is changeable. Likewise, if the

framework detects “Mary loves John,” “Mary greets John,” and “Mary calls John,”

it will statistically learn that the second element (i.e., the verb) is variable as well.10

This process helps the framework to predict the replaceability of elements (words,

phrases, or clauses) and capture constituency on a probabilistic basis.

Meaning Comprehension

The framework employs two methods to understand what the speaker intended to

convey by uttering a sentence: (1) identify the meaning of the constituent words so

that the entire sentence can be understood; (2) detect the speaker’s intention by

analyzing observed motor variables.

On the one hand, the output of the syntactic abstraction (i.e., constituents with a

correct sequential order [ɛlə] → [sɔ] → [su]) can be used by the hierarchy’s highest

level to identify the actor’s desired motor states (e.g., uttering “Ella saw Sue”). This

level generates predictions of the actor’s desired motor states and calibrates them

against the next actual states. It then sends out the most likely predictions to the

convertor. In the mode of production, the convertor receives intention dt and actual

state xt, and it outputs desired state xt+1
* (Appendix section “The Convertor”).

However, in the mode of comprehension, the convertor can derive intention dt from
observed actual states and predictive desired states. When the predictive states exist

in the hearer’s repertoire, the convertor can easily associate a constituent (“Ella”)

with the referent to which the speaker intends to refer (a friend named Ella).11

Hence, the entire sentence can be understood by comprehending its constituent

words. This first method conforms to the principle of compositionality in the

philosophy of language, which indicates that the meaning of a sentence depends on

the meaning of its elements and their arrangement.

10 Recursive processing is required for constituency and is presupposed by the framework.
11 Following Hurley (2008), we also assume that the mechanism of an actor’s intended goal can be used

to identify a speaker’s intended referent. Please see Hung (2014) for a relevant discussion.
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On the other hand, Hickok and Poeppel’s (2004) experiment on autism shows that

the capacity of segmenting phonemes and that of sound-meaning mapping are double

dissociative: one can function pretty well when the other is impaired. This finding

seems to be incompatible with the conventional view that phonetic segmentation is a

prerequisite to sound-meaning mapping. How can this incompatibility be explained?

One merit of our framework is that it sorts out this incompatibility. In action

comprehension, the framework may exploit a second method to derive the actor’s

intention from control variables of the actor’s action. Likewise, processing the control

variables may facilitate the computation of the parameters of heard speech (e.g., its

tune and pressing) and nonlinguisticmotor clues (e.g., whether the speaker is pointing/

looking at an object) to infer the speaker’s intended meaning. This inference can be

implemented by Oztop et al.’s (2005) algorithm of mental state search (Appendix

section “Searching for Meaning”). Thus, if the phonetic processing in the first method

(semantics) is impaired, the frameworkmay exploit the secondmethod (pragmatics) to

infer the meaning of the speaker’s words. Conversely, only when both methods are

impaired can the hearer’s capacity of understanding the speaker’s words be hindered,

although low-level phonetic processing in the first method might remain intact. In

other words, the framework clarifies why two valuable opinions (the conventional

view and Hickok and Poeppel’s (2004) finding) are compatible.

Nonetheless, skepticsmight argue that the above account oversimplifies the dynamic

essence of meaning comprehension. At the very least, for example, Austin (1962) and

Grice (1975) have shown that speakers may intend to express something beyond what

they actually utter (i.e., implicature) and that what a speaker actually utters can be

interpreted literally or contextually (Cappelen and Lepore 2005). Thus, how does a

hearer differentiate those meanings in real time? Here, we use four examples we have

offered (Hung 2014) to show how the framework learns to distinguish them.

(i) Lexical meaning of word type: itis conventional and context-independent,

and it refers to abstract entities (e.g., “she” is a third-person singular

feminine pronoun, and “penguin” is the term for an aquatic bird living in

the southern hemisphere);

(ii) Lexical meaning of word token: it is conventional but context dependent,
and it refers to individual concretes (e.g., “she” can mean someone’s

mother or daughter, and “penguin” can refer to a species or an individual

organism);

(iii) Speaker’s conventionally implicated meaning: it is what a speaker intends

to convey beyond his conventional use of words (e.g., replying, “I am

married” to the query, “Can I have your number?” or answering, “I am

Brazilian” to the question, “Do you play soccer?”);

