
Descartes Among the Robots

Computer Science and the Inner/Outer Distinction

Graham White

Received: 2 December 2009 / Accepted: 28 September 2010 / Published online: 9 February 2011

� Springer Science+Business Media B.V. 2011

Abstract We consider the symbol grounding problem, and apply to it philo-

sophical arguments against Cartesianism developed by Sellars and McDowell: the

problematic issue is the dichotomy between inside and outside which the definition

of a physical symbol system presupposes. Surprisingly, one can question this

dichotomy and still do symbolic computation: a detailed examination of the hard-

ware and software of serial ports shows this.

Keywords Physical symbol system � Grounding problem � Inner/outer �
Cartesianism

Introduction

This article examines what is known as the Symbol Grounding Problem: this is a

problem which arises out of the distinction between symbols—defined syntacti-

cally—and what symbols mean. The thought behind the problem seems to be this:

computers can be understood as mere symbol-manipulators. We, however, are not

pure symbol-manipulators: we use symbols in a grounded way, or, in other words,

the symbols that we use give us access to their referents. This grounding must, one

argues, be implemented in physical processes—Harnad (1990) talks of ‘‘meanings

… in our brains’’—and we would like to also implement those physical processes in

computers, or some such machines. That would mean that computers, too, had come

to have grounded symbols. The history of attempts to solve this problem has not,

however, been encouraging. The ‘‘symbol grounding problem’’, then, can be taken

to require either a description of how to give computers grounded symbols, or to

G. White (&)

School of Electronic Engineering and Computer Science, Queen Mary University of London,

London, UK

e-mail: graham@eecs.qmul.ac.uk

123

Minds & Machines (2011) 21:179–202

DOI 10.1007/s11023-011-9232-4

show either that it is, for some reason or other, impossible, or that it is not necessary.

But first, we need to do some analysis. One of the main results of this analysis will

be that, although the symbol grounding problem is defined in terms of symbols and

meaning, in order for the problem to be non-trivial one has to specify the context in

which symbols are defined and in which meaning has to be represented: and this

specification of a context will require one to make a distinction between the inside

and outside of a device (in practical terms, either inside and outside of a person’s

head, or inside and outside of a computer’s box).

We will also have to deal with a related inside/outside distinction, this time a

metaphorical one. This one (which I will talk about as intrinsic/extrinsic) will be

between capacities which an thing has because of its nature (because, for example,

the thing is an organism and its evolutionary history has endowed it with them), as

opposed to capacities which it has been given by some other agent (because, for

example, the thing is an artefact, such as a computer, and the capacities have been

given to it by a designer or a computer programmer). We will be comparing the use

of symbols by humans and computers: symbol use is, of course, intrinsic for humans

but extrinsic for computers. Nevertheless, we will argue that one can learn a great

deal about human symbol use by looking at symbol use by computers, and we will

conclude with a rather speculative story about how computer-like devices might

possibly end up with symbols which were not merely grounded, but intrinsically
grounded.

There are two caveats to make about this whole argument. Firstly, I am not

attempting to say definitively what the symbol grounding problem is: there is a good

deal of disagreement in the cognitive science community about how precisely the

problem should be defined (for example, the two referees of an earlier version of

this paper disagreed subtly about this question). I am attempting to do the following:

to make precise a formulation of the symbol grounding problem which has, at least,

some textual support, and to analyse the problem, thus formulated, in such a way as

to end up with a position which is—or so I hope—interesting for the present state of

cognitive science.

Secondly, one of the reasons why the symbol grounding problem is as hard to

define as it is is because there are underlying conceptual issues which are,

themselves, difficult to resolve: one of these is Descartes’ distinction between mind

and body (and hence the motivation for the title of this piece). So some of the

analysis will take some time to perform, for which I can only ask the reader’s

indulgence.

The Nature of Symbols: Syntax

There are two key technical concepts in setting up the Symbol Grounding Problem:

the idea of characterising symbols syntactically, and the idea of the meaning of a

symbol. These are problematic concepts, and neither of them is very well explained

in Harnad’s descriptions of the grounding problem: we will use later work,

principally Boden (1988) and Millikan (1984) to give some analytical precision to

them.

180 G. White

123

In this section we examine the syntactic characterisation of symbols. We start

with the syntactic part of Harnad’s characterisation of symbol systems: a physical

symbol system is

1. ‘‘a set of arbitrary ‘physical tokens’ scratches on paper, holes on a tape, events

in a digital computer, etc. that are

2. manipulated on the basis of ‘explicit rules’ that are

3. likewise physical tokens and strings of tokens. The rule-governed symbol-token

manipulation is based

4. purely on the shape of the symbol tokens (not their their ‘meaning’), i.e., it is

purely syntactic, and consists of

5. ‘rulefully combining’ and recombining symbol tokens. There are

6. primitive atomic symbol tokens and

7. composite symbol-token strings …’’(Harnad 1990)

We leave out the last half of the last item: it concerns semantics, and we will

discuss it later. Item 3 is hard to understand, because it is vulnerable to an obvious

regress argument of the sort given in Carroll (1895). However, it is clearly pointing

towards some sort of cognitive penetrability (Boden 1988, p. 39); we can probably

satisfy it by saying that there should be rules of two sorts, explicit and implicit rules,

that the explicit rules should be given by strings of physical tokens, and that there

should be, in some sense, ‘‘enough’’ explicit rules. It is not easy to say what it is to

have enough explicit rules, but one of the things that we probably need is that the

explicit rules should form the basis for a reasonable metatheory.

What this characterisation is aiming at is a specification of the nature of symbols:

it is analogous to what Boden describes as ‘‘functional architecture’’, that is, ‘‘those

properties of the hardware of a computational system which make possible, and

constrain, the information-processing going on’’ (Boden 1988, p. 38), and it is also

similar to the characterisation of physical symbol systems in Newell and Simon

(1976). So this part of Harnad’s project is unproblematic.

The Nature of Symbols: Semantics

Harnad then adds to the above conditions

The entire system and all its parts—the atomic tokens, the composite tokens,

the syntactic manipulations both actual and possible and the rules—are all

8. ‘semantically interpretable’ The syntax can be systematically assigned a

meaning (e.g., as standing for objects, as describing states of affairs). (Harnad

1990)

Although this condition seems intuitively clear, it is quite hard to make formal

sense of. Here are some of the difficulties.

Firstly, it cannot just mean that the symbols of the syntax can be assigned

semantic values in a compositional way. This assignment of semantic values is,

admittedly, what we think of as semantics when we are talking about formal logic:

but, in formal logic, any consistent theory can be assigned semantic values in that

Descartes Among the Robots 181

123

sense. Furthermore, for the purposes of symbolic logic, the semantic values so

assigned could well be constructed out of the syntax itself: in fact, the standard

proof of the completeness theorem for first order logic (which is what guarantees

that suitable theories have semantics) simply constructs a model out of equivalence

classes of terms in the language, using what is known as the Lindenbaum

construction. Harnad, quite reasonably, wants more than that: he wants ‘‘objects’’ or

‘‘states of affairs’’ or something of the sort, rather than semantic values constructed

mathematically from the syntax. Formal logic, however, is blind to the difference

between semantic values which live ‘‘in the world’’ and those which are constructed

out of mere syntax, so an analysis of the idea of groundedness cannot simply use the

machinery of formal logic.1

It looks, then, as if the point of Harnad’s definition is that we are investigating a

particular language, and that, for this language, we already have a model, whose
semantic values live in the world of spatio-temporal particulars, and that the

meaning demanded by the grounding problem should be the appropriate semantic

value in that model. It is easy to imagine how this might work for singular terms

which denote actually existing individuals, but other parts of our language might be

more problematic: what, for example, corresponds to predicates? Propositions?

