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Abstract Several authors have hailed intuition as one of the defining features of

expertise. In particular, while disagreeing on almost anything that touches on human

cognition and artificial intelligence, Hubert Dreyfus and Herbert Simon agreed on

this point. However, the highly influential theories of intuition they proposed dif-

fered in major ways, especially with respect to the role given to search and as to

whether intuition is holistic or analytic. Both theories suffer from empirical

weaknesses. In this paper, we show how, with some additions, a recent theory of

expert memory (the template theory) offers a coherent and wide-ranging explana-

tion of intuition in expert behaviour. It is shown that the theory accounts for the key

features of intuition: it explains the rapid onset of intuition and its perceptual nature,

provides mechanisms for learning, incorporates processes showing how perception

is linked to action and emotion, and how experts capture the entirety of a situation.

In doing so, the new theory addresses the issues problematic for Dreyfus’s and

Simon’s theories. Implications for research and practice are discussed.

Keywords Chunking � Consciousness � Decision making � Emotions �
Expertise � Intuition � Memory � Pattern recognition � Template

One of the hallmarks of expertise is the speed and ease with which experts can

recognize the key features of a situation, a phenomenon often called intuition.1 For

example, a radiologist can diagnose a disease nearly instantaneously, and a chess
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1 In line with the literature, we use intuition for the rapid understanding shown by individuals, typically

experts, when they face a problem, and insight for the sudden discovery of a solution after a protracted

and unsuccessful search. While this article focuses on intuition, several of the theories we discuss have

been applied to explain insight as well.
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grandmaster can literally ‘see’ the good move straight away. With routine problems,

the decision will be correct most of the time. This phenomenon has attracted wide

attention in the literature, which has been dominated by two main theories. On the

one side, authors such as Hubert Dreyfus (Dreyfus 1972; Dreyfus and Dreyfus 1988)

have argued that intuition is a signature of the holistic processing of the brain and

the mind.2 On the other side, authors such as Herbert Simon (Chase and Simon

1973; Simon 1989) have proposed that simple mechanisms, based on pattern

recognition, are sufficient for explaining intuition. In spite of these differences, it is

important to note that Dreyfus and Simon agreed on many aspects of intuition: its

speed, its fluidity, the fact that it takes a large amount of practice for a novice to

reach expert level and thus show intuitive behaviour, and the fact that perceptual

processes lie at the core of intuition. This level of agreement is rather ironic—and

often ignored in the literature—given that these two scholars were at the centre of a

bitter dispute as to whether artificial intelligence (AI) was myth or reality, the use of

symbols in human cognition, and the importance of heuristics in decision making.

The goal of this article is to evaluate these two theories empirically and then to

present a new theory of intuition that removes their limitations. We first present the

empirical evidence supporting the psychological reality of the concept of intuition,

then we discuss Dreyfus’s and Simon’s theories in detail. The identification of the

strengths and weaknesses of these two theories leads to the presentation of a new

theory of intuition based on the template theory of expertise (Gobet and Simon

1996c, 2000). The final section highlights how the new theory addresses the

deficiencies of the earlier theories.

Empirical Evidence Supporting the Concept of Intuition

A fair amount of the evidence in the literature on intuition is anecdotal, and it is

important to establish the experimental validity of the phenomenon before engaging

in a discussion of the merits of the candidate theories. Without any doubt, the

domain providing most experimental data is chess.

There is good evidence that strong players search the problem space selectively,

homing in rapidly on the important moves. Klein et al. (1995) found that the first

move generated by players was usually good enough, a result that has been recently

replicated in handball (Johnson and Raab 2003). Campitelli and Gobet (2004) found

that a chess grandmaster was able to correctly solve nearly 50% of problem

situations within 10 s, compared to less than 5% for a weak club player. It has also

been shown that performance in speed chess, where there is only about 5 s per move

on average, shares 81% of the variance with the ratings based on standard chess,

where players have about 180 s per move on average (Burns 2004). The skill effect

with briefly presented chess positions (Chase and Simon 1973; De Groot 1965) can

also be seen as a signature of intuition, in particular when one considers that masters

show nearly perfect recall with a presentation as short as 5 s and that, even though

2 As the authors made a number of corrections, we use the 1988 edition of Mind over Machine rather than

the 1986 edition.
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their task is to memorise the position, they also understand its meaning fairly well at

the end of the presentation. In addition, eye-movement recordings during the brief

presentation of the position show that masters typically look rapidly at the key

elements (De Groot and Gobet 1996).

Empirical support for the role of intuition exists in other domains as well.

Thinking-aloud protocols with physics experts (Larkin et al. 1980) show that they

can solve routine problems in a matter of seconds. Fire-fighter commanders facing

high-risk situations use intuition to make decisions under considerable time pressure

(Klein 1998). In many cases, they quickly adopt the appropriate behaviour without

even considering alternatives. A similar type of behaviour has been reported by

other experts, including battle commanders (Klein 1998), managers (Patton 2003),

and intensive-care nurses (Benner et al. 1996; Crandall and Getchell-Reiter 1993).

Dreyfus’s Theory of Expertise and Intuition

In his book What Computers Can’t Do Dreyfus (1972) developed a wide-ranging

critique of the symbolic approach in AI, as exemplified for example by the work of

Newell and Simon (1972); Minsky (1977), and McCarthy (1968). One key argument

in Dreyfus’s critique was that human cognition is embodied, situated, and

experiential. Another key argument was that, in contradiction to classical AI and

cognitive psychology, humans do not use symbols, but perceive their environment

and make decisions using holistic processes. In particular, holistic processing is

characteristic of individuals that are experts in a domain. Dreyfus, a philosopher,

was more interested in providing a critique of AI based on phenomenology than in

offering a detailed scientific theory, and did not develop his view in great detail, nor

support it by experimental data.

In another influential book, Dreyfus (Dreyfus and Dreyfus 1988) elaborated this

view and described the steps that the aspiring expert has to go through (see also

Dreyfus and Dreyfus 1984; Dreyfus and Dreyfus 1996, 2005). In the ‘‘novice’’

stage, information is acquired through instruction; domain-specific facts, features,

and actions are learnt. Rules are ‘‘context-free,’’ in the sense that their application

ignores what else is happening in the environment. The ‘‘advanced beginner’’ stage

is attained only after substantial concrete experience with the domain. Situational

elements—that is, elements that depend on the context—become meaningful and

are used. In the ‘‘competence’’ stage, decision-making procedures are organised

hierarchically. While this stage is characterized by an increased level of efficiency,

planning is still to a considerable extent conscious and deliberate. In the

‘‘proficiency’’ stage, certain features will be perceived as salient while others will

be ignored. Proficient individuals, while able to ‘‘intuitively organize and

understand’’ the problem situations, still use analytical thinking to decide what to

do next. In the final, ‘‘expertise’’ stage, both understanding of the task and deciding

what to do is intuitive and fluid. In routine situations, ‘‘experts don’t solve problems

and don’t make decisions; they do what normally works’’ (Dreyfus and Dreyfus

1988, pp. 30–31). Dreyfus and Dreyfus use mostly anecdotal evidence and

references to the reader’s experience to buttress their theory. In the domain of
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nursing, Benner and her colleagues (Benner 1984) offer some direct empirical

support in favour of the theory, based on group interviews, detailed observations,

and intensive personal history interviews. (See Gobet and Chassy (2008) for a

discussion of nursing expertise in the light of some of the ideas discussed in the

present article.)

