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Abstract This paper deals with the question: What are the criteria that an ade-

quate theory of computation has to meet? (1) Smith’s answer: it has to meet the

empirical criterion (i.e. doing justice to computational practice), the conceptual

criterion (i.e. explaining all the underlying concepts) and the cognitive criterion (i.e.

providing solid grounds for computationalism). (2) Piccinini’s answer: it has to

meet the objectivity criterion (i.e. identifying computation as a matter of fact), the

explanation criterion (i.e. explaining the computer’s behaviour), the right things

compute criterion, the miscomputation criterion (i.e. accounting for malfunctions),

the taxonomy criterion (i.e. distinguishing between different classes of computers)

and the empirical criterion. (3) Von Neumann’s answer: it has to meet the precision

and reliability of computers criterion, the single error criterion (i.e. addressing the

impacts of errors) and the distinction between analogue and digital computers cri-

terion. (4) ‘‘Everything’’ computes answer: it has to meet the implementation theory

criterion by properly explaining the notion of implementation.

Keywords Cognition � Computation � Computationalism � Computers �
Implementation � Practice � Subject � Matter � Theory � Turing machines

Introduction

There’s a widespread tendency to compare minds to computers and to explain minds

in computational terms. However, I maintain that a deeper understanding of
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computation is required beforehand. According to proponents of computationalism,1

minds are computers, i.e., mechanisms that perform computations. In my view, the

main reason for the controversy about whether computationalism is accurate in its

current form, or how to assess its adequacy is the lack of a satisfactory theory of

computation. Before a critical debate regarding the relation between computations

and minds can take place some preliminary groundwork is needed.

The purpose of this paper isn’t to offer a theory of computation. It’s rather meant

to resist Smith’s discouraging claim that no such theory is possible. His project

begins as a search for a comprehensive theory of computation, which is able to do

empirical justice to practice and cognitive justice to the computational theory of

mind. A rigorous commitment to the three criteria outlined below ultimately leads

him to recommend a radical overhaul of our traditional conception of metaphysics.

The focus of philosophical discussions concerning computation in the second half of

the 20th century shifted from the disciplines of logic and mathematics into cognitive

sciences and philosophy of mind, primarily related to computational theories of

mind. However, Smith asserts that what was lacking throughout these philosophical

discussions was a foundational investigation of the nature of computation itself.

In what follows, I argue that Smith’s criteria are inadequate and over demanding.

These criteria have not only led him to reject existing theories of computation as

inadequate, but also to pre-empt any venture to provide a satisfactory theory. By

presenting the competing answers I show that there are acceptable alternatives to

Smith’s view, which allow for future theories of computation to be put forward

again. My aim is not to nominate the ‘correct’ answer, but to point out the criteria

that are inadequate, and to emphasize those that are mandatory for candidate

theories of computation.

Evidently, the first answer advocated by Smith is the primary one examined in

the paper. It states that an adequate theory of computation has to meet strict criteria.

It has to do justice to both computational practice and the computation theories of

mind. Firstly, every satisfactory theory of computation should be able to account for

the computational systems that made Silicon Valley famous. It has to distinguish

models from implementations, analyses from simulations etc. Secondly, computa-

tion became an essential ingredient in cognitive sciences and philosophy of mind. A

candidate theory has to take its consequences for computationalism into account.

The second answer advocated by Piccinini states that an adequate theory of

computation has to do justice to the practices of computer scientists and

computability theorists. He emphasizes the importance of clearly distinguishing

between things that compute and things that don’t. He also maintains that sufficient

attention should be given to failure to compute correctly as part of a satisfactory

account. Piccinini offers his own account of computation, namely the mechanistic
account of computation. According to this account computation doesn’t presuppose

representation or semantic content, unlike many accounts in the philosophical

literature (cf. Fodor 1975; Pylyshyn 1989). Hence, in his opinion, it is ideal for

grounding the comparison and assessment of computational theories of mind.