Disjunctive propositions? Negative existential propositions? Now the possibility of

providing answers to these questions is philosophically very contested: see, for

example, the literature on truthmakers referred to by Glanzberg (2009). Even if one

could successfully resolve these issues, it seems a bit of a detour: and, in any case,

philosophical approaches which give a broad array of real-world semantic values

generally do so by using exotic entities such as states of affairs, or universals, and

these entities (even granted that they are part of the real world) would give very

little concrete help to those in the cognitive science trade. Computers have no

sensors for such objects.

What Would Grounding Be?

There are two more conceptual matters to be cleared up: the first has to do with the

characterisation of possible solutions. It is so far quite unclear what a solution to the

grounding problem would be in concrete terms. There is, one would think, some

difference between ungrounded processes of syntactic manipulation and fully

grounded cognitive processes. We would like to think that the difference might lie

in extra knowledge, or information, or some other cognitive resource. So what

would that extra item be?

It is tempting to think that the grounding resource might lie in something like the

semantics of first-order logic, or, at least, some variant of it which assigned real-

world referents to suitable syntactic items. But even this seems quite problematic

when we attempt to cash it out. As Putnam writes,

1 Cf. (Millikan 1984, p. 87): ‘‘The specialness that turns a mathematical mapping function into a

representation-related relation in a given case must have to be some kind of special status that this

function has in the real, the natural, or the causal order rather than the logical order.’’

182 G. White

123

If concepts are particulars (‘signs’), then any concept we might have of the

relation between a concept and another object is another sign. But it is

unintelligible … how the sort of relation the metaphysical realist envisages as

holding between a sign and its object can be singled out either by holding up

the sign itself, thus or by holding up yet another sign, thus

(Putnam, 1978, pp. 126f.); cf. (Millikan, 1984, p. 330)

That is: if we try to give an answer to the grounding problem in the usual way of

logical semantics, then at least some of the symbols in the explanation (the ones

which pick out the semantic values, and maybe also the metatheoretic symbols like

‘refers’) have to be grounded for the answer to say something: but, if they have to be

grounded, then we are faced with a regress. So we need yet another ingredient in our

solution of the grounding problem: an account of the logical form of the desired

answer.

Grounding and Natural Kinds

The final issue has to do with how we can rule out trivial solutions of the problem.

Here is a candidate trivial solution.

Example 1 Suppose we have an instance of the symbol grounding problem, so that

we have symbols, and these symbols have semantics in the real world. Then define

another instance of the problem: replace each symbol by the ordered pair of it and its

real-world referent. The syntactic relations between symbols will now simply be

given by the old relations on the first components of the ordered pairs: the grounding

relation will be given by the projection onto the second component. What this shows

us is that, firstly, there are symbol systems which have a trivial grounding problem,

and, secondly, that each symbol system with a real-world semantics has a grounded

system, isomorphic to it qua purely syntactic system, which is trivially grounded. But

this, of course, will not do: the grounding problem arises because we are given symbol

systems—for example, those which constitute computers and robots—for which we

would very much like to have groundings, but for which we do not have groundings.

But this example raises another problem. As we shall argue, Harnad views

syntactic systems as having natures which are constituted entirely by the syntactic

relations between the symbols; he says, of his definition of a symbol system, that

Descartes Among the Robots 183

123

[n]one of these criteria is arbitrary, and, as far as I can tell, if you weaken

them, you lose the grip on what looks like a natural category and you sever the

links with the formal theory of computation, leaving a sense of ‘‘symbolic’’

that is merely unexplicated metaphor (and probably differs from speaker to

speaker). Hence it is only this formal sense of ‘‘symbolic’’ and ‘‘symbol

system’’ that will be considered in this discussion of the grounding of symbol

systems. (Harnad 1990)

Note here that the semantics of a symbol system is not supposed to be part of its

definition: all that is necessary is that the system should have some semantics or

another, and whether it has such a semantics or other only depends on its syntax. So,

if we implement the same system again, but in such a way that the syntactic

interactions are preserved, then the two symbol systems will be type-identical.

But our example shows that groundedness is not a property of syntactic systems

solely qua syntactic systems, because the two systems in the example were, qua
syntactic systems, isomorphic. Thus, we seem to be concerned with implementa-

tions of syntactic systems in particular causal contexts.

A possible line might be this: maybe a solution to the grounding problem should

consist in a description of distinct sorts of processes, which yield or implement

grounded cognition, and which take place in brains but not in computers, or at least

not so far? We have in mind something like Adams and Aizawa’s position:

We maintain that there is something distinctive about the brain. There are

natural kinds of processes that happen to occur only within the brain. These

processes differ from neurophysiological processes in so far as they consist of

… causal operations on nonderived representations …. These processes also

differ, we suppose, from typical processes that extend into the world from

brains and from processes found in typical machines. In other words, we

hypothesise that there are within the brain natural laws that are not identical to

physical, chemical, biological or neurophysiological covering laws spanning

the cranium. (Adams and Aizawa 2009, p. 80)

Now these authors are here talking of the difference between cognitive and non-

cognitive processes tout court, whereas we are inquiring into the difference between

grounded and non-grounded cognitive processes. However, the possibility still

stands in our case: it is not inconceivable that a solution to the grounding problem

could take the form that they sketch. And this at least provides a possible alternative

to the first-order-model-theory type of answer: what we should aim at is a

description of grounded cognitive processes.

Possible Answers

We have, then, seen that there are serious questions of logical form which we have

to solve before solving the grounding problem. We can now survey a number of

approaches which have, implicitly or implicitly, made their minds up about some of

these questions.

184 G. White

123

Newell and Simon

Newell and Simon conjectured that ‘‘A physical symbol system has the necessary

and sufficient means for general intelligent action’’ (Newell and Simon 1976,

p. 116), and, in doing so, they relied on their own definition of a physical symbol

system. Newell and Simon’s general project is quite familiar, but the details of their

definition of a physical symbol system are, on the other hand, less well known, and

it is worth discussing them here in some detail: they are emphatically not the same

as Harnad’s definitions, and, because of this, they are an excellent antidote to the

tendency to regard Harnad’s definitions as obvious and, hence, unavoidable.

Firstly, physical symbol systems are systematic: symbols—or, rather, symbol

tokens—have types, and these types are capable of being multiply instantiated.

These symbol tokens can be components of larger entities, namely expressions.

Newell and Simon do not specify the componenthood relation very precisely: they

merely say that the symbol tokens making up an expression should be ‘‘related in

some physical way (such as one token being next to another)’’ (Newell and Simon

1976, p. 116).

Secondly, physical symbol systems are physical. They are physical not merely in

the sense that they are collections of physically embodied syntax, but physical in the

sense that a physical symbol system incorporates, by its definition, a causal

component: ‘‘the system also contains a collection of processes that operate on

expressions to produce other expressions: processes of creation, modification,

reproduction and destruction’’. (Newell and Simon 1976, p. 116)

This concludes their definition of a physical symbol system. On this basis, they

make two further definitions (Newell and Simon 1976, p. 116):

Designation An expression designates an object if, given the expression, the

system can either affect the object itself or behave in ways dependent on the

object

Interpretation The system can interpret an expression if the expression

designates a process and if, given the expression, the system can carry out the

process

Finally, they list five requirements which physical symbol systems should satisfy:

of these, it is the fourth which will concern us:

Expressions are stable; once created they will continue to exist until explicitly

modified or deleted. (Newell and Simon 1976, p. 116)

These definitions, although they are well motivated by Newell and Simon’s work,

are somewhat at odds with mainstream philosophy: for example, their notion of

designation is entirely causal—one should contrast here (Floridi and Taddeo 2005),

‘‘[u]sually, the symbols constituting a symbolic system neither resemble nor are

causally linked to their corresponding meanings’’—and their notion of interpretation

seems to be at home in a rather extreme pragmatism, according to which a subjects’

grasp of the denotation of an expression can only be manifested by actions on the

Descartes Among the Robots 185

123

part of that subject which affect the object designated. It is a sort of action-directed

version of what are known as causal theories of content (Adams and Aizawa 2010).