Dreyfus and Dreyfus have considered three ways in which the brain could

produce intuitive behaviour based on experiences. In the first edition of Mind over
Machine, they speculated that the brain could be seen as a holographic pattern

recognizer. This idea was dismissed in the preface of the second edition of the book.

Instead, these authors considered the possibility of using the mechanisms proposed

by neural net research. This possibility was in turn dismissed in the preface of the

1992 editions of What Computers Still Can’t Do: ‘‘It looks likely that the neglected

and then revived connectionist approach is merely getting its deserved chance to

fail’’ (Dreyfus 1992, p. xxxviii). The final possibility considered was the approach

of reinforcement learning (e.g. Tesauro 1992), but it was concluded that this

approach also met with serious practical and theoretical problems (Dreyfus 1992),

although S.E. Dreyfus (2004) provides a more optimistic evaluation.

While we have centred on Dreyfus’s approach, we should mention that other

authors have emphasized that intuition requires holistic processing. For example, for

chess, the domain discussed at length by Dreyfus (1972) and Dreyfus and Dreyfus

(1988), one can mention the proposals by De Groot (1986; see also De Groot and

Gobet 1996, for an extended discussion of De Groot’s view) and Linhares (2005).

At the descriptive level, the theory is in line with cognitive theories proposing that

novices start with verbal, analytic knowledge and slowly move to levels where

knowledge becomes unconscious (Anderson 1982; Cleveland 1907).

Although Dreyfus and Dreyfus’s account has face value validity, it also conflicts

with a fair amount of empirical data. First, there is evidence that, in many domains,

expertise does not imply a decrease of abstract thought and a concomitant increase

in concrete thought, as proposed by Dreyfus and Dreyfus. One of the best examples

is physics, where experts in fact solve problems at a deep, abstract level, while

novices perform at a superficial, concrete level (Chi et al. 1981; Larkin et al. 1980).

Second, the presence of stages in expertise development is poorly documented. In

addition to the well known difficulty of empirically establishing the reality of stages

(van der Maas and Molenaar 1992), there is clear evidence that individuals may be

experts in one sub-field whilst performing less fluidly in another sub-field of the

same domain (Benner 1984; Gruber and Strube 1989; Rikers et al. 2002). Although

Dreyfus and Dreyfus (1988) acknowledge that the level of expertise of one

individual may vary for different problems with the same area, this would suggest

that the notion of stage must not be taken literally, but only suggestively. But this

seems to undermine one of the main theoretical contributions of the model.

Third, a tenet of the theory, and of Dreyfus’s earlier work, is that intuition is

necessary for performing at expert level in what Dreyfus (1972) calls ‘‘complex

formal’’ and ‘‘nonformal’’ intelligent activities and that, being analytic, heuristic-

search computer programs cannot reach this level of performance (Dreyfus 1972;

Dreyfus and Dreyfus 1988, e.g. Table 1.1; Dreyfus and Dreyfus 2005). (This is

discussed in detail in the conclusion chapter of What Computers Can’t Do (Dreyfus
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1972); see in particular the discussion surrounding Table 1 in the Conclusion

chapter.) Recent developments in computer board games, for example in chess

where world champion Kasparov was beaten by Deep Blue (Campbell et al. 2002)3

and in Othello where world champion Murakami was beaten by Logistello (Buro

1999), show that programs using heuristic search—without any holistic under-

standing of positions—can perform at very high levels (see also Strom and Darden

1996, for a similar point). Indeed, chess grandmasters are often baffled by how their

intuitions can be proven false by commercially available computer programs.4

It could actually be the case that computer programs may help develop a much

better understanding of chess than humans have been able to achieve (Gobet 1993).

Jansen (1992a, b) compared human play with endgame databases and found that even

grandmasters perform weakly in simple endings. Consider the endgame King-Queen

versus King-Rook, an endgame that textbooks consider as elementary and to which

they devote just a few pages. Jansen found that even world-class grandmasters made

so many errors that it took, on average, four times longer than the optimal line of

play to win the game. In many cases, they would have achieved only a draw instead

of a win.

Fourth, while Dreyfus and Dreyfus (1988) recognize that even individuals at the

expert level may need to carry out analytic problem solving, they do not supply

details about how the information provided by holistic intuition may be used, for

example, to guide look-ahead search in a game such as chess. In addition, the role of

conscious problem solving is clearly underestimated in the theory. Based on an

informal experiment with a chess international master who ‘‘more than held his

own’’ against ‘‘a slightly weaker, but master level, player’’ in spite of having to add

dictated numbers, Dreyfus and Dreyfus (1988, p. 33) conclude that players at the

expert stage can still produce ‘‘fluid and coordinated play’’ in spite of being

‘‘deprived of the time necessary to see problems and construct plans.’’ Unfortu-

nately, not enough details are provided in Dreyfus and Dreyfus’s book to evaluate

this experiment; in particular, it is unclear as to the difference in skill between the

two players, whether there were behavioural differences between normal play and

play with the interfering task, and, indeed, to what extent the second player was

affected by the experimental setting. Well-controlled experiments with large

samples (Robbins et al. 1995) have shown that a concurrent task interfering with

what Baddeley (1986) calls the central executive substantially impairs the quality of

the moves chosen. Robbins et al. used tactical chess positions, and one could argue

that Dreyfus and Dreyfus’s point was that their master won his game solely through

intuitive strategic play (roughly, position estimation and long-range planning),

3 There has been some (unsubstantiated, in our view) suggestion that Deep Blue received unfair help

from its programmers. However, more recent matches pitting world champions against computer

programmes running on standard PCs have consistently demonstrated that the best human players

struggle against computers (see for example the 4-2 defeat of world champion Vladimir Kramnik against

Deep Fritz in December 2006).
4 A good example of this is the last game of the match Kramnik versus Deep Fritz, mentioned in the

previous footnote, where a series of Deep Fritz’s manoeuvres that grandmasters commenting on the game

originally found primitive and naı̈ve turned out to have deep strategic implications. Deep Fritz won the

game.
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without using tactical play (roughly, short-term precise calculations based on

thinking ahead). This seems unlikely to us, as nearly every game at master level

contains moments where tactics become crucial. In addition, recent research

(Chabris and Hearst 2003; Gobet and Simon 1996b) has clearly established that

reducing thinking decreases playing skill, although one should emphasise that the

level of play with grandmasters is still fairly high, and thus that some kind of pattern

recognition must be involved. Thus, our disagreement is not about the importance of

intuitive play at expert level, but about Dreyfus and Dreyfus’s neglect of analytical

thinking—in chess, look-ahead search.