(iv) Speaker’s unconventionally implicated meaning: it is what a speaker

intends to convey beyond his unconventional use of words (e.g., a cleaner

says to colleagues, “Check out the massive chocolate in the toilet,” or

someone who named his boat “Penguin” says, “My Penguin is sick”).
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Here, the framework can use its combined forward and inverse model to differentiate

meanings through trial and error,12which is outlined graphically by Fig. 3. Suppose that

during training, the framework detects a speaker by using “she” to indicate a woman on

one occasion but a different woman on another occasion. On each occasion, the word

“she” is successfully mapped onto a referent in the sense of (ii). If the word has been

mapped to similar referents across a number of occasions, then the framework can fine

tune themapping to extrapolate (i) from (ii). Themappingdescribed in (ii) is taken as the

default prediction whenever the framework receives the same word on new occasions.

For example, if default predictions match both input words (e.g., “I am Brazilian”) and

other contextual clues (e.g., the speaker who says this is, in fact, Brazilian), then the

framework has made a correct prediction/confirmation of (ii). Nevertheless, default

predictions can easily fail. If a default prediction contradicts an input word, as in (iv),

then the framework must revise its predictions. The adjusted prediction, when matched

with contextual clues, correctly predicts (iv). Alternatively, if a default prediction

matches an input word but seems irrelevant with regard to the contextual clues, as in

(iii), then the frameworkmustmodify its predictions again, which, ifmatched, correctly

predict (iii). Therefore, the framework differentiates meanings (i)–(iv).13

Sentence Reproduction

Finally, the hearer’s intention of preserving the structure but changing the words (i.e.,

sentence imitation) can be input into the convertor to generate desired motor states

(e.g., uttering “Ella greets Sue”). These desired states are sent downward in the

hierarchy for motor execution. The hierarchy generates and revises motor commands

at different levels, ensuring that low-level controllers issue appropriate commands

for uttering “Ella greets Sue.” Thus, the hearer’s sentence imitation is completed.

To sum up, sentence imitation would be impossible without the above mechanisms

of segmenting words, abstracting syntax, comprehending semantics and/or pragmatics,
and reproducing the sentence. In this sense, the framework is necessary for sentence

imitation. In addition, the framework is sufficient, as it alone can achieve imitation of

simple sentences in the case discussed above. Therefore, the central proposal holds.

Advantages and Empirical Support

What qualities make the framework better than previous architectures, such as those

based on a domain-specific language faculty? What empirical support is there for

the framework? The framework’s merits are argued in terms of its philosophical

significance, compatibility, explanatory power, and simplicity.

12 Based on Eq. (2) in Appendix section “A combined Forward and Inverse Model”, we may define a

gradient learning rule of each controller, in which the desired command u�t � uit
� �

can be approximated

by using the feedback command ufb:Dait ¼ �kit
dwi

dait
u�t � uit
� � ¼ �

duit
dait

kit u�t � uit
� � ffi �

duit
dait

kitufb
13 However, when a fluent speaker intentionally utters a sentence, not all of his or her words are

necessarily consciously selected or explicitly intended. Nevertheless, this does not prevent the framework

from using the mechanism to understand the speaker’s words because the words are linked to what the

speaker would likely intend if she were aware of her word selection.
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In the debates regarding cognitive architecture, some theorists view the mind as a

central processing system that regulates input and output systems. The central

system, which usually processes symbolic representations according to formal rules,

is highly modular for various higher cognitive tasks (Sperber 2002; Cosmides and

Tooby 1992; Barrett and Kurzban 2006); for instance, there is a language faculty for

linguistic abilities (Pinker 1994; Carruthers 2006). Conversely, behavior-based

theorists hold that cognition emerges from the dynamic interaction between action,

perception, and the world (Brooks 1999; Hurley 2008). Although they can better

explain real-time and motor-related cognitive skills, owing to their rejection of a

central system (and a language faculty), it is doubtful whether they can account for

higher cognition, such as language. Moreover, because models under the labels of

“situated cognition,” “embodied cognition,” and “extended mind” also lack a

central processor and thus face a similar challenge, a solution to the behavior-based

system may provide valuable input for the solution to all of these models. This

explains why the framework is of philosophical significance.