Because of these definitions, it is not entirely obvious that the symbol grounding

problem even arises for Newell and Simon. Designation and interpretation are

defined in causal terms, so that, if a symbol has a designation, it is causally related

to what it designates, and, if it has an intpretation, it designates a process which it

can carry out: and these conditions look very like grounding. There is no room, in

Newell and Simon’s framework, for the sort of slack between semantic relations,

such as are given by the model theory of first order logic, and the more full-

bloodedly causal relations which are what a solution to the symbol grounding

problem should provide.

Newell and Simon: Normativity

As well as Newell and Simon’s causal definitions of semantic concepts, there are

other, more technical, issues at work here, which are illuminatingly revealed by

their requirement that expressions should be stable. It is doubtful whether this is

compatible with physics: what it is saying is that an expression will—unless it is

acted on by the processes of modification or deletion which are explicitly given with

the physical symbol system in question—last for ever. So it is ruling out cosmic ray

impacts, power failures, disk head crashes, spillages of coffee over equipment, and

also quantum mechanical tunnelling. (It is the last of these which makes unwanted

deletion eventually inevitable, rather than simply unfortunate.) All of these will

cause particular symbol instances not to exist, and none of these (except for

extremely eccentrically defined physical symbol systems) is a designated process of

explicit modification or deletion.

Newell and Simon, it would seem, are tacitly defining physical systems, not as

particular types of physical objects, but as particular types of mechanisms. Unlike

physical objects, which are described merely by physical constituency and causal

relations, mechanisms allow a distinction between intact and broken states, and also

between normal and abnormal evolutions of those states.2 Consequently, their

definitions are to be read, not as applying to all causal processes applying to symbol

tokens, but only to normal processes.

Similar restrictions apply to their definition of designation: a symbol, according

to their definition, designates an object if it can affect that object. But, if executing a

certain command on a laptop is so computationally intensive that it causes a laptop

to overheat and thus burns the user’s legs, and does so robustly and reliably, this

should not mean that the command designates the user’s legs: consequently, if we

are to define a designation relation in this way, we must have a notion of non-

deviant causal chains linking symbols to what they represent. Again, this notion is

2 We use the term mechanism in a rather loose sense: it will also include biological organisms, for which

these distinctions are also available, and for which we can find a developed theory in (Millikan 1984). On

the other hand, Newell and Simon do not seem to have functionalism in mind, although they do speak, in

a rather unspecified way, of the interpretations being determined by the ‘‘mutual relation’’ of symbol

tokens. We shall, accordingly, not insist on functionalism at this stage.

186 G. White

123

not given to us merely by the physical concept of causality, but is part of our

everyday concept of mechanism.

This can be illuminatingly connected with recent work in the philosophy of mind.

Sellars writes, of the concept of knowing, that to describe a mental episode as an

episode of knowing is ‘‘not [to] give an empirical description of that episode … [but

to place] it in the logical space of reasons, of justifying or being able to justify what

one says’’. (Sellars 1997, §36) In the same way, when we apply concepts such as

Newell and Simon’s ‘designation’ to episodes in the physical history of the matter

contained in a particular spatial region, we are not describing this region and the

matter contained in it merely in physical terms: we are regarding it as a mechanism,

and thereby placing it in a particular logical space. We will, in the course of this

article, make this concept of a mechanism more precise: what we should notice here

is that this new explanatory framework brings with it a normative dimension. Causal

processes of the mechanism can be normal, or they can be abnormal: states of the

mechanism can be normal, or defective.

Millikan

Millikan (1984) has an evolutionarily grounded naturalistic account of linguistic

communication that can, from our perspective, be regarded as filling in some of the

gaps in Newell and Simon’s account. There is a rather intricate series of definitions,

which we can summarise as follows.

Firstly, her definitions are functional and evolutionary: the mechanisms involved

in, for example, language are possessed by organisms because they perform certain

functions (that is, the performance of these functions gave certain advantages to

ancestors of an organism, and because of this the inheritance of mechanisms

performing these functions has become evolutionarily established) (Millikan 1984,

pp. 28ff) Such functions are called proper functions (the official definition is rather

complex because, for example, functions are typically exercised by organs, whereas

evolution proceeds on the level of organisms, so one has to allow for organs having

proper functions because of the evolutionary advantage enjoyed by the organisms

that possess organs with those functions).

Secondly, it is important for language that certain functions are not merely

performed, but performed in a standard way (we must use roughly the same

linguistic symbols as our audience, for example): this leads to a definition of

stabilising and standardising proper functions, which are functions which are not

merely inherited but inherited in such a way that the mechanisms of inheritance

ensure that they are normally performed in a standard way (Millikan 1984, p. 31).

Thirdly, she allows for the fact that functions cause other functions, and that,

more generally, functions stand in a complex web of causal and explanatory

relations, and thus defines what she calls a focussed proper function. Notice first that

some functions are disjunctive, that is, a mechanism may perform one function on

one occasion and another function on another occasion. A focussed proper function

is, roughly speaking, the most remote non-disjunctive function that a mechanism

performs (Millikan 1984, p. 36): thus, for example, if we are looking for ‘‘the’’

proper function of the linguistic device of the imperative mood, we look for

Descartes Among the Robots 187

123

some characteristic contribution made by the imperative mood that can be

understood as useful to both speaker and hearer. Or, if there are many such

functions …, we look for a focussed function. (Millikan 1984, p. 56)

We should note, however, that Millikan does admit that ‘‘focussed proper function

is a somewhat vague term’’ (Millikan 1984, p. 35).

On this basis, Millikan can describe the proper functions of a number of linguistic

devices: for example, ‘‘the focussed stabilising function of the indicative mood is …
the production of a true belief’’ (Millikan 1984, p. 59), and denotative and

referential terms ‘‘function properly when they precipitate acts of identification of

the variants in the world to which they correspond’’ (Millikan 1984, p. 71).

We should note one final thing. We can, using these concepts, give a relation

between some mental items—such as concepts—and their referents; the process is

complex, and is described in (Millikan 1984, Ch. 6). But these relations are

generally not fully present to consciousness: as Millikan says, ‘‘intentionality is

grounded in external natural relations’’. (Millikan 1984, p. 93) That is, the relation is

constituted by things in the world (in Millikan’s case, a very large quantity of things

in the world, including the evolutionary history of the organisms in question):

consequently, there is no reason to expect introspection to deliver the final truth

about this relation. And Millikan gives examples (Millikan 1984, Ch. 8) which show

that this theoretical possibility can easily obtain.

Where does this get us? There are, of course, modifications to be made to the

account so far if we want to apply it to computers: these are things which have been

designed and manufactured, rather than evolved. Nevertheless, we can talk, in

analogous terms, of the proper functions of artefacts such as computers, and this

introduces a normative dimension into our analysis: in Millikan’s terms, we have a

distinction between ‘‘what is Normal or proper’’ and ‘‘what is merely actual’’

(Millikan 1984, p. 86). So we can solve some of the puzzles we found with Newell

and Simon: for example, the case of a computation heating the user’s legs could be

dealt with by arguing that the heating (although it may be very reliable, or indeed

necessarily, produced by a computation of a certain sort, was nevertheless not a

proper function of the computer, whose proper function was to execute compu-

tations, and, in context, was to execute that computation).

So Millikan’s account seems to have certain advantages: it is naturalistic, it is

grounded (and fairly plausibly grounded) in the theory of evolution, and it is

considerably more subtle than Newell and Simon’s. Millikan refers, in terms

reminiscent of Sellars, to her position as an ‘‘attack upon ‘the given’’’ (Millikan

1984, p. 92), and this seems very apposite.