Finally, evidence from neuroscience does not support the notion of holistic

pattern recognition. There is now good evidence that perception proceeds

sequentially, engaging specialized modules, as is shown for example by Eimer

(2000) for data on face perception and O’Rourke and Holcomb (2002) for data on

word perception.

Simon’s Standard Theories of Expertise and Intuition

While Dreyfus’s approach is philosophical and the evidence used to support it

mostly anecdotal, Simon’s emphasis is on mechanistic explanations of empirical

phenomena, with direct recourse to experimental data. The starting point of Simon’s

analysis is that experts suffer from the same cognitive limits as novices (Chase and

Simon 1973). In particular, they can pay attention to only one thing at a time, and

their short-term memory (STM) is limited to just a few items. In addition, experts

essentially use the same problem solving methods as novices, such as means-end

analysis, progressive deepening, and use of heuristics to cut the search space down.

What happens during the path from novice to expert is that individuals learn a large

number of perceptual patterns that get associated with possible actions; in other

words, they learn a large number of ‘‘productions’’ (i.e. condition–action pairs;

Chase and Simon 1973; Newell and Simon 1972). For example, a chess player may

learn that, given a certain king’s side pawn structure, an attack including the

sacrifice of a bishop should be considered. This chunking process is not unique to

expertise, but is one basic learning mechanism found in other domains, such as

verbal learning (Simon and Feigenbaum 1964). Intuition can then be explained by

the firing of a production: a pattern similar to one learned during previous

experience is recognized, and thus a solution is automatically accessed (see Fig. 1).5

While this solution was obtained through slow problem solving mechanisms in the

first instance, it is now accessed automatically by memory lookup. To some extent,

within Simon’s framework, intuition is just one method among others to reduce the

search space.

While Simon sometimes relied on anecdotal evidence, he also used a number of

experimental data to support this explanation of intuition. Data from chess (Chase

and Simon 1973) show that strong players perceive the board as chunks of pieces,

5 Note that the proposed move is not necessarily the best one in a specific context—just a move that is

often good in similar contexts. In the example of Fig. 1, the move Ne5-g4 was actually played.
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and not as individual pieces, and also that they chunk sequences of moves. The

chunking of actions (moves) is also apparent in learning simple puzzles such as the

tower of Hanoi (Anzai and Simon 1979). Data from physics clearly show that

experts can recognize the solution of routine problems almost instantly and that, at

least with routine problems, as expertise develops the search strategy changes from

backward search to forward search or even forward execution—that is, proceeds

through the solution with minimal search (Larkin et al. 1980).

Another source of support for Simon’s theory comes from computer simulations,

which establish that the mechanisms postulated by the theory are sufficient to

produce the behaviour to explain. Relevant simulations, using production systems,

include modelling how a novice becomes proficient in solving the tower of Hanoi

(Anzai and Simon 1979) and how backwards search is replaced by forward search

as novices become experts in physics (Larkin et al. 1980). Indirect support is also

offered by simulations of memory recall tasks showing how chunks—an essential

component of pattern recognition and thus of intuition—are acquired in chess

(Simon and Gilmartin 1973).

Fig. 1 Illustration of how perceptual chunks can implement the notion of a production. Patterns on the
board (the circled groups of pieces) might elicit perceptual chunks in long-term memory, the condition
part of the production. Some of these chunks (in this case the one elicited by the pattern on the lower right
hand side of the board) might suggest possible moves, the action part of the production (here, the white
bishop retreating to the square ‘‘f1’’ to parry the checkmate threat on ‘‘g2’’). Productions operate
unconsciously and intuitively and, with strong players, may lead to actions that are readily solutions to a
problem
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In line with Simon’s views, a number of theories explain intuition as recognition

of perceptual patterns linked to actions, which compile domain-specific experience

acquired over years of practice and study. Among the most influential, one can

mention those of Newell (1990); Saariluoma (1995), and Klein (2003).

Simon’s theory of intuition has been criticized on several grounds. Dreyfus and

Dreyfus (1988) note that, as chess positions are comprised of several chunks,

several moves will be proposed; however, there is no provision of mechanisms

explaining how only one move is selected. In addition, the types of chunk proposed

by Simon are defined in isolation to other aspects of the situation. By contrast,

Dreyfus and Dreyfus (1988, p. 210) argue that the position is stored as ‘‘an

unanalyzable whole.’’ They also criticize Simon’s ‘‘information processing

assumption that intelligence consists in drawing conclusions using features and

rules,’’ noting that high levels of expertise ‘‘are characterized by a rapid, fluid,

involved kind of behavior that bears no apparent similarity to the slow, detached

reasoning of the problem-solving process’’ (Dreyfus and Dreyfus 1988, p. 27).6 De

Groot (1986) argues that intuition is more than pattern recognition, emphasising its

constructive and productive aspects. That is, intuition does not only reproduce

previous solutions, but creatively combines elements to produce new solutions.

Holding (1985) provides additional criticisms, more aimed at Simon’s general

theory of expertise than at his theory of intuition in particular. Two of these

criticisms are especially important theoretically: encoding into long-term memory

(LTM) is faster than proposed by the chunking theory, and the size of chunks is too

small to reflect conceptual knowledge and provide useful information in problem-

solving situations. A third criticism—that pattern recognition is not a sufficient

explanation of skill, because it applies only to the initial problem situation and does

not link to look-ahead analysis—is much weaker, as Chase and Simon (1973) made

it clear that pattern recognition occurs not only in the initial problem situation, but

also in the problem states generated during look-ahead search.

To these criticisms, we can add that, while Simon’s computer models were

remarkable and insightful in their own right, they either failed to reach high levels of

expertise or did so only with considerable hand-coded knowledge but no real

learning. Finally, the links between intuition and emotions are not spelled out in any

detail.

A New Theory of Intuition

Our discussion of Dreyfus’s and Simon’s theories has highlighted the features that a

successful theory of expert intuition should have: it should explain the rapid onset of

intuition and its links with emotion, provide mechanisms for learning, have

processes showing how perception is linked to action, and explain how experts

capture the entirety of a situation. In this section, we develop such a theory, taking

6 But note that this criticism appears to ignore Simon’s work on chunking and pattern recognition (e.g.

Chase and Simon 1973).
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as basis the template theory of memory developed by Gobet and Simon (1996c,

2000).