The framework is developed from well-established models of behavior-related

cognition (Haruno et al. 2003; Hurley 2008; Oztop et al. 2005; Wolpert et al. 2003).

However, it also conforms to studies on language acquisition and processing. For

example, this framework rejects the Chomskian view that the cognition system

relies on prestored syntactical structures to handle language. Rather, its higher level

functions as a pattern generator to capture syntax on a likelihood basis. This

resembles Thompson and Newport’s (2007) view that transitional probability plays

Fig. 3 Flowchart of meaning differentiation. This flowchart shows how a hearer is able to comprehend
the meaning of words in diverse situations
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a role in the statistical learning of syntax and Clark and Lappin’s (2010)

demonstration that an artificial system with few domain-specific learning biases was

capable of extracting syntax from a stream of linguistic stimuli by using a

probabilistic learning method. Moreover, the framework is at the functional-

computational level, but the claim that action and language processing share the

same mechanism is also support by neural and cortical studies (Glenberg and

Gallese 2012; Pickering and Garrod 2013).

Explanatory power is also a merit of the framework. We have seen in 3.3 that the

framework clarifies why two seemly incompatible but valuable claims both hold

(i.e., the conventional view that that phonetic segmentation is a prerequisite to

sound-meaning mapping and Hickok and Poeppel’s (2004) finding that the capacity

of segmenting phonemes and that of sound-meaning mapping words are double

dissociative). Moreover, the framework better explains pragmatics and dynamic

motor clues that show what the speaker intends to convey by uttering a sentence.

Such explanatory power arises from the fact that the framework does not assume

classical computational theory of mind and hence avoids the globality problem of

computation that Fodor (2008) noted, i.e., classical computation is merely sensitive

to syntax, but the mind (and its language processing) is not.

Likewise, the framework is supported by pathological evidence. It implies that

the mechanism of means-end mapping is necessary to link words with meaning.

Hence, people in whom this mechanism is impaired are unlikely to have an intact

word-meaning mapping capacity. In fact, although SPLD is a heterogeneous

syndrome resulting from various causes, the deficit of meaning interpretation occurs

frequently with the deficit of instrumental action comprehension. For example,

patients with Rett syndrome do not exhibit means-end behavior beyond automatic

responses to particular stimuli (Woodyatt and Ozanne 1992), and they have

difficulty using words for functional communicative purposes. Cass et al. (2003)

found that only 18 of 84 participants with Rett syndrome reported using words and

that only six used words in meaningful ways. Likewise, a high proportion of

children with autism do not develop the skill to form and manipulate symbolic

material (Prior and Ozonoff 2007), and the acquisition of this skill is likely

associated with means-end reasoning skills.

A prediction of the framework is that since the capacity of means-end

associations is a prerequisite for the ability to form symbol-referent associations,

the former is unlikely to develop after the latter. There is no direct evidence of this

prediction yet, but it conforms to existing findings. Although infants can solve

simple means-end problems such as pulling a cloth to retrieve a toy at as early as

6 months (Willatts 1999), they do not look at the correct portrait when hearing

“Mommy” or “Daddy” until 6 months (Tincoff and Jusczyk 1999), and they can

map meaning to newly segmented words only at 17 months (Graf Estes et al. 2007).

The framework’s final merit lies in its simplicity. A model of language faculty is

input specific; thus, it requires an additional module to handle nonlinguistic input. If

two modules are responsible for different information types, then an interface for

their communication must exist. In contrast, the framework assumes neither a

language faculty nor an interface between linguistic and nonlinguistic cognitive
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components. It explains both action and sentence imitations at once. Therefore,

according to Occam’s Razor, the framework is simpler and better than those that

presuppose an extra language faculty.

Conclusions

To summarize, this paper justifies the view that a sensorimotor mechanism for

action imitation also describes sentence imitation. We first propose a framework and

show how it explains action comprehension and reproduction (with the mathematic

description of the framework supplied in Appendix). We then divide sentence

imitation into segmenting phonetic words, abstracting syntax, comprehending

meaning, and reproducing the sentence and show how the framework clarifies each

subtask individually. Finally, we provide empirical evidence in support of the

framework.