However, Millikan’s solution rules out at least some candidate solutions to the

grounding problem: it is incompatible with solutions which rely on characteristics of

mental contents, or of mental processes, to solve the problem. And it is still

susceptible to our previous worry that, maybe, it solves the grounding problem too

easily: if, as she argues (Millikan 1984, p. 93), Millikan’s symbols essentially

involve their entire evolutionary history, then they necessarily have enough of a

casual context to be grounded anyway.

188 G. White

123

Clark

Clark (2008, 2001) has written extensively on the physical limits of the mind, on

thought and embodiment, and on cognitive science. His work is richly textured and

complex: we will, for clarity, confine ourselves to single example of his, from

(Clark 2001, Ch. 7).

He considers a centrifugal governer for a steam engine: this is a mechanical

device which, by using appropriate feedback, ensures that a steam engine runs at

constant speed. He claims, following (van Gelder 1995), that

constitutes a control system that is noncomputational, nonrepresentational, and

that simply cries out for dynamic analysis and understanding. In particular,

only a dynamic analysis can explain the complex, yet effective, relationship

that is obtained between the arm angle and the engine speed. (Clark 2001,

p. 127)

The moral of this example and others like it is, claims Clark, that

body and world matter [to the mind] not simply because they provide an arena

for useful action and a sensitive perceptual front-end, but because neural,

bodily, and environmental elements are intimately intermingled courtesy of

processes of reciprocal causation that cris-cross intuitive boundaries. … [T]he

traditional tools of computational and representational analysis cannot do

justice to such a complex interactive process, and … the mathematical and

topological resources of dynamic systems are to be preferred. (Clark 2001,

p. 128)

In other words, there is no symbol grounding problem for systems such as these

because there are, properly speaking, no symbols: there is only a dynamical system,

which can only be described qua dynamical system in a context which encompasses

both the steam engine and the control mechanism. In particular, one cannot dissect it

in such a way as to reveal any symbols with isolated syntactic natures. This is a

position with some history, particularly in robotics: for example, Brooks (1990,

1991) argues that, for agents which directly experience, and interact with, the

outside world (embodied, situated agents in his terminology), all that is necessary

for grounding are appropriate sensorimotor couplings, rather than explicit repre-

sentations grounded in some way. Brooks (1991) calls this the physical grounding
hypothesis: it relies on causal conceptions which are very similar to those of Newell

and Simon.

There are also similar positions in the philosophy of mind: in this area there has

been a sustained critique of the dichotomy between entities inside, and outside, of

the mind; McDowell (1998) has a critique, based on Sellars, of the Cartesian idea

that the inhabitants of the inner realm (thoughts, sense data, and such) have natures

which can be defined solely in terms of the relations which such entities have to

each other. Such critiques have recently attracted a great deal of attention in the

philosophical community (Taylor 2002; McCulloch 2002): those with longer

memories will, of course, remember the phenomenological tradition (Merleau-

Ponty 1945).

Descartes Among the Robots 189

123

Assessment

The Nature of Symbols

Many of the fault lines in the discussion above are to do with the nature of mental or

computational contents. Here we use the term ‘nature’ in the strong sense: that is,

mental and computational contents are supposed to belong to some sort of natural

kind, and their nature consists of their essential properties qua instances of that kind.

We use the term ‘mental or computational contents’—‘contents’ for short—to mean

whatever mental or computational entities are supposed to play a role in

computation or mental life: the term ‘symbols’ is question-begging, since Clark,

for example, more or less denies their existence in a large number of interesting

cases.

Thus, Harnad—and many others—think that mental contents are, by nature,

members of syntactic physical systems, located inside computational devices:

Millikan, by contrast, thinks that the nature of mental contents is to be naturally

evolved self-propagating and self-standarding mechanisms located in organisms.

Clark, on the other hand, thinks that mental contents are components of dynamical

systems, but they are not necessarily located inside organisms.

There is, then, clearly, a spectrum of views, depending on what sort of properties

make up the nature of mental contents. If one follows Harnad and other

functionalists, then mental contents are specified by syntactic properties (suitably

instantiated): if, on the other hand, one follows Millikan, then they are specified by

their role in the evolutionary propagation of organisms. In Harnad’s case, what is

difficult to recover is the intentionality of mental contents: in Millikan’s case, then

intentionality is (relatively) easy, since (roughly speaking) the properties of mental

contents which are propagated by evolution are their intentional properties.

Intrinsic and Extrinsic

There is another issue at work, however. What Harnad is trying to achieve is to

show how a syntactic system can be a grounded physical symbol system: that is, a

symbol system which has, as it were, its ‘‘own semantics’’. As Ziemke (1997) puts

it, the function and internal mechanism of the artefactual agent should ‘‘be made

intrinsic to the artefact itself’’ (Ziemke 1997, p. 87), or, in Harnad’s words,

How can the semantic interpretation of a formal symbol system be made

intrinsic to the system, rather than just parasitic on the meanings in our heads?

How can the meanings of the meaningless symbol tokens, manipulated solely

on the basis of their (arbitrary) shapes, be grounded in anything but other

meaningless symbols? (Harnad 1990)

Thus, what Harnad wants is an explanation of how symbol systems, qua symbol

systems, can also be grounded. Similarly, one of the main tasks in Millikan’s theory

is to show how mental contents, qua evolutionary propagated mechanisms, can also

have syntactic properties. So for both of these authors, the nature of their symbols

gives a notion of what is intrinsic to that symbol system and what is extrinsic: and

190 G. White

123

their notions of grounding (Harnad’s notion of the grounding that his symbols don’t

have but should, and Millikan’s notion of the grounding that her symbols do have)

ground the symbols in the system by circumstances intrinsic to that system. And, as

Example 3 shows, we have to get the right notion of intrinsic: the symbols in this

problematic example cheated by including their referents as well as their symbolic

components, and thus making grounding too easy. The symbols in question were

defined purely by their syntactic interaction, and their referents were, from this point

of view, not intrinsic: this arbitrary inclusion of non-intrinsic items seems to be what

makes this example suspect.

So there seem to be two key analytical issues at work here. One is the conception

of the nature of symbols that our various authors work with; the other is whether

there is a distinction between intrinsic and extrinsic, and, if so, how it is to be made.

The answers to these questions determine the various positions of our authors on the

symbol grounding problem.

Practical Computers

We now turn to the analysis of how these problems look practically, in computer

science. Computers are systems which (in some respects) we know very well: we

have designed and constructed them, and we have also designed the software which

runs on them and the programming languages in which such software is written.

Philosophical work on these themes in the philosophy of mind is necessarily written

in ignorance of the underlying physical systems: we simply do not know enough

about how brains work. Computer science gives us a substantial body of knowledge

which we can, if we wish, bring to bear on problems like this, and this can result in a

certain amount of illumination, not just for the philosophy of computer science, but

also, if we are lucky, for the philosophy of mind.

It is worth remarking here on a characteristic of Newell and Simon’s approach:

they insist that it is an empirical conjecture. By this, they do not mean that the

enquiry is to be conducted using the methods of the physical sciences: rather, that it

should be conducted by observing the practice of computer programmers and other

symbol system constructors and manipulators. This is an approach which has a great

deal to commend it: as we argue in (White 2004), the structure of programming

languages is a sort of mirror-image of the structure of human languages, and the

same probably obtains between the philosophy of mind and corresponding areas in

the philosophy of computer science.

This approach will illuminate both of the analytical issues which we found in our

discussion of the symbol grounding problem. It will illuminate the distinction

between intrinsic and extrinsic, because we know a good deal of the physical

process that happen in computers and how those processes issue in computation. It

will also illuminate the nature of symbols, because, according to our position in

(White 2004), symbols in computer programming languages have natures which are

given by the semantics of those languages: for many languages, such a semantics is

actually written down in a formal language specification. So we will actually have a

supply of symbol systems with interesting properties.