The template theory was developed to correct a number of weaknesses of the

chunking theory (Chase and Simon 1973), of which it is a modification and

extension. These include the fact that players use larger chunks that those proposed

by the chunking theory, the failure of Simon and Gilmartin’s (1973) computer

simulations of memory recall to reach master level and the fact that the chunks

learnt were pre-selected by the programmers, and weaknesses in the way

PERCEIVER (Simon and Barenfeld 1969) accounted for chess players’ eye

movements. Aspects of the template theory are implemented in a computer program

known as CHREST (Chunk Hierarchy and REtrieval STructures) (Gobet and Simon

2000; Gobet and Waters 2003), and the fact that CHREST simulates not only the

phenomena tackled by Simon and Gilmartin’s (1973) and Simon and Barenfeld

(1973), but also a substantial number of new phenomena (see Section ‘‘Simulations

with the CHREST model’’ below) clearly shows that the weaknesses of the earlier

programs have indeed been corrected in the new theory without inadvertently

creating new problems.

Overview of the Theory

We carefully distinguish between the features of the template theory that have been

implemented in CHREST and in other programs,7 those that are part of the theory

but have not been implemented yet, and those that we have added to the theory to

account for the link between intuition and emotions.

The CHREST Model

Components Like the original chunking theory, template theory proposes that

expertise is made possible by the acquisition of a large number of chunks, some of

which are linked to possible actions. A key addition of template theory is the

assumption that some patterns that recur often in the environment give rise to

chunks that develop into more complex data structures called templates. Templates

are similar to schemata (Bartlett 1932; Minsky 1975) in that they possess both a

core, made of stable information, and slots, made of variable information. Unlike

previous schema theories, template theory proposes detailed mechanisms as to how

templates—both their core and their slots—are acquired (see below).

In CHREST, chunks and templates (which are a special case of chunks) are

indexed by a discrimination network (Simon and Gilmartin 1973), which consists of

a network of sequential tests enabling the access to information in LTM.8 While

learning is assumed to be slow (e.g. 10 s to create a new chunk), access of chunks

by sorting the discrimination network is assumed to lead to fast recognition of

objects (a few hundred milliseconds).

7 The code of these programs (in Lisp) is available from the first author.
8 Neurally, it has been proposed that chunks and templates are implemented as cell assemblies (Chassy

and Gobet 2005).
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Chunks may be connected by similarity links if they have enough elements in

common. In addition to the discrimination net, the model has three components: an

LTM, a visual STM, and a ‘‘mind’s eye.’’ LTM contains chunks, productions and

schemata. Visual STM has a capacity of three chunks. It is a queue, meaning that,

when a new chunk enters STM where it is already full, the oldest chunk ‘‘pops out’’

from STM. The exception is that the largest chunk is kept in STM until a larger

chunk is met. Templates, which have slots in which variable information can be

stored, are a special type of chunk. Finally, the mind’s eye stores visuo-spatial

information for a short time; it is the place where, for example, the trajectories of

pieces are computed. The main mechanisms used by CHREST deal with eye

fixations, STM management, LTM learning, and information update in the mind’s

eye. In general, it is assumed that humans are conscious of the information held in

STM and in the mind’s eye, but not of the information and processes used during

learning and recognition.

While CHREST has been applied to other domains (Gobet et al. 2001), we focus

on chess in the explanations that follow, not only because this domain provides

some the best evidence for intuition (see above), but also because both Dreyfus and

Simon heavily refer to chess in their theory of intuition.

Figure 2 illustrates the main components of the theory, with chess as the task

environment. A simulated eye scans the board, and the information within the visual

field is input to the discrimination network, which leads to the access of a certain

node in LTM. A pointer to this node is placed in STM, and the information is also

unpacked in pictorial STM (the ‘‘mind’s eye’’).9 This sequence of operations is

assumed to be repeated when players look at a position.

Eye Fixations CHREST’s attention is directed by eye movements. The program

attempts to use information provided by the largest chunk met at any given point to

fixate a location. In chess, this operation is performed by following a branch that is

stored below the chunk and fixating the square associated with this branch. As an

example, let us assume that this is the chunk depicted in grey in Fig. 3. CHREST

would take the link leading to the most recently created node (in our example,

‘‘white pawn on f2’’), and fixate on the square indicated by this link, in this case the

square f2. If a white pawn is indeed located on f2, then a larger chunk has been

found, and thus more information retrieved from LTM. Although this guess,

informed by experience, may sometimes be incorrect, it tends to produce eye

movements that are similar to those of experts. For example, it is this mechanism

that leads the program to fixate on semantically important squares in a proportion

similar to experts’ (see De Groot and Gobet 1996, for details).

If it is not possible to use this eye-movement mechanism based on knowledge

(for example, because there is no branch in the discrimination net below the largest

chunk), the program draws on alternative mechanisms such as fixation on a

perceptually salient object or on a region of the display that has not been visited yet

9 Neurally, such pointers might be implemented by short-term memory neurons in the prefrontal cortex

firing in synchrony with neurons in posterior areas of the brain; the limited capacity of STM—that is, the

limited number of pointers that can be held in STM—is then a function of the number of distinct

frequencies available (Ruchkin et al. 2003).
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(see De Groot and Gobet 1996). Whereas novices’ eye movements are mainly

directed by such heuristics, most experts’ eye movements use the first mechanism

and are directed by the structure of the discrimination network. An interesting

feature of the theory is thus that it includes mechanisms detailing how perception

determines what will be learned, on the one hand, and how learned knowledge

determines what will be perceived, on the other.

Learning Chunks and Creating Templates After each new fixation, the model filters

the information in the visual field through the discrimination net. In the chess

simulations, the field of vision is limited to two squares away from the fixation point in

each direction, so that a maximum of 25 squares can be perceived at any time (see De

Groot and Gobet 1996, for empirical data supporting this choice). An external pattern

is encoded as a list of the pieces on their squares; for example, in Fig. 1, the pattern on

the right of the position would be encoded as: (Pf2, Pg2, Ph2, Kg1, Be2, nf4).

Two learning mechanisms are used, familiarisation and discrimination. When a

new (external) object is perceived, it is sorted through the discrimination net. When

a node is reached, the object is compared with the information stored with this node,

which is known as the ‘‘image.’’ If the image under-represents the object, new

features are added to the image (familiarisation). If there is a mismatch between the

Fig. 2 Overview of the key perceptual and memory mechanisms embodied in the template theory. A
simulated eye selects patterns on the external board. These patterns are sorted through a discrimination
net, which enables access to a chunk (node) in long-term memory. Chunks give access to diverse types of
information in addition to the location of pieces (depicted in the figure), including, in the case of chess,
what kinds of move should be played or what plan should be followed (additional information is not
shown in the figure). Information accessed in long-term memory is then placed in STM, which consists of
a queue of chunks and a pictorial STM, where visuo-spatial information can be unpacked
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information in the image and the object, a new node is created below the current

node by recursively adding to it some of the mismatching information (discrim-

ination). CHREST also creates ‘‘similarity links’’ between nodes and templates.