1 Throughout this paper I use computationalism and the computational theory of mind interchangeably to

denote the same thing.
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The third answer advocated by Von Neumann is an attempt to outline the logical

foundations of computation. His approach was characterized by the application of

mathematical and logical methods to the foundations of computation. Von Neumann

compared the logical aspects of computers with living organisms and the organization

of the central nervous system. The analogue—digital distinction criterion isn’t unique

to theories of computation; living organisms also exhibit this principle.

The fourth answer advocated by Scheutz, Putnam and others states that a

satisfactory account of computation is underpinned by an adequate theory of

implementation. Views like those of Putnam and Searle imply a very loose notion of

computation so that almost everything can be deemed to be computing. Searle’s

notorious wall and Putnam’s realization theorem of finite automata suggest that

even a rock can be claimed to be computational. Scheutz suggests that Putnam’s

realization theorem emphasizes the need for a theory of implementation. He offers

an account that appeals to function realization, rather then the standard concept of

physical state-to-computational state correspondence.

The answers presented in this paper can be found in relevant literature, but they

are not exhaustive by any means. Readers, who are interested in the foregoing

question, are invited to consider this paper as a starting point for further research.

Supplementary answers could be taken into account like those advocated by Church

and Turing, Gandy, Copeland, Fodor and Pylyshyn and others as well as theories of

quantum or molecular computations.

Smith’s Answer

According to the first answer an adequate theory of computation has to meet the

empirical criterion, the conceptual criterion and the cognitive criterion (Smith 1996,

pp. 14–17; 2002). Smith claims that the extant construals fail to meet either a single

criterion or a combination of criteria. In his view, questions like what computers are

or what computation is require tackling other questions of metaphysical nature. Any

attempt to characterise computers as universal, programmable, rule following etc.

inevitably appeals to higher order properties. And these properties are of the wrong

metaphysical kind to be candidates for what is distinctive or characteristic about

computation. He asserts that not only must an adequate account meet the three

criteria above and include a theory of semantics; it must also include a theory of

ontology. It is not just intentionality that is at stake, in his view, but so is

metaphysics. The most serious problems that stand in our way of developing an

adequate account of computation are as much ontological as they are semantical.

The formal symbol manipulation construal, for instance, is usually defined as

manipulation of symbols in a way that is independent of their interpretation. Thus,

some may think that it needn’t rely on any semantic foundations. In his opinion, this

is simply mistaken because it is only independent at the level of the phenomenon.

But, at the ontological level this construal is dependent on semantics—it is defined

in terms of interpretation of symbols. Symbols must have a semantic character, i.e.,

have actual interpretations, so that there is something substantive for their formal

manipulation to proceed independently of. Without it, the formal symbol
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manipulation construal would simply be vacuous. Smith claims that the same

applies to all extant construals of computation.

The Empirical Criterion

This criterion dictates the need to be compliant with the extant computational practice.

It means that any such a theory should be capable of explaining a program like the

Open Office Writer. It should account for its construction, maintenance and everyday

use (Smith 1996, p. 5; 2002, p. 24). The empirical criterion ‘‘does justice’’ to

computational practice by keeping the analysis grounded in real world examples of

computers. The computer (as well as the Internet) revolution demonstrates again and

again its ability to evolve, expand and adjust beyond the alleged constraints of any

computational theory. This criterion serves to question the legitimacy of all extant

theoretical perspectives. In this context, Silicon Valley is nominated as the gatekeeper to

decide whether in practice something may be deemed computational. An adequate

theory of computation must make a substantive empirical claim about what Smith calls

computation in the wild, which is the body of practices, techniques, machines, networks

etc. that revolutionized the last decades (Smith 1996, pp. 5–6; 2002, pp. 24–25).

The Conceptual Criterion

This criterion dictates the need to repay all the intellectual debts, in the sense that any

such theory clearly ought to explain underlying concepts like: compiler, interpreter,

algorithm, semantics etc. With that in mind, we should understand what the theory

says, its origins and its implications (Smith 2002, p. 24). The conceptual criterion,

which is no more than a meta-theoretical constraint on any theory, is especially

crucial in the computational case for two main reasons. The first reason is that many

candidate theories of computation rely on important notions such as interpretation,

representation and semantics with no proper explanation of these notions. The

second is that there’s a widespread tendency to resort to computation as a possible

theory of exactly those very ‘disobedient’ notions. The end result is thus a conceptual

circularity that deprives candidate theories of their explanatory power (ibid).