If we suppose that our proposed linking of action and language is correct, all

other things being equal, additional training in verbal skills might somewhat

advance the motor skills of bilingual people. Confirming this view, recent studies

show that bilingual children perform better than monolingual children with regard to

domain-general control skills (Kovács and Mehler 2009) and executive control of

spatial reasoning (Greenberg et al. 2013). In addition, because word learning

requires intention detection, bilinguals exhibit advantages with regard to theory of

mind (Kovács 2009).

In summary, the contribution of this framework lies in its illustration of sentence

imitation with regard to the mechanism for action imitation, which partially clarifies

the relationship between two significant human capacities. Nevertheless, because

this study focuses on proposing a descriptive framework rather than reporting

empirical results, experimental simulations, along with relevant issues not covered

in this paper, should be the focus of future studies.
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Appendix

The Convertor

The convertor receives the actor’s intention dt and actual state xt at time t, and it

outputs desired state x*t+1 at time t + 1. We use pt = f (xt, dt) and x*t+1 = g(dt, pt) to
describe the parameter generated by motor control processing and a desired motor

state generated by motor planning, where f and g are functions with inverse

relationship x�tþ1 ¼ g dt; f xt; dtð Þð Þ:
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A Combined Forward and Inverse Model

Suppose each model activates multiple predictors 1, 2, 3,…, n at t, and select among

their next state predictions x̂1tþ1; x̂
2
tþ1; x̂

3
tþ1; . . .; x̂

n
tþ1 through testing (see Fig. 3). Each

predictor receives actual feedback xt and the efference copy of motor command ut to
generate a prediction. The prediction of the i-th predictor is x̂itþ1 ¼ U wi

t; xt; ut
� �

,

where wi
t represents the parameters of the function approximator U. This predictive

next state is compared with the actual next state. If an error occurs, then the wrong

prediction is sent to a responsibility estimator to generate responsibility signal kit,
which can be calculated by using the softmax activation function.

kit ¼
e� xtþ�x̂itj j2

�
r2

Pn
j¼1 e

� xtþ�x̂itj j2=r2
ð1Þ

In Eq. (1), xt is the framework’s actual voice output, and r is a scaling constant.

The softmax activation function calculates the error signals and normalizes them

into probability values between 0 and 1. Predictors with few errors receive higher

responsibilities. Thus, responsibility signals can regulate predictor learning in a

competitive manner. Moreover, a paired controller exists for each predictor, and it

receives the desire next state xt+1
* and outputs motor commands. Suppose that the

framework activates controllers 1, 2, 3,…, n and generates u1t ; u
2
t ; u

3
t ; . . .; u

n
t . The

motor command of the i-th controllers is uit ¼ w ait; x
�
tþ1

� �
, where ait is the parameter

of a function approximator w. The summation of the motor commands generated by

controllers 1, 2, 3,…, n is represented by Eq. (2).

ut ¼
Xn
i¼1

kitu
i
t ¼

Xn
i¼1

kitw ait; x
�
tþ1

� � ð2Þ

The Hierarchy of Models

For simplicity, we describe only a two-level hierarchy, although it is extendable to

an arbitrary number of levels. Suppose that the predictor of the i-th higher-level

model receives actual state Xt and the efference copy of Ut at t, and suppose that it

outputs the approximate prediction X̂i
tþ1 without activating subordinate controllers:

X̂i
tþ1 ¼ U Wi

t ;Xt;Ut

� � ¼ P 1jWi
t ;Xt;Ut

� �
; . . .;P njWi

t ;Xt;Ut

� �� � ð3Þ

In Eq. (3), U refers to a vector-valued and nonlinear function approximator; Wi
t is

the synaptic weight of the higher-level j-th pair; Xt is the current state (posterior

probability); Ut is the higher-level command; and P jjWi
t ;Xt;Ut

� �
refers to the

posterior probability in which the j-th pair is selected under Wi
t ;Xt; and Ut.