Fig. 3 Illustration of the
mechanism of template
formation (Panel a,
discrimination net; Panel b,
representation of the piece
location on the chessboard). If a
given type of information recurs
often below a node in the
discrimination network, a slot
can be created at this node,
specifying both the variable and
the values that this variable can
have. For example, given that a
white pawn is used in three
branches below the node
depicted in grey, a slot can be
created for ‘‘white pawn’’, and
the possible values for the
squares on which the pawn can
be located are ‘‘f2,’’ ‘‘e4,’’ and
‘‘d4.’’ Similarly, a slot can be
created for the square ‘‘e4,’’
which can have the value ‘‘black
bishop’’ and ‘‘white pawn.’’
Chunks possessing slots are
called templates
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Each chunk arriving into STM is compared with the largest chunk already stored

there. When the two chunks are sufficiently similar, a similarity link is created

between them. During the recognition phase, a similarity link can be used to move

from the node reached by sorting to another similar node.

Templates are chunks that possess at least one slot where variable information

can be stored. Template slots are created when enough nodes share related

information below a node that is sufficiently large.10 Figure 3 illustrates this

mechanism for the domain of chess. There are four nodes below the node depicted

in grey; the information ‘‘white pawn’’ occurs three times, and the information

‘‘square e4’’ occurs twice. In this simplified example, we assume that the minimum

number of occurrences is two, and thus slots are created.

Time Parameters Each process has a time cost, which enables precise and

quantitative simulations to be carried out. For example, the discrimination process,

whereby a new node (and a branch leading to it) is added in the discrimination net,

takes 8 s, and the familiarisation process, whereby information is added to an extant

chunk, takes 2 s. Filling a template slot is faster and takes 250 ms. A full discussion

of the time parameters in CHREST is provided by De Groot and Gobet (1996) and

Gobet and Simon (2000).

Learning Phase Using the mechanisms just described, CHREST learns chunks

and templates by scanning a large database of positions taken from master games,

moving its simulated eye around the board, and sorting the pieces within its visual

field through the discrimination network. Thus, learning is implicit, incremental and

unsupervised, and it essentially captures the regularities of the environment without

producing a statistical representation.

Simulation of Memory Experiments During the presentation of a position,

CHREST fixates on squares using the eye movement mechanisms described above.

Each fixation defines a visual field (see above), and the pieces belonging to this

visual field are sorted through the discrimination net. If a chunk (a pattern already

familiar to the discrimination net) is found, a pointer to it is placed in STM, or,

when possible, the chunk is used to fill one slot of a template. If the presentation

time is long enough, the program learns using the mechanisms described above.

During the reconstruction of a position, CHREST first draws on the information

stored in STM, and then information stored in LTM. Pieces are placed sequentially.

If a piece has already been replaced on the board from a previous chunk, it is

ignored. Conflicts can occasionally occur: for example, a square containing several

pieces. Such conflicts are resolved sequentially, making use of the frequency with

which each placement is suggested. It is therefore possible for the program to

‘‘change its mind’’ about the location of a piece or the contents of a square (see

example in the Appendix), and so do human players.

10 In the chess simulations, the requirement is that the target node contains at least five elements and that

at least three nodes below that node share identical information (either a square, a type of piece, or a

chunk) (Gobet and Simon 2000).
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Extensions of CHREST for Problem Solving

The idea that the recognition of patterns of chess piece allows for the accessing of

information about good moves is embodied in CHUMP (CHUnks and Moves

Patterns; Gobet and Jansen 1994), a variant of CHREST. CHUMP stores two types

of knowledge in two different but linked discrimination nets. The first relates to

patterns of pieces (the type of chunks learned by CHREST). The second relates to

moves and sequences of moves. During learning, where positions from master

games are presented, patterns of pieces are associated with moves. During the

performance phase, patterns of pieces act as conditions, and moves as actions. When

the recognized piece patterns suggest different moves, the program resolves the

conflict by using a function that combines the number of chunks voting for a given

move and the number of times the move has been seen with a given pattern during

learning. The program could play chess by pure pattern recognition, but its lack of

look-ahead abilities meant that its level of play was low. Another limitation of

CHUMP is that it learns only a small part of the knowledge that chess experts

presumably encode as productions. The literature on chess skill (e.g. Gobet et al.

2004) suggests that chess experts have other productions where the conditions

consist of nodes containing information such as positional concepts, tactical

features, etc., while the nodes denoting actions encode information such as plans,

heuristics, tactical tricks, etc.

A stochastic model, SEARCH (Gobet 1997) puts together several mechanisms

that are proposed by the template theory but not implemented in CHREST. Unlike

CHREST, the model does not carry out the detail of the postulated processes, but

computes key measures, such as depth of search or the number of moves searched

per minute, as a function of the number of chunks and templates. SEARCH

explicitly combines pattern recognition, search, and mental imagery. It also includes

assumptions about the time needed for cognitive operations, as well as assumptions

about the ‘‘fuzziness’’ of the images kept in the mind’s eye. Chunks and templates

favour deeper search, because they suggest potential moves automatically

(templates also facilitate LTM encoding, maintenance of information in the mind’s

eye, and more abstract search). On the other hand, these memory structures favour

shorter search, as they provide powerful evaluations that cut down the need for

search. The net product, as shown in computer simulations, is that average depth of

search follows a power function of skill—a prediction consistent with the data.

Adding Emotions to the Template Theory

Starting with De Groot (1965), researchers have often emphasized the role of

emotion for intuition (Bechara et al. 1997; Benner 1984), but this is a feature that

was not covered in any detail by the chunking theory, Dreyfus’s theory, nor the

original version of the template theory. One important contribution of the current

article is to show how the template theory can be extended to include emotions and

to speculate on the biological basis of this link. The available evidence supports the

view that a link associates simple cognitions and simple emotional responses

(LeDoux 1999). Similarly, there is evidence that complex representations, stored in
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the inferior temporal cortex, are associated to neural nets coding for reward (Rolls

2003), and that such neural networks underlie the automatic retrieval of emotional

responses (Panksepp 1998). Cognitions, whether simple or complex, are thus

associated with emotional responses. We propose that, during the activities taking

place in the practice and study of a domain, chunks and templates become

associated to emotional responses. Later, when a chunk or a template is retrieved

from LTM, it may activate one or several emotional responses. These responses are

analysed by an emotional processor that determines what emotional response is to

be given priority. The emotional processor not only triggers the body changes but

also instigates modulation of cognitive processing. It is worth noting that emotional

responses, and thus cognitive modulation, are submitted to huge personal

variability, known as affective style (Davidson and Irwin 1999), which may be

partly explained by different histories of learning crystallised in LTM structures.