Descartes Among the Robots 191

123

Since we are interested in the difference between intrinsic and extrinsic, our main

example will be that of a serial port (Lawyer 2008). This is one of the ways in which a

computer is connected to the outside world: it will allow us to examine the relation

between the inside and outside of a computer. It is a comparatively old piece of

hardware: many modern computers do not have them (their place has been taken by

USB ports). However, serial ports exhibit the phenomena that we will be concerned

with, while still being relatively simple (although nevertheless much more complex

than one would expect). More modern systems would be more baroque and would

require more—and significantly more impenetrable—explanation.

Serial Ports

A serial port links the exterior and the interior of a computer (at least in the naive

geometrical sense of ‘inside’ and ‘outside’: it is a piece of hardware located inside

the computer’s box and protruding slightly outside of it, and by means of which the

computer can be connected to external devices). Modems used to be connected to

computers using them, as did printers and mice. Signals can thus be transmitted to,

and received from, external devices. (We are here, in order to avoid begging any

conceptual questions, using language which is as physical as possible).

There is, however, another view of serial ports: that of the programmer or of the

user. If a program uses devices connected over a serial port, then a programmer must

write code which interacts with that device using the serial port. The code will use

primitives in some programming language or other, and the logical form of those

primitives will give another, more phenomenological, view of what serial ports do.

This language—or at least the documentation explaining the programming

primitives—will use terms like ‘inside’ or ‘outside’, or terms (like, for example,

‘transmit’ and ‘receive’), which presuppose some sort of inside/outside distinction.

The physicalist, hardware-oriented inside/outside distinction will, in general, differ

from the programmer’s ‘‘phenomenological’’ inside/outside distinction: and this

difference will drive the argument of this paper. To put this in the form of a question: is

a serial port merely a physical entity, or does it play a more conceptually loaded role?

To echo Sellars, what logical space do our programming concepts put it in?

The Hardware

A serial port appears on the outside of a computer as a socket, usually with nine

pins. It is, as the name implies, serial—that is, data travels along the connection in

individual bits, one after the other. (The fact that there are nine pins in the socket

does not affect this: only one pair of pins, and the wires connected to them, carry

data. The others are control pins.)

Behind the socket lies a chip (or, in modern hardware, part of another chip) called

a UART.3 The UART performs some functions that are necessary for any

connection between the interior of a computer (within which data travels along a

3 Universal Asynchronous Receiver-Transmitter: see Lawyer (2008, §1.6, §19)

192 G. White

123

bus, with up to 128 bits in parallel) and a serial connection: data arriving on the

internal bus is serialised, that is, transmitted one bit after another, and it is

transmitted using a waveform optimised to be proof against the vicissitudes of

propagation along a wire open to the external world. The UART does this

unattended: but it also communicates with sender and receiver (that is, the central

processing unit of the computer and the external device, or vice versa) to ensure that

these pieces of hardware are ready to transmit or receive.

But the UART also performs another function, which is not analytically necessary

for the task described above. It performs buffering: that is, it accumulates data before

notifying more central components that it has received it, and only performs such

notification when the buffer is full (for communications in the other direction the same

thing happens, mutatis mutandis: it notifies the CPU when it has transmitted data). It

does this because notifying the CPU is an expensive operation—that is, takes a long

time for the CPU to deal with it, by comparison with the its normal operations—and so

it is important that it should not happen too often.

So, we could argue, buffering improves performance, and the more buffering one

does—that is, the larger the capacity of the buffer—the greater the gain is. However,

the UART only buffers at most sixteen bits at a time. Why should this be? Well, the

UART has a dual responsibility—both to the CPU and to the external device—and

the external device may not always be capable of handling the data sent to it (it may,

for example, be a modem transmitting over an unreliable line, and external

conditions may be bad). So the external device must be capable of turning off the

flow when necessary: if it is to be capable of doing this, then the UART must not

cache all too much data, because whatever it caches it transmits.

As well as communicating with the external device, the UART must communicate

with the CPU of its host computer, either to tell the CPU that it is ready to send data, or

that it has stopped sending data, or that it has received data: it does this by sending the

CPU signals, called interrupts. Dealing with interrupts is costly: it takes a

disproportionate amount of CPU time compared with the CPU’s normal operations.

So, computers generally set up a fairly large buffer (8 kilobytes or so) in main

memory, and use this to communicate with the serial port. The CPU’s dealings with

the serial port will then happen comparatively infrequently, and will be, as it were, by

proxy: all the CPU will do is to fill and empty the large buffer in main memory, and the

UART—or other pieces of hardware—will see to it that the main memory buffer is

appropriately emptied and filled, respectively. (Lawyer 2008, §3.3)

On the other end of the connection there is a similar setup. Most devices which

are attached to a serial port will themselves perform some buffering, and so, when

data is transmitted, there will be a fairly complex pattern of interaction involving the

movement of data between these three buffers (the one in the remote device, the one

in the UART, and the one in main memory), together with the interchange of control

symbols between all three devices. (Lawyer 2008, §4.6)

Programming the Hardware

Before we talk about the programmers’ interface to the serial port, we should clarify

a few issues to do with programming in general. Firstly, programming is done in a

Descartes Among the Robots 193

123

particular language: either low-level languages, such as assembler or C, or high-

level languages such as Java. Secondly, a programming language is generally

specified by a semantics (White 2004), in the sense of ‘semantics’ used by computer

scientists: that is, we should have some more or less abstract definition of the

internal state of a computer, and, for each of the primitives of the language we

should describe what its effect is on the state of the computer that it is being

executed on. Such a semantics, then, interprets the primitives of the computer

language as (somewhat abstract) actions on the internal state (abstractly conceived)

of the computer. And the difference between low-level and high-level computer

languages lies, by and large, in the degree of abstraction that is applied: a high-level

language like Java will allow only talk of data structures and operations on them,

whereas C, a lower-level language, allows, in addition, talk of memory addresses

(abstractly conceived) and regions of memory (again, abstractly conceived). But

there are aspects of the hardware which even C allows no access to: for example, the

CPU will copy data from memory into what are called registers in the CPU

(Wikipedia 2009a), and will operate on the contents of those registers rather than

data in memory: C allows no access to this, but instead treats all operations as if

they operated directly on data in memory. And even assembly code—the

supposedly lowest level of coding—is still somewhat abstract: it is what is called

relocatable (Wikipedia 2009b)—that is, it should be capable of functioning without

regard to the area in memory in which it and its data are located—and,

consequently, it operates with abstract representations of memory addresses rather

than memory addresses themselves. So, when we talk about the structure of

computer languages, we are always talking about some abstract representation of

the hardware of a computer.

We need to distinguish this computer scientists’ semantics from the real-world

semantics which Harnad wishes to be the target of the symbol grounding problem:

so, from now on, we will describe the computer scientists’ semantics as formal
semantics, whereas real-world semantics will be referred to simply as semantics.

Formal semantics, in the sense in which we will be using it, talks about the relation

between symbols in a computer language and their implementations, and, to this

extent, what it talks about is the nature of those symbols.

Serial ports, then, can be programmed in a variety of styles, ranging from very

low-level to high-level. The low level techniques, although they can be quite

elaborate, can also be very simple: one finds out where in main memory the large

buffer is located, and writes directly to it (Various Authors 2009, §5). A low-level

program will, generally, be considerably more elaborate than this (it will involve

such things as interrupt handling), but what it will concretely do is write to the main

memory buffer for the serial port. So, for such a program, the external context

begins with the main memory buffer: once the program has placed its data there, it

is no longer its responsibility.

The high-level interface, on the other hand, is much more abstract. The usual

approach to input and output in general (not merely to or from serial ports) is based

on six operations (open, read, write, close, seek, ioctl) (Comer 2005, p. 267). Read

and write are fairly self-explanatory: open and close prepare a device for reading

and shut it down. Seek (not available for all devices) moves to a new location on the

194 G. White

123

device, whereas ioctl carries out miscellaneous control functions (in the case of a

modem connected to a serial port, for example, it may change the connection speed

of the modem).