Likewise, the i-th higher-level prediction X̂i
tþ1 is compared with actual state Xt from

the subordinate level to generate higher-level responsibility (i.e., prior probability)

kHi tð Þ via the estimator
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kHi tð Þ ¼ k̂Hi tð Þe� xt�x̂itj j2
�
r2

PN
j¼1 k̂

H
i tð Þe� xt�x̂itj j2=r2

ð4Þ

kHi tð Þ can regulate the subordinate level in a competitive manner. Moreover,

each higher-v predictor has a paired controller that receives the desired next state

Xt+1
* and current state Xt from the subordinate level as input. Xt+1

* is an abstract

representation that determines the selection and activation order of subordinate

controllers. Each higher-level controller generates commands to the subordinate

level, and the command of the i-th higher-level controller is Ui
t ¼ W Ki

t;X
�
tþ1;Xt

� �
,

where Ki
t is the parameter of a function approximatorW. Then, Ut, the summation of

(prior probability) commands for the lowest pairs, is weighted by kHi tð Þ:

Ut ¼ k̂L1 tð Þ; . . .; k̂Ln tð Þ
� �

¼
XN
i¼1

kHi tð ÞUi
t ¼

XN
i¼1

kHt tð ÞW Ki
t;X

�
tþ1;Xt

� � ð5Þ

Abstraction of the Sequence of Constituents

Suppose that the k-th higher-level model receives a sequence of actual input

[x0; x1; . . .; xt] (represented by Xt) and generates a prediction regarding a sequence of

output [x̂k1; . . .; x̂
k
t ] (represented by X̂

k
tþ1). The task of this higher level is to determine

the prediction that has the least mismatch with the next actual sequence of input.

The comparison result can be represented as Eq. (4). The responsibility signal can

be used to revise higher-level commands (see Eq. (5)), which determines the

behavior of the subordinate level. The efference copy of the commands can also be

used for further prediction (and revision). We also use a recurrent network to

describe the higher-level prediction of sequence X̂k
tþ1 ¼ f Wk

t ;Xt

� �
, in which f is a

nonlinear function that can use weights Wk
t to predict a vector of posterior

probabilities. The network dynamics can be described as:

s
d

dt
ai tð Þ ¼ �ai tð Þ þ

X
j¼1

WK
ij bj tð Þ

bi tð Þ ¼ g ai tð Þð Þ outputð Þ
Xi
t inputð Þ

�

In the abovedifferential equation,g(X) is the sigmoid functionwithderivativeg(X)(1−g
(X)), ai is the activation, and bi is the output at the i-th node. In Haruno et al.’s (2003)
simulation, their models successfully learned two sequences and determined the one

that should be reproduced under a given context, even when 5 % noise was added.

Control Variable Processing for Estimated Intention

Suppose that the highest models generate predictive control parameters

p̂1t ; p̂
2
t ; p̂

3
t ; . . .; p̂

n
t at time t. Each predictive parameter will be compared with
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actually observed parameter pt from the control variable encoding (Fig. 4). The

comparison result is represented by the responsibility signal:

kit ¼
e� ptþ�p̂itj j2

�
r2

Pn
j¼1 e

� ptþ�p̂itj j2=r2
ð6Þ

The mechanism of intention/parameter matching in control variable processing

generates simulated intention d̂1t ; d̂
2
t ; d̂

3
t ; . . .; d̂

n
t . The final estimated intention is

represented by:

dt ¼
Xn
i¼1

kitd
i
t ð7Þ

Searching for Meaning

Here, we use Oztop et al.’s (2005) algorithm of mental state search to infer the

meaning that the speaker intends to convey. To initialize the algorithm, we also set

Tk and Sk to an empty sequence (Tk = Sk = []). Tk and Sk represent sequences of

observed and mentally simulated vectors of control variables extracted under the

mental state k. Next, repeat steps (1)–(5) from speech onset to speech end.

1. Pick next possible mental state (j) (which can be thought of as an index for the

possible referent to which the speaker is referring).

2. Observe: Extract the relevant control variables based on the hypothesized

mental state (j), xij, and add them to Tj (Tj = [Tj, xij]). Here, i indicates that the
collected data were placed in ith position in the visual control variable

sequence.

3. Simulate: Mentally simulate speech with mental state j while storing the

simulated control variables xj in Sj (Sj = [x0j ; x
1
j ; . . .; x

N
j ], where N is the number

of control variables collected during observation).

4. Compare: Compute the discounted difference between Tj and Sj, where N is the

length of Tj and Sj. DN ¼ 1�cð Þ
1¼cNþ1ð Þ

PN
i¼0

xisim � x0
� �T

W xisim � xi
� �

cN�i, where xisim

Fig. 4 Control variable processing in action comprehension mode
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∈ Sj and xi ∈ Tj and W is a diagonal matrix normalizing components of xi and γ
is the discount factor.