Similar to what has been shown with emotional conditioning, we propose that

chunks are associated to emotional responses by hebbian learning. For example, in

an adversarial game like chess, we can expect typical defensive or attacking chunks

to be associated with reward or rejection. The purpose of emotional responses would

be to draw the player’s attention towards possible dangers in the position. This

emotional bias would contribute to the selection of an appropriate option: a kind of

emotionally driven decision-orienting heuristic. As expertise develops, the alerting

system made up of emotions tunes the emotional response for the chunks stored in

LTM. In a later phase, the emotional system may code the emotional responses in

reply to frequently encountered combinations of chunks.

Simulations with the CHREST Model

Simulations with CHREST show that the theory accounts for a wide range of data,

both quantitatively and qualitatively, on skilled and unskilled chess perception,

mental imagery, learning and memory, including: eye movements during the 5-s

presentation of a position; memory for game positions as well as positions

randomised or modified in various ways; effect of presentation time (from 1 to

60 s); and how novices acquire chunks and templates (De Groot and Gobet 1996;

Gobet 1993; Gobet and Jackson 2002; Gobet and Simon 2000; Gobet and Waters

2003; Waters and Gobet 2008). When considering the simulations, the coverage is

broader than that offered by the chunking theory, and, unlike the earlier computer

model by Simon and Gilmartin (1973), CHREST actually carries out the selection

of the chunks to learn, without the need of human supervision. This is achieved by

simulating eye movements even during the learning phase.

To illustrate further the way CHREST works, we describe simulations for three

aspects of the theory that will play an important role in explaining intuition:

template formation, eye movements, and dynamic character of the simulations.

Template Formation

Given the importance of templates in the theory, it is important to show that the

mechanisms used lead to the formation of templates that are plausible. Figure 4
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shows a sample of templates that were created by CHREST. For each position, the

core of the template is shown by the pieces placed on the board; the slots for squares

are indicated by a dot on the square, and the slots for pieces are indicated by the

Fig. 4 Sample of templates created by CHREST for chess
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icons shown below each position. Based on the joint judgement of the authors, who

are both chess masters, these templates correspond reasonably well to typical chess

positions. Note that in these examples, templates are not only constructed for typical

openings, but also for typical offensive or defensive set-ups in middle-game

positions (e.g. first position in Fig. 4).

Eye Movements

As we have seen in the description of eye fixations, one of CHREST’s attractive

features is that its domain-specific knowledge is used to direct a large proportion of

eye movements in the simulation of experts, but without using rules. This makes

possible to simulate several key aspects of masters’ eye movements in chess. De

Groot and Gobet (1996) have shown that the program captures the main features of

human behaviour: average duration of fixations, low variability in the duration of

fixations, proportion of the board covered, and proportion of the semantically

important squares covered. For example, the average fixation duration is 272 ms

(SD = 97 ms) for CHREST, which is in close agreement with the average duration

of the human masters (260 ms; SD = 100 ms).

Figure 5a shows a typical master pattern of eye movements, for the position

shown in Figs. 1 and 5b shows, for the same position, a typical run of CHREST.

While the exact sequences of eye fixations differ—the sequences of eye movements

also differ across human players of the same skill level—it is clear that the program

reproduces the key features of the human pattern.

Time Course of Constructing the Internal Representation of a Position

A key assumption of CHREST is that there is a close interaction between STM and

LTM. This interaction is mainly made possible by three mechanisms. First, when an

LTM chunk is recognized, a pointer to this chunk is stored into STM. Second, the

information in STM may be used for further learning. Third, when a template is held

in STM, information can rapidly be added to its slots. Appendix illustrates some of

these ideas with a detailed run of CHREST in a recall task, where the position is

presented for 5-s; again, the position depicted in Fig. 1 is used.

Intuition

We are now in a position to discuss the contribution of the template theory to our

understanding of intuition. In this respect, the template theory shares several

features with the chunking theory, including the assumption that intuition can be

largely explained by pattern recognition; that chunks, which are learnt implicitly,

mediate pattern recognition; that chunks give access to information about what

kinds of action can be executed; and that there is close interplay between pattern

recognition and search, with the implication that intuition affects the entire decision

process, not only its early phase. In this respect, both theories agree with De Groot’s

statement (1986, p. 70) that ‘‘… intuitive processing is omnipresent in human

thinking.’’
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There are also important differences between the old and new theory. As we shall

see in the next section, these novel features are crucial for explaining key aspects of

intuition. These include the presence of similarity links between nodes in the

discrimination net; more complex data structures (templates) in LTM; and provision

of mechanisms for incrementally creating templates and automatically linking

actions to perceptual patterns. In particular, the presence of templates enables

internal representations of the environment to be constructed at a higher level of

abstraction than assumed in the chunking theory, while still explaining the speed at

Human Master

CHREST Master

Fig. 5 Pattern of eye
movements for a chess master
(top) and for a CHREST
simulation (bottom). The
semantically important squares
are displayed in grey. (After De
Groot and Gobet 1996.
Reproduced with permission of
the copyright holder.)
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which these representations are created. Another important novel feature of the

theory is that it closely links attention, perception, learning, and action, in that it

proposes mechanisms showing how LTM knowledge—in this case, the structure of

the discrimination net—directs eye movements; this provides a powerful explana-

tion of why the key features in a scene are generally perceived rapidly by experts.

Finally, the extended theory accounts for how emotions affect cognition during

learning and performance.

How the New Theory Addresses the Issues Problematic for Dreyfus’s
and Simon’s Theories

Our discussion of Dreyfus’s and Simon’s theories has led to the identification of

problems in both of them, problems that relate to deep issues in our understanding

of intuition. If the extended template theory is a valid theory of intuition, it should

be able to address these issues satisfactorily. It is therefore important to review these

questions from the point of view of template theory.

Holistic versus Local Processing

Empirical data suggest that experts process information at various levels of

granularity, including low-level features and high-level representations. In particular,

the recall of game and random chess positions has shed important light on this issue,

and has direct relevance to the question as to whether intuition is always holistic in

nature. CHREST accounts for recall data obtained with brief presentation times,

simulating data such as the percentage of correctly recalled pieces, the type and

number of errors, as well as the size and number of chunks. For example, the program

replicates how players of different skill levels perform with presentation times ranging

from 1 to 60 s, and in particular the rapid improvement shown by masters with game

positions after 1 s (Gobet and Simon 2000). As noted by Gobet and Simon, this

phenomenon is directly affected by the presence of templates, and in particular the

assumption that encoding in the template slots is rapid once a template has been

recognized (see also the discussion of the CHREST trace presented in the Appendix).