The Cognitive Criterion

This criterion dictates the need to provide solid grounds for the computational

theory of mind, often known as computationalism, the thesis that regulates the

traditional fields of artificial intelligence and cognitive science (ibid). This criterion

is also a meta-theoretical constraint on the form of any candidate theory of

computation. In the present context, computationalism has potential epistemological

consequences depending on the theory of computation one chooses to endorse. If the

computational theory of mind were true then a theory of computation would apply

not only to computing in general, but also at the meta-level to the process of

theorizing. In other words the theory’s claims about the nature of computation

would apply to the theory itself (i.e. the product). So if computationalism was true,

then upon judging a candidate theory of computation and finding it to be adequate or
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not, there will be supposedly no reason to trust the conclusion. The reason for that is

that the presumed meta-theory is conceptually inadequate. In sum this criterion

directly translates to the following questions:

1. What computational theory of mind would be generated?

2. What form theories in general would take, on such a model of mind?

3. What would the candidate theory of computation in question look like?

4. Would the resulting theory of computation hold true of computation in the

wild?

5. Would mentation and theorizing be computational as well?

None of those commits in advance to computationalism being true or false

(Smith 1996, pp. 6–8; 2002, pp. 25–28).

Asking too Much and too Little

Smith rightly asks that candidate theories do justice to computational practices or to

what he calls computation in the wild. Elsewhere he claims that there’s a big gap

between the theory and the practice, which the theory won’t be able to overcome.

Smith calls it the explanatory gap. True, any such theory has to account to some

extent for the computer practices that have penetrated every aspect of our lives in

recent years. Indeed, a candidate theory shouldn’t be fully abstract and detached

from computation in the wild. But the technological gap, which is boosted by the

computer revolution and the Internet revolution, doesn’t force us to give up in

advance simply because the theory is supposedly left far behind. An adequate

account needn’t capture and explain all the aspects of every existing technological

breakthrough in computer science, artificial intelligence, molecular computers etc.

Computation is a highly diversified and fluid concept, which may not be fully

explained by a strict and definite theory. Instead a more flexible—context based

account should be sought. Wittgenstein’s (2001, pp. 52–56) rejection of general

explanations and definitions based on sufficient and necessary conditions in his

discussion about language and games may be very well applicable to computation.

Rather than looking for one essential core to account for all the computation

practices and defining a clear boundary, a disjunctive account can be given. A

candidate theory can account for Turing machines, desktop computers and

compilers. This theory can be limited to do justice to the basic computing devices

only or be extended to account for more complex devices such as parallel and

distributed computers, high speed network elements, expert systems, molecular

computers etc. Every such computing device or computation process will be

accounted for based on the context and whether it exhibits sufficient family

resemblance to the concept of computation. This however isn’t to say that such a

theory would be so loose as to accept any device, since this may result in an account

that attributes computation to any physical system (e.g. Searle’s wall).

Smith (1996, pp. 8–9; 2002, pp. 28–31) also claims that primary candidate

theories fail to meet the empirical criterion being incapable of making sense of

current systems and even much less when the new generation is concerned.
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Eventually Smith (2002, p. 51) makes the strong claim that it’s not only that we don’t

currently have any satisfactory theory of computation, but also that we’ll always fail

to provide an adequate theory. I believe that this assertion is too hasty. The empirical

criterion may be indeed hard to meet, but insufficient to dismiss any attempt to

provide an adequate theory. There’s nothing that prevents us from refuting a

particular theory of computation, and providing a new account, which addresses the

weaknesses of its predecessor. Precisely as Popper (2002a, pp. 124–125; b, pp. 9–10)

suggested a good scientific theory is subjected to falsification under the appropriate

conditions. A scientific theory should undergo genuine tests in an attempt to refute it.