5. If DN is smallest so far, set jmin = j.

Return: jmin (the observer infers that jmin is the actor’s intended meaning).
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Kovács, Á. M., & Mehler, J. (2009). Cognitive gains in 7-month-old bilingual infants. Proceedings of the

National Academy of Sciences, 106, 6556–6560.
Mannell, R., Cox, F., & Harrington, J. (2014). An introduction to phonetics and phonology. Macquarie

University. Retrieved 26 Sep 2015 from http://clas.mq.edu.au/speech/phonetics/index.html.

Marr, D. (1982). Vision. San Francisco, CA: W.H. Freeman.

Miller, J. F. (1973). Sentence imitation in pre-school children. Language and Speech, 16(1), 1–14.
Nelson, K. E., Carskaddon, G., & Bonvillian, J. D. (1973). Syntax acquisition: Impact of experimental

variation in adult verbal interaction with the child. Child Development, 44(3), 497–504.
Over, H., & Gattis, M. (2010). Verbal imitation is based on intention understanding. Cognitive

Development, 25(1), 46–55.
Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters.

Cognitive Brain Research, 22(2), 129–151.
Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension.

Behavioural and Brain Sciences, 36(4), 329–347.
Pinker, S. (1994). The language instinct: How the mind creates language. New York, NY: Harper Collins.

Prior, M., & Ozonoff, S. (2007). Psychological factors in autism. In F. R. Volkmar (Ed.), Autism and
pervasive developmental disorders (pp. 69–128). New York, NY: Cambridge University Press.

Pulvermüller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for

language. Nature Reviews Neuroscience, 11, 351–360.
Ratner, N. B., & Sih, C. C. (1987). Effects of gradual increases in sentence length and complexity on

children’s dysfluency. Journal of Speech and Hearing Disorders, 52(3), 278–287.
Seeff-Gabriel, B., Chiat, S., & Dodd, B. (2010). Sentence imitation as a tool in identifying expressive

morphosyntactic difficulties in children with severe speech difficulties. International Journal of
Language and Communication Disorders, 45(6), 691–702.

Silverman, S. W., & Ratner, N. B. (1997). Syntactic complexity, fluency, and accuracy of sentence

imitation in adolescents. Journal of Speech, Language, and Hearing Research, 40(1), 95–106.
Sperber, D. (2002). In defense of massive modularity. In E. Dupoux (Ed.), Language, brain and cognitive

development: Essays in honor of Jacques Mehler. Mass: MIT Press.

Thompson, S. P., & Newport, E. L. (2007). Statistical learning of syntax: The role of transitional

probability. Language Learning and Development, 3(1), 1–42.
Tincoff, R., & Jusczyk, P. W. (1999). Some beginnings of word comprehension in 6-month-olds.

Psychological Science, 10(2), 172–175.
Tourville, J. A., & Guenther, F. H. (2011). The DIVA model: A neural theory of speech acquisition and

production. Language and Cognitive Processes, 26(7), 952–981.
Verhoeven, L., Steenge, J., van Weerdenburg, M., & van Balkom, H. (2011). Assessment of second

language proficiency in bilingual children with specific language impairment: A clinical perspective.

Research in Developmental Disabilities, 32(5), 1798–1807.
Willatts, P. (1999). Development of means–end behavior in young infants: Pulling a support to retrieve a

distant object. Developmental Psychology, 35(3), 651–667.
Wolpert, D., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and

social interaction. Philosophical Transactions of the Royal Society of London B, 358(1431), 593–
602.

Woodyatt, G., & Ozanne, A. (1992). Communication abilities and Rett syndrome. Journal of Autism and
Developmental Disorders, 22(2), 155–173.

338 T.-W. Hung

123

http://clas.mq.edu.au/speech/phonetics/index.html

	How Sensorimotor Interactions Enable Sentence Imitation
	Abstract
	Introduction
	The Framework
	Sentence Imitations
	Segmentation of Phonetic Words
	Syntactic Abstraction
	Meaning Comprehension
	Sentence Reproduction

	Advantages and Empirical Support
	Conclusions
	Acknowledgments
	Appendix
	The Convertor
	A Combined Forward and Inverse Model
	The Hierarchy of Models
	Abstraction of the Sequence of Constituents
	Control Variable Processing for Estimated Intention
	Searching for Meaning

	References