Another important result—directly addressing the issue of local processing—is

that CHREST also accounts for the small skill effect present in the recall of random
positions. While this effect is not as large as with game positions, it is reliable and has

been replicated several times (Gobet and Simon 1996a, 2000). The program accounts

for this effect by recognizing local patterns that show up serendipitously even in

random positions. The larger the discrimination net, the higher the probability of

finding chunks for such patterns, hence the skill effect. It is unclear how a holistic

theory such as Dreyfus’s can account for these data, as they seem to rely on

processing local aspects of the positions. In general, the pattern of eye movements

during the 5-s presentation of a position also supports the hypothesis of a progressive

and serial construction of an internal representation rather than holistic processing

(De Groot and Gobet 1996; Simon and Barenfeld 1969). Thus, the evidence seems to

point to large, ‘‘holistic’’ representations being constructed by local mechanisms.

Expertise and Intuition 169

123



From Abstract to Concrete?

An important prediction of Dreyfus and Dreyfus’s theory (1988) is that, as novices

become experts, there is a transition from analytic to intuitive, from abstract to

concrete knowledge. We have seen earlier that, at least in some domains of

expertise and in some tasks, the opposite pattern is actually observed. But this also

seems to be a simplified picture. As shown by research in domains such as chess (De

Groot 1965), physics (Larkin et al. 1980; Simon and Simon 1978), and nursing

(Benner 1984; Gobet and Chassy 2008), the pattern of learning is more complex and

incorporates a progression from analytic to intuitive knowledge but also an

increased ability to deal with abstractions. Thus, an expert in physics will both

recognize concrete patterns rapidly and understand the problems at a higher level of

abstraction than a novice. The template theory readily deals with the acquisition of

different types of knowledge and representation (e.g. diagrammatic and algebraic),

as has been discussed at length in the context of education (Gobet 2005; Gobet and

Wood 1999). The theory predicts that perceptual, schematic, and procedural as well

as concrete and abstract knowledge are acquired in parallel, and thus that these types

of knowledge should overlap with experts.

Analytic and Intuitive Behaviour

Just like Simon’s theory, our theory has the advantage over Dreyfus’s that the links

between intuition and slower problem solving behaviour are made explicit. The key

idea, already present in Simon’s earlier work and fully developed in Gobet (1997), is

that problem solving involves cycles interleaving pattern recognition and search. At

the beginning, there is an attempt to access a chunk or a template in LTM. The more

expert the individual, the more likely this will be successful. If a chunk or a template

is accessed, the information linked to it is used to carry out further searching of the

problem, and this cycle continues. In cases where no chunk or template can be found,

or where no information is associated to them, weaker heuristics are used, either

domain-specific heuristics or domain-general heuristics such as means-end analysis.

When the problem is easy, the correct solution can be retrieved by LTM look-up.

As noted above, one of the objections filed by Dreyfus and Dreyfus (1988) to

Simon’s idea of intuition as pattern recognition was that there was no explanation as

to how a single action (a move, in the case of chess) could be chosen while several

chunks could be identified. The situation is actually worse, as a single chunk could

propose several actions. This is a standard issue with production systems,

technically known as conflict resolution, and several solutions have been proposed

(Neches et al. 1987; see also the description of CHUMP above).

Due to limits in existing technology in the sixties and seventies, Simon could not

develop simulation programs able to show that such pattern-recognition mecha-

nisms could indeed lead to the selection of a move and that the pattern-action pairs

could be learned automatically. As we have seen earlier, the CHUMP program

(Gobet and Jansen 1994) is doing just this for the domain of chess. With respect to

intuition, it is of particular interest that this program performed better in situations

requiring a ‘‘positional judgment’’ than in tactical positions, where look-ahead
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search becomes more critical. Positional judgment in chess is often presented as a

paradigmatic example of intuition, not only by Dreyfus and Dreyfus (1988), but also

in the popular literature on chess (Kotov 1971).

The Problem of Small Chunks

As noted above, two other objections to Simon’s theory are that the chunks

identified by Chase and Simon (1973) for chess may be too small to elicit moves

and that they do not capture the whole of the position. The simulations carried out

by Gobet and Jansen (1994) show that the first objection does not apply. As to the

second objection, there is indeed ample evidence that strong players use high-level

representations at a more abstract level than the piece locations encoded by chunks

and that, at least in some cases, they perceive the entire board as a single unit. This

evidence includes the analysis of verbal protocols in problem-solving tasks (De

Groot 1965), recall tasks (De Groot 1965; De Groot and Gobet 1996), and

classification tasks (Freyhoff et al. 1992). As noted above, the template theory

captures this aspect of expert perception in chess. As a matter of fact, postulating

structures that could potentially cover the entire problem situation and that have

schema-like properties was one of the motivations behind the development of the

template theory. Although templates capture the ‘‘wholeness’’ of perception taken

by Dreyfus to be a signature of expertise, their construction is incremental, with

larger chunks being recursively produced by the conjunction of smaller chunks.

Conclusion

In this paper, we have briefly considered the empirical data supporting the concept

of intuition, before discussing two influential theories of intuition, that of Hubert

Dreyfus and that of Herbert Simon. We have noted that, ironically, Dreyfus uses

experts’ intuition as one of the main grounds for which information processing

psychology (and classical AI) is doomed to fail, ignoring empirical and theoretical

work by Simon and others showing that simple information processing mechanisms

might explain this phenomenon. We have also noted that chess has often been used

to illustrate the putative bankruptcy of rule-based and symbolic thinking. By

contrast, the empirical evidence we have discussed has illustrated situations where

these symbolic techniques do better than human intuition.

Our critical analysis of the two theories has established that, while both address

important aspects of expert intuition, both fail to account for the empirical data

thoroughly. To address this theoretical gap, we have shown how the template

theory, a modification of the chunking theory, accounts for most of the empirical

data linked to intuition. In addition to pattern recognition—already present in the

chunking theory—the key mechanisms relate to the interaction between perception,

attention, and learning, and to the creation and use of templates. These schema-like

structures enable information to be encoded both rapidly and at a high level of

representation. A further important addition consisted of mechanisms linking

chunks and templates to emotions.
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This paper has emphasised the differences between the three theories, but it is fair

to acknowledge that they share a number of similarities: beyond accepting intuition

as a genuine phenomenon, all three theories emphasise the essential role of

perception, the fluid, automatised, and rapid behaviour characteristic of experts’

intuition, and the long time required to become an expert. They also all stress the

importance of discrimination and association in explaining experts’ behaviour,

although the holistic nature of these processes, essential in Dreyfus’s theory, is not

shared by the other two theories.