This method of elimination ensures that only the fittest theories survive. Scientific

theories are tentative solutions to problems, which can never be justified, and theories

of computation are no different. Computer science is by definition of a scientific

nature and so are theories of computation. When an existing theory of computation is

falsified, its weakness should be addressed by a new candidate theory.

Smith’s cognitive criterion is no more convincing than his empirical criterion.

Whether the claims of computationalism are true or not isn’t meta-theoretically

relevant to a candidate theory of computation. Regardless of the very critical debate

regarding the legitimacy of computationalism, its claims needn’t dictate any meta-

level constraints on the nature of the theory of computation. If anything it should

rather be the other way around. Any proponent of computationalism has to show why

minds work the same way that computers do. Smith accurately claims that if

computationalism were found to be true, there would be significant epistemological

consequences for the process of theorizing itself. But if we take his view seriously,

then computationalism can’t be an adequate theory. To put it simply, according to

computationalism, the mind is a computer (whether it is a digital computer or any

other). Smith (2002, p. 51) claims that we’ll always fail to provide an adequate theory

of computers. From these two premises it follows that proponents of computation-

alism will always fail to provide an adequate computational theory of the mind.

Smith argues that if computationalism were true, then a theory of computation

would apply not only to computing, but also to the process of theorizing. So unless

one nails down the reflexive implications of the candidate theory of computation on

theorizing itself, and examines this theory from a reflexively consistent standpoint,

one will be incapable of judging whether it’s adequate. If computationalism were

false, then this criterion would become irrelevant anyway. But if it were true, then

the cognitive criterion would a-priori pre-empt any attempt to produce a theory of

computation. The result would be that a theory, which deals with computers, is

reflexive and deals with minds as well. The cognitive process of theorizing itself

may thus be said to be computational. The best approach to deal with Smith’s

argument will be to simply avoid the trap. The burden of addressing the supposedly

reflexive characteristic of the theory lies on computationalism rather on any theory
of computation. According to computationalism minds are computers in whatever

way that computers are computers. Hence, proponents of the computationalism

ought to address any reflexive implications of any particular theory of computation.

In my opinion the five questions, which underlie the cognitive criterion, don’t

contribute much from a meta-theoretical perspective when assessing the adequacy

of a candidate theory. In reply to the first question: ‘‘what computational theory of
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mind would be generated?’’ my response is that if anything, it should be rephrased

to pose a difficulty for candidate theories of computation. The following case, for

instance, may be a potential obstacle for a candidate theory of computation. Assume

that computationalism is true and human beings are indeed computers. And suppose

that a particular theory of computation leads to the conclusion that human beings

can’t consciously follow an algorithm. Such a theory declares that no computer (of

any kind), which works by following rules unconsciously, could consciously follow

rules. An inevitable result would be that we have to give up either this particular
theory of computation or computationalism.

Clearly, we follow many rules unconsciously. Even obeying traffic rules

eventually becomes an almost programmed task, when we find ourselves driving

everyday without even realizing how many driving related decisions we make

unconsciously. But undoubtedly this doesn’t mean that we don’t consciously follow

rules as well. When you walk along a country track, you step over little stones, tree

branches and makes adjustments for various obstacles in your path of which you

have no conscious awareness. Further, there is abundant evidence that indicates that

people are capable of following rules consciously. This invites the question whether

one should reject the candidate theory of computation or simply dismiss

computationalism as false.

The particular theory of computation in this case declares that computers follow

rules unconsciously and are incapable of consciously following rules. But such an

analysis anthropomorphizes computation by introducing concepts like conscious-

ness into the discourse, whereas theories of computation ought to be solely

committed to capture the essence of computation. Evidently, the imminent outcome

is a cross reference between the theory of computation and computationalism. Any

‘careless move’ in theorizing about computation immediately affects computation-

alism. And likewise any deviation in the way computationalism explains

consciousness changes this particular theory of computation. Unfortunately, Smith

maintains that a theory of computation has to be judged based on its consequences

for computationalism rather then vice versa. The preferred approach should be such

that candidate theories of computation remain detached from anthropomorphic

explanations. It ought to explain necessary notions like algorithms, implementation,

complexity, error handling etc. in logical and mathematical terms. Furthermore, one

may also simply conclude that a particular theory of computation leads us to reject

computationalism altogether2 (e.g. people are undeniably capable of following

algorithms consciously, thus they can’t be computers of the sort mentioned above).