What is noticeable about the high-level interface is that (as well as being very

abstract) is that these commands tend to apply distally, that is, to the device which is

attached to a computer, rather than applying to acts of transmission through the

proximal end of a link to that device. This is not entirely accidental: most

transmission between computers and external devices involves some sort of flow

control and buffering at both ends, so that, if one is opening or closing a link to a

device, then coordinated action at both ends of the link is necessary (even though

the coordinated action may be initiated from the computer). Consequently, even

apparently simple acts of transmission may be surprisingly complex, and may

involve checks and acknowledgements in both directions. So a high-level

programming interface to these processes will have semantics that take in both

the computer and the device that it is connected to.

This means that the boundary between the computer and the outside world is

surprisingly fluid. The low-level programmer will view the outside world as

beginning in the main memory buffer, because, once data is placed there, it will be

handled by processes which are, strictly speaking, no longer under the control of the

cpu. On the other hand, the high level programmer will have a viewpoint that

encompasses both the computer and the external device: high level programs will

initiate actions whose semantics, and whose success and failure conditions, will

involve not merely the state of the computer but also the external device. This is

reflected in the structure of the programming constructs used: for example, high

level programming languages typically have methods for reporting error conditions,

and these error conditions—usually known as exceptions4—will typically be

distinguished between those which occur locally and those which occur remotely.5

The exception mechanism in languages like Java is interesting for several

reasons. Firstly, there are explicit mechanisms for dealing with these error

conditions, and they are explicitly given a semantics. That is, if an error occurs,

there are recovery mechanisms, and these mechanisms undo all of the changes made

by the action which caused the error to occur, except those—such as input and

output—which have had an effect on the outside world which cannot be undone.

Implicitly, then, these recovery mechanisms are committed to an internal/external

distinction, but one defined in terms of the ability to undo changes rather than in

terms of the interior and exterior of a device.

Secondly, exceptions introduce an element of normativity into the language:

actions can either succeed or fail, that is, they can terminate without causing an

4 Pedantically speaking, one should point out that Java actually divides what we have called exceptions

into three subsets: Exceptions, Errors, and RuntimeExceptions. Errors are those which are so serious that

there is no point in trying to recover from them: Exceptions and RuntimeExceptions are as we have

described (but differ in whether the provision of code to handle them is mandatory or not).
5 For example, the classes in java which report input-output errors (namely, the subclasses of

java.io.IOException) include classes such as MalformedURLException, which typically arises locally, as

well as RemoteException, which is, of course, remote, as well as ProtocolException, which is something

arising out of the interaction between local and remote machines.

Descartes Among the Robots 195

123

exception or they can cause an exception. Exceptions are typically caused by events

over which the programmer has no control (and which hence are outside the

intrinsic context, defined in the agent-based way). Such events are the usual

misfortunes which can occur in the tussle between the external world and

computers: network connections being physically severed or falling a victim to

congestion, hard disc failures, unexpected user behaviour, and so on.

Assessment

Let us now consider this from the point of view of the nature of symbols. Low level

languages has a formal semantics which refers to purely internal states of the

machine: memory locations and their contents. The nature of these symbols, then,

can be specified in terms of internal configurations of the machine and their

relations to each other.

But, precisely because of this, the formal semantics of these languages can be

profoundly unilluminating. For example, consider writing data to a serial port. In a

low level programming language, as we have seen, we can do this by writing data to

a particular location in memory. So we have a low level instruction (writing data to

memory) whose real-world semantics is quite different from its overt form: and the

correspondence between overt form and real-world semantics could only be

recovered by using contextual data. This contextual data could not be recovered

from the instruction itself, but only from the previous instructions of the program,

details of the operating system, and so on; without this data, it would be impossible

to distinguish the meaning of this instruction from the meaning of other instructions,

such as those which changed the value of variables.

By contrast, high level languages have symbols which are more finely

differentiated, which can express notions such as input and output, and which

have notions of success or failure which are appropriate for such operations. The

formal semantics of high level languages specifies this behaviour, so these symbols

have a nature which depends, not just on the relations between the symbols and

other symbols inside the host machine, but also on the relation between the host

machine and remote devices. To this extent, then, the nature of the symbols in high

level languages is not purely syntactic, where ‘syntactic’ is here construed in terms

of relations between symbols inside the host machine.

The concept of what is purely syntactic depends, as we have seen, on a notion of

what is intrinsic and what is extrinsic to a particular device. Just so here: low level

languages can be construed as syntactic with respect to the device contained inside

the case of the computer that they are implemented on (or, rather, with respect to a

particular idealisation of the the device in question). High level languages can still

be construed as syntactic, but with regard to an idealised device which may be larger

in geographical extent than merely the inside of the computer’s case: it may in

general involve external devices and the network connecting them.

We can, of course, talk about the implementation of high-level languages from

the point of view of what happens in the interior of the host computer. But we do so

at a price: there are notions of success or failure which can be expressed using the

symbols of high level languages, but whose formal properties cannot be predicted

196 G. White

123

using merely relations between symbols which inhabit that computer. We can make

these symbols purely syntactic, but only if we talk about idealised machines with a

larger geographical extent. The relation between the low-level and the high-level

view involves an increase in the expressive power of the languages involved: the

high level languages can talk about concepts of success or failure which, in general,

involve remote devices as well as the host computer.

Cartesianism and the Nature of Symbols

We have now reached territory which looks very like the Cartesian conception of

mind: we have symbols, we have internal or external domains with respect to which

those symbols are defined, and we want to know how those symbols are related to

the external domains. McDowell (1998) has an account of the genesis of this

Cartesian conception of the mind: there is, as we shall see, there is a good deal of

mutual illumination to be derived from comparing the two Cartesianisms—a

Cartesianism of mind and a Cartesianism of machines—with each other.

McDowell writes, of what might have motivated Descartes, that

[i]t seems scarcely more than common sense that a science of the way that

organisms relate to their environment should look for states of the organisms

whose intrinsic nature can be described independently of the environment; this

would allow explanations of the presence of such states in terms of the

environment’s impact, and explanations of interventions in the world in terms

of the causal influence of such states, to fit into a kind of explanation whose

enormous power to make the world intelligible was becoming clear with the

rise of modern science. (McDowell 1998, §6)

This has, as a consequence, that the intrinsic nature of states of the organism, and,

in particular, of mental states is a matter of their relation to each other: we can

describe this without any mention of their relation to the external world. The

relation between mental states and the world can then be dealt with after the

essential nature of those states has been elucidated. (McDowell 1998, §8)

Now the idea of decomposing the world and analysing the parts separately is,

clearly, attractive, and attractive for good reasons, and so this sort of conception has

been as important in computer science as it has been in the philosophy of mind: the

vital role that modularity has played in such things as programming language design

testifies to that. However, what this purely methodological principle does not licence

is the idea that there should be one single, fixed boundary between inside and outside:

computer science has a variety of sorts of theory, engineering has a variety of design

principles, and all of these might draw their boundaries slightly differently from each

other. The motives for drawing these sorts of boundaries are, by and large, pragmatic:

one draws boundaries where they are most convenient for one’s purposes.6

6 Still less, of course, are we licensed to suppose that there should be some sort of metaphysical

distinction between things on either side of the boundary: there is less temptation to do that now than in

Descartes’ time, but attempts are still made.

Descartes Among the Robots 197

123

As McDowell puts it, ‘‘[w]e are compelled to picture the inner and outer realms as

interpenetrating’’ (McDowell 1998, §5).

These considerations become especially pertinent if one is tempted to believe that

the nature of symbols is exhausted by their relations with other objects on the inside,

and that grounding these symbols will involve setting up relations between these

symbols and external objects, while leaving the nature of the symbols unchanged.

Now, as we have seen, the practice of serial port programming gives us two levels—

the low level and the high level—with the latter being more grounded than the

former. But the symbols are different in both cases, and there is no easy

correspondence from one to the other.