The differences between the three theories have implications for practice and

research. The assumption that experts’ knowledge is composed of chunks, as

opposed to Dreyfus’ assumption that it is holistic in nature, makes it possible to

design curricula where the instructional material is decomposed into small bits and

where computer-based tutors may be used (Anderson et al. 2000; Gobet and Wood

1999). Assuming that knowledge also consists of templates leads to considerations

as to how schematic knowledge can be best acquired and taught (Gobet 2005); for

example, variety in the curriculum material is an essential requirement for making

possible the acquisition of templates. By contrast, an emphasis on the holistic nature

of expertise, with the implication that experts’ understanding cannot by analysed

into components, leads to different types of curricula, where engagement in real-life

situations is emphasized. The importance of such situation is of course not negated

by chunk-based approaches, but seen as complementary to other instructional

methods. As for empirical research, the impact of the two approaches can readily be

seen. Traditional research on expertise has been largely motivated by Chase and

Simon’s (1973) chunking theory, and has been characterised by a substantial

number of experimental and quantitative observational studies, and to a lesser extent

computer models (for reviews, see Ericsson et al. 2006; Gobet et al. 2004).

Research on nursing expertise, perhaps the domain that has been most influenced by

Dreyfus’ theory, is mostly made up of qualitative observational studies, of which

many consist of phenomenological analysis (e.g. Benner 1984; Benner et al. 1996),

and quantitative approaches are explicitly considered suspicious (Benner 1984).

In sum, this paper has presented a new theory of intuition, part of which is

formally expressed as a computer program. We have argued that it accounts for all

the phenomena taken as signatures of intuition. Crucially, the new theory leads to

the conclusion that, while aspects of expert intuition can be characterized as holistic,

the mechanisms that lead to them are local.
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Appendix: Trace of CHREST in a Memory Recall Task

Figure 6 illustrates the information held in CHREST’s STM during the 5-s

presentation of a position (see Fig. 1) during a task, using the timing of the eye

fixations as a clock. Given the context of this paper, we are mostly interested in

what happens at the beginning, and thus provide all the STM states during the first
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Fig. 6 The time course dynamics of STM during the 5-s viewing of a chess position, according to
CHREST
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Fig. 6 continued
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2-s. For each panel in the figure, the first line shows the time at which the fixation

was carried out, the following lines the state of STM (where #C means ‘‘chunk’’ and

#T means ‘‘template’’), and the diagram shows the pieces that would be replaced on

the board if CHREST had to recall the position at this point. The pieces or squares in

grey indicate that this information has been encoded in the slot of a template. The

version of CHREST used in this simulation had 100,000 chunks, and is

representative of a chess master.

At 30 ms, no chunk has been encoded in STM. At 240 ms, the program has

recognized a medium-sized chunk, which happens to be a template. It is a fairly

common black castling constellation. However, at this point, CHREST did not have

the opportunity to encode anything in the template slots and used only the core of

the template. Note that the black bishop, the black knight, and one of the black

pawns are incorrectly located. This is due to the fact that CHREST enables some

Fig. 6 continued
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fuzziness in the way patterns are matched, the information used to sort to a given

node not being necessarily identical to the information stored at this node.11 At

490 ms, a second chunk has been recognized, and a template slot has also been filled

(black bishop on c6).

At 750 ms, a second piece has been encoded in the template slots, and a third

chunk has been recognized. This new chunk does not add new information, as the

three pieces were already encoded by the main template. This is typical of the way

CHREST works, where there is always the possibility that the information held in

different chunks overlaps. At 850 and 960 ms, no new information has been added.

At 1,060 ms, the only progress is that the white pawn on c5 has been encoded in one

of the template slots. This illustrates that the program has a fair amount of

redundancy, as this pawn is now encoded both in a chunk and in a template.

At 1,350 ms, a larger chunk on the king’s side has been recognized, which

correctly encodes the location of the black pawn on h6. There is now uncertainty as

to whether CHREST would now replace the pawn on h7 or h6, and this type of

uncertainty with lateral pawns is typical of human behaviour (De Groot and Gobet

1996; Jongman 1968). Given that visual STM is limited to three items, this new

chunk has dislodged the small chunk on the black queen’s side. The black queen has

now been encoded as well in the template. At 1,490 ms, the white knight on e5 has

been encoded in the template, and at 1,610 ms, the same happens to the black knight

on f4. It is interesting to note that, just like most of the masters studied by de Groot

and Gobet (1996), CHREST memorised the four perceptually salient pieces in the

centre of the board (Pc5, Nd6, Ne5, and nf4).

At 1,740 and 1,850 ms, CHREST has encoded that the squares e8 and d8 are

empty. This is not particularly useful for a recall task, but this is clearly something

that chess masters occasionally do (De Groot and Gobet 1996), as empty squares are

important strategically (Holding 1985; Reynolds 1982; Tikhomirov and Poznyans-

kaya 1966). At 2,100 ms, the program shows the same state of affairs.

We can now observe in a fast forward mode what happens during the last 3-s. At

3,110 ms, the program has recognized a medium-sized chunk on the white king’s

side, which also happens to be a template. The template has enabled the encoding of

three white pieces. The situation remains unchanged at 4,000 and at 4840 ms. Thus,

at the end of the presentation of the position, the program would replace 21 pieces

correctly out of a total of 24 pieces. Three pieces are missing (all on the ‘‘a’’

column), and three placements would be counted as errors of commission (black

bishop on e7, black knight on f6, and black pawn on h7). (While hesitating about the

placement of a pawn or a piece, such as the black pawn h7/h6 in our example,

humans either go for one location or replace both of them.) This amount of recall is

fairly consistent with what has been observed in the literature with strong masters

(Gobet et al. 2004).

11 Technically, this is due to the way the mechanisms of discrimination (construction of the network) and

familiarisation (building of the information held at a given node) work together. The possible discrepancy

between the information used to reach a node and the information stored at this node offers an important

means of simulating errors in chess (De Groot and Gobet 1996; Gobet and Simon 2000) and in verbal

learning (Feigenbaum and Simon 1984).
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What this example illustrates is that CHREST incrementally constructs a

representation of the position in memory, and that the access to templates seriously

boosts its memory. In particular, the recall performance would be fairly low without

the possibility of encoding information in templates (that is, without the pieces on

greyed squares). This is consistent with what has been observed with human masters

when the presentation time ranges from 1 to 60 s (Gobet and Simon 2000).

The astute reader may object that it is unclear how the program would see the

checkmate threat (Qg5 9 g2; the queen is protected by the black bishop on c6 and

the black knight on f4) within 5-s, given that the information on the white king’s

side has been perceived fairly late, and no single chunk encodes both the black

queen and the white king. Interestingly, out of the four human masters whose

behaviour is discussed in De Groot and Gobet (1996) with respect to this position,

only one saw this threat. Indeed, whereas masters reliably see threats when the

attacking and attacked pieces are either close together or when one of the pieces is

perceptually salient, as noted by Jongman (1968), the data of De Groot and Gobet

(1996) clearly show that even ‘‘obvious’’ threats are often overlooked when these

characteristics are lacking. Thus, the detection of threats, which of course plays a

key role in understanding the meaning of a position, does not always operate

automatically. In this respect, the trace produced by CHREST is consistent with the

empirical data.
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