And thinking of symbols as the inscriptions on the tape of a Turing machine,

merely on its own, no help. Each level of abstraction will describe the physical

workings of the computer in terms of some mathematical model of a computational

device (which, maybe following some further coding, one could represent as a

Turing machine, but merely the idea of a Turing machine is profoundly

unilluminating about the nature of the symbols in question).

Furthermore, we have seen that there are high-level languages, such as Java,

whose formal semantics is more closely aligned with their real-world semantics than

is the case for low-level languages (this is, after all, what makes them high-level

languages). So, in particular, the formal semantics of such a Java program could not

be recovered, instruction by instruction, from a corresponding program in a low-

level language.7 Consequently, if we construct Turing machines to reflect the

symbol manipulation which is going on in both languages, there will be no state by

state, symbol by symbol correspondence between them.

Spontaneity and Receptivity

There is, however, a very large difference between computers and minds, and it is

this. First some terminology. McDowell follows Sellars in rejecting the Cartesian

architecture of epistemology: namely, the Cartesian idea that there was a category of

data, which was internal and unproblematically given, and out of which our

knowledge was to be reconstructed. If one rejects this, one should be able to say

how the theory of knowledge might be otherwise structured.

McDowell’s candidate for an alternative structure is based on the Kantian

distinction between spontaneity and receptivity. We may picture a reasoning subject

engaged in trying to make sense of the world: there will be episodes in which the

world impinges on the subject (those are episodes of receptivity), and there will be

episodes in which the subject can engage in free reasoning (those are episodes of

spontaneity). (McDowell 1996); cf. Stroud (2002) Using this distinction, one can

hope to build a theory of knowledge which does not use a category of internal,

uproblematically given items of knowledge. This contrast, unlike the Cartesian one,

seems more adapted to a conception in which inner and outer interpenetrate: the

7 Contextually defined mappings in both directions are, of course, possible, and there is software to do it:

compilers translate from high-level language to assembly code, and decompilers do the reverse (not

always very successfuly).

198 G. White

123

distinction is not set up in purely geometrical terms, but is defined causally, so that it

can still apply to a world in which the boundary between inner and outer fluctuates.

However, the scope of free reasoning, in McDowell’s terms, is much larger than

ours: it involves concept building, critical assessment of one’s own reasoning, and

the like. Computers as we understand them can hardly do any of this: they are not

reflective in the Kantian sense which McDowell has in mind. And the ascent from

low-level to high-level languages, significant though it is, is something which is

performed by humans (computer science theorists, language designers, and the like).

Computers, for their own part, still have something which is recognisably like a

distinction between spontaneity and receptivity: this comes about because we can

distinguish, among the causal processes in our computer, between those which

proceed normally and those which proceed abnormally, and because, in addition, we

have programming language constructs (namely exceptions) which are concerned

with detecting abnormal termination and recovering from it. So we do genuinely

have a related set of concepts (and one which is quite similar to Taylor’s account of

coping in (Taylor 2002), which is based on (Heidegger 1979)).

This world—the conceptual world of the computer programmer—is not, then, a

world of bare symbols: and this, in turn, gives rise to problems for the symbol

grounding problem. We shall turn to those problems in the next section.

Conclusions

Let us start with an obvious question: how do we know that it is possible to solve the

symbol grounding problem? The history of even theoretical attacks on the Symbol

Grounding Problem is not encouraging (Floridi and Taddeo 2005), and, as many

commentators—for example, Ziemke (1997)—have pointed out, it is not obvious

that this enterprise should succeed. A key difficulty is that we are supposed to have

items which are capable of being defined purely in terms of their relations to each

other (their intrinsic) relations, as Ziemke describes them), but which are also

capable of bearing semantic relations to the external world. As McCulloch puts it,

the ‘‘real problem’’ with supposing that we could have a symbol system defined

solely by its syntax ‘‘comes from supposing that world-directed thinking can exist

whether or not it has a world of the appropriate type to be directed at’’. (McCulloch

2002, p. 126) And, once we grant that, we are tempted to identify the realm of such

states with an inner world,

an autonomous realm, transparent to the introspective awareness of its subject;

the access of subjectivity to the rest of the world becomes correspondingly

problematic, in a way that has familiar manifestations in the mainstream of

post-Cartesian epistemology. (McDowell 1998, §4)

One could, of course, draw pessimistic conclusions from this remarkable

prefiguring of Harnad’s enterprise: the history of philosophical thought since

Descartes hardly gives one grounds for optimism. However, this pessimism only

seems inevitable if one buys into the Cartesian enterprise: if one does not, then the

position might not be so hopeless.

Descartes Among the Robots 199

123

Let us start with the connectionist move which Harnad and others start with

(Harnad 1990 2003; Floridi and Taddeo 2005): given an autonomous agent with

sensors, one starts by applying, for example, a neural network to the sensor inputs

and detecting invariant features of that input: one then defines symbols to denote

these. These symbols should then denote features of the external world.

There are problems here: how one defines suitable criteria for invariance, how

one defines the architecture for the neural net without question-begging semantic

commitment, and many others (Floridi and Taddeo 2005). However, supposing that

one can do so, we should notice that such symbols are grounded in a twofold sense:

firstly, because they denote features of the outside world, and secondly, because

they depend on the features of the outside world which was the training input for the

neural network. Both directions of grounding are necessary, and it should be a

property of a well-designed and trained neural net that, given suitable inputs, it will

detect features which are appropriately similar to the features that it was trained on.

But, if we have such a thing, it will have interesting semantics: it will stand for

‘‘things like these’’, where ‘‘these’’ is a demonstrative standing for the training data.

So we have an internal symbol that depends, causally, on features of the external

world: as McDowell argues, symbols like these are semantically possible, but

definitely not Cartesian. (McDowell 1998, §3) Their nature cannot be defined solely

by their relations to other inhabitants of the inner world, but must involve their link

to the exterior. In our terms, these symbols are not merely syntactic (where ‘syntax’,

here, is defined with respect to the interior of the computer).

Before considering how an autonomous agent can actually set up such neural

networks, let us consider the place of action in this picture. We are assuming that the

agent has actuators of some sort: supposing that it can perform actions, then it is

natural to suppose that it may try to develop a way of judging the success or failure

of actions. This could start from quite easy judgements (for example, the success of

an eating action could be estimated by the effect on feeling hungry, and then the

effect of hunting or gathering actions could be judged by the effect on the

subsequent eating actions). Bringing action into the picture has a number of

consequences: one is that it allows the agent to calibrate perception against action

by evaluating the success or failure of perception-dependent action, and it allows it

to develop motion-independent percepts by finding features of the environment

which do not vary when it moves about (thus possibly allowing a solution to the

problem of finding criteria for invariance). Another, though, is this: if the agent is to

do this sort of thing explicitly, then it needs to represent its own actions by means of

symbols, and, if it is to be able to represent success or failure, it needs to be able to

have means of designating the success or failure of particular actions. Now

representing actions means, in linguistic terms, having verbs in one’s language, and

representing success or failure of actions means having adverbs. So we already have

a complexly structured language, and much of the structure comes from the idea of

the success or failure of actions: this is an idea which does not seem to carry with it

much of an anthropocentric bias. Note also that many of these judgements can be

made about actions identified demonstratively, and that such judgements will, again,

be internal symbols dependent on external events: they are, again, not definable

solely in terms of their relations to other internal symbols.

200 G. White

123

Note that this sort of construction is not vulnerable to Putnam’s objection above:

we are not checking that a symbol correctly refers by first finding its referent and

then checking that the reference relation actually applies to the pair of symbol and

referent. Rather, we have notions of success or failure which have been developed

by experience, and which applied to perception and to action. And, provided that

these notions of success or failure were correct, we could argue that perceptions or

actions, which were judged to be successful by internal, autonomously developed

criteria, were grounded.

It would also be a notion of grounding which was actually in accordance with the

phenomenology of our perceptions, or, at least, of mine: I am aware of external

objects, I can make judgements of the veridicality of this awareness, based on

internal criteria, but, on the other hand, I am not aware of symbols inside my brain. I

cannot, for example, directly refer to my hippocampus, except by pointing at a brain

scan. And grounding, or not, would not be a matter of the symbols inhabiting my

head: it would be a matter of the process by which I deployed and developed those

symbols and of the judgements of veridicality which I had thus learned to make.

None of this rather glibly formulated chain of hypotheses is intended to deny the

severe difficulties, both experimental and mathematical, involved in constructing

neural nets (or whatever one uses) that actually do fulfil the roles that are here

sketched out. But what it does show is that the merely conceptual problems which

are raised by Harnad’s symbol grounding problem may well have a solution, and

that this solution involves dealing with the Cartesianism involved in their

formulation.

There is a final remark, which is this. Many critiques of Harnad—for example,

Ziemke (1997)—diagnose the problem to lie in Harnad’s cognitivist assumptions,

and seek the remedy in some non-cognitivist paradigm (for example, in what

Ziemke calls ‘‘enactivism’’). Now this is as may be, and Ziemke’s enactivism may

well have a great deal to offer. However, our analysis seems to show that the

problem with Harnad does not like with cognitivism per se, but, rather, with a

particular form of cognitivism, namely with a cognitivism which tries to find an

unproblematic, transparent inner realm of symbols: other cognitivist assumptions

may well be more realistic and offer a greater chance of success in this sort of

enterprise.

References

Adams, F., & Aizawa, K. (2009). Why the mind is still in the head. In P. Robbins & M. Aydede (Eds.),

The Cambridge handbook of situated cognition, Chap 5 (pp. 78–95). Cambridge: Cambridge

University Press.

Adams, F., & Aizawa, K. (2010). Causal theories of mental content. In E. N. Zalta (Ed.), The Stanford
encyclopedia of philosophy (Spring 2010 ed.). http://plato.stanford.edu/archives/spr2010/entries/

content-causal/.

Boden, M. A. (1988). Computer models of mind. Cambridge: Cambridge University Press.

Brooks, R. (1990). Elephants don’t play chess. Robotics and Autonomous Systems, 6, 3–15.

Brooks, R. (1991). Intelligence without representation. Artificial Intelligence Journal, 47, 139–159.

Carroll, L. (1895). What the tortoise said to Achilles. Mind 4, 278–80.

Descartes Among the Robots 201

123

http://plato.stanford.edu/archives/spr2010/entries/content-causal/
http://plato.stanford.edu/archives/spr2010/entries/content-causal/

Clark, A. (2001). Mindware: An introduction to the philosophy of cognitive science. New York: Oxford

University Press.

Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. Oxford: Oxford

University Press.

Comer, D. E. (2005). Essentials of computer architecture. Upper Saddle River, NJ: Pearson Prentice Hall.

Floridi, L., & Taddeo, M. (2005). Solving the symbol grounding problem: A critical review of fifteen

years of research. Journal of Experimental and Theoretical Artificial Intelligence, 17(4), 419–445.

Glanzberg, M. (2009). Truth. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2009

ed.). http://plato.stanford.edu/archives/spr2009/entries/truth/.

Harnad, S. (1990). The symbol grounding problem. Physica, D42, 335–346. http://cogprints.org/3106/.

Harnad, S. (2003). Symbol-grounding problem. Encyclopedia of Cognitive Science, LXVII(4),

http://cogprints.org/3018/.

Heidegger, M. (1979). Sein und Zeit (15th ed.). Tuebingen: Max Niemeyer.

Lawyer, D. S. (2008). The serial howto. http://tldp.org/HOWTO/Serial-HOWTO.html, available online at

The Linux Documentation Project.

McCulloch, G. (2002). Phenomenological externalism. In Smith (pp. 123–139).

McDowell, J. (1996). Mind and world. Cambridge, MA: Harvard University Press.

McDowell, J. (1998). Singular thought and the extent of inner space. In Meaning, knowledge and reality
(pp. 228–259). Cambridge, MA: Harvard University Press. Originally published in (1986) P. Pettit

& J. McDowell (Eds.), Subject, thought and context. Oxford: Clarendon.

Merleau-Ponty, M. (1945). Phénoménologie de la Perception. Paris: Gallimard.

Millikan, R. G. (1984). Language, thought and other biological categories. Cambridge, MA: MIT Press.

Newell, A., & Simon, H. A. (1976). Computer science as empirical enquiry: Symbols and search.

Communications of the ACM, 19(3), 1975 ACM Turing Award Lecture.

Putnam, H. (1978). Meaning and the moral sciences. London: Routledge.

Sellars W. (1956) Empiricism and the philosophy of mind. In H. Feigl & M. Scriven (Eds.), Minnesota
studies in the philosophy of science (Vol. 1, pp. 253–329). Minneapolis: University of Minnesota

Press

Sellars, W. (1997). Empiricism and the philosophy of mind. Cambridge, MA: Harvard University Press.

Reprint of Sellars (1956).

Smith, N. H. (Ed.). (2002). Reading McDowell: On mind and world. London: Routledge.

Stroud, B. (2002). Sense-experience and the grounding of thought. In Smith (pp. 79–91).

Taylor, C. (2002). Foundationalism and the inner-outer distinction. In Smith (pp. 106–119).

van Gelder, T. (1995). What might computation be, if not cognition? Journal of Philosophy, XCII(7),

343–381.

Various Authors. (2009). Serial programming. Wikibooks, http://en.wikibooks.org/wiki/Programming:

Serial_Data_Communications

White, G. G. (2004). The philosophy of programming languages. In L. Floridi (Ed.), The Blackwell guide
to the philosophy of computing and information (pp. 237–247). Oxford: Blackwell.

Wikipedia. (2009a). Processor register—Wikipedia, the free encyclopedia. http://en.wikipedia.org/

w/index.php?title=Processor_register&oldid=329987020, [Online; accessed 28-December-2009].

Wikipedia. (2009b). Relocation (computer science)—Wikipedia, the free encyclopedia. http://en.wiki

pedia.org/w/index.php?title=Relocation_(computer_science&oldid=328774935), [Online; accessed

28-December-2009].

Ziemke, T. (1997). Rethinking grounding. In A. Riegler & M. Peschl (Eds.), Does representation need
reality? (pp. 87–94). Vienna: Austrian Society for Cognitive Science. Proceedings of New Trends in

Cognitive Science (NTCS 97): ASoCs Technical Report 91–01.

202 G. White

123

http://plato.stanford.edu/archives/spr2009/entries/truth/
http://cogprints.org/3106/
http://cogprints.org/3018/
http://tldp.org/HOWTO/Serial-HOWTO.html
http://en.wikibooks.org/wiki/Programming:Serial_Data_Communications
http://en.wikibooks.org/wiki/Programming:Serial_Data_Communications
http://en.wikipedia.org/w/index.php?title=Processor_register&oldid=329987020
http://en.wikipedia.org/w/index.php?title=Processor_register&oldid=329987020
http://en.wikipedia.org/w/index.php?title=Relocation_(computer_science&oldid=328774935
http://en.wikipedia.org/w/index.php?title=Relocation_(computer_science&oldid=328774935

	Descartes Among the Robots
	Computer Science and the Inner/Outer Distinction
	Abstract
	Introduction
	The Nature of Symbols: Syntax
	The Nature of Symbols: Semantics
	What Would Grounding Be?
	Grounding and Natural Kinds

	Possible Answers
	Newell and Simon
	Newell and Simon: Normativity

	Millikan
	Clark
	Assessment
	The Nature of Symbols
	Intrinsic and Extrinsic

	Practical Computers
	Serial Ports

	The Hardware
	Programming the Hardware
	Assessment

	Cartesianism and the Nature of Symbols
	Spontaneity and Receptivity

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