In reply to the second question: ‘‘what form theories in general would take, on

such a model of mind?’’ my response is: it shouldn’t matter. The reasons for that

were already outlined above. The same applies for the third question. In reply to the

fourth question: ‘‘would the resulting theory of computation hold true of

computation in the wild?’’ my response is no different than my criticism of the

2 It may easily turn out that some phenomena like consciousness can’t be explained in computational

terms as its essence can’t be fully captured by simply appealing to algorithmic processes or information

processing accounts and the likes. However, certain kinds of cognitive processes and capacities such as

learning, inferring, calculating etc. may still be given computational accounts. This may lead to providing

a weaker version of computationalism rather then dismissing it altogether.
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empirical criterion. In reply to the last question: ‘‘would mentation and theorizing be

computational as well?’’ my response is: trivially, yes. Mentation and theorizing

should be explained in terms of minds and cognitive processes. Theorizing is only

made possible due to our thinking faculty and is as such a direct derivative of the

mind. In consequence, if computationalism were true, then mentation and theorizing

would be likewise computational.

It appears to me that Smith is asking too much and too little with regard to

potential theories of computation. The foregoing criteria constrain any candidate

theory and leave very slim chances of providing an adequate theory. On the other

hand, I believe that he has overlooked other essential criteria, which should be

seriously considered. For instance, the miscomputation criterion and what I call the

dichotomy criterion. The former criterion dictates that any theory of computation has

to explain miscomputation as an inevitable feature of computation. I shall elaborate

more on this criterion in the answers that follow. The latter criterion dictates that

things that compute should be clearly distinguished from things that don’t.

It may be argued that the dichotomy criterion is too strong since computation is a

graded concept. According to this line of argument, different devices and

mechanisms range at different points on the scale. Some paradigmatic examples

like UTMs, digital computers, multiple-processing computers etc. clearly perform

computations and are located at one extreme end of the scale. Other examples like

digestive systems, walls, toasters etc. don’t perform computations, and are located at

the opposite end of the scale. Whereas in the middle ground one may find

mechanisms such as lookup tables, Ethernet cards, finite state automata etc. that

aren’t always clear cut cases. However, this criterion has to be methodically

followed by any candidate theory of computation. Setting the goal high enough

regarding what constitutes performing computation and what doesn’t may achieve

better results. A theory of computation, which clarifies a larger number of

computing mechanisms, is ceteris paribus better than one that accounts for fewer. If

it were able to achieve that, borderline cases might be left in the grey area. We may

still end up with borderline cases of computing mechanisms. But this approach has a

better chance of producing a broader version of a theory of computation.

Smith (2002, pp. 50–51) concludes that there’s no distinct ontological category of

computation, one that will be the subject matter of a deep and explanatory theory.

The things that Silicon Valley calls computers do not form a coherent intellectually

delimited class. In his opinion, computers turn out in the end to be rather like cars.

They are objects of personal, social and economical importance, but not in

themselves, the focus of an enduring intellectual inquiry. Computers aren’t ‘‘as

philosophers would say, a natural kind’’ (Smith 2002, p. 51). Computers are indeed

like cars in that they are material objects, which occupy space, but the latter don’t

necessarily require an adequate theory, computers do. It is generally clear cut

whether an arbitrary object is deemed a car (or a vehicle) and what is involved in the

operation of cars. Computers, on the other hand, are not always as clear cut, even

though anybody will acknowledge that a personal desktop computer is a computer.

It is not always so well understood what constitutes computation, which is the

defining essence of computers. Computers are hardly a natural kind, since they are

inanimate man-made objects.
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But exactly because we don’t understand what computation is, an intellectual

inquiry is called for; one that will seek to explain concepts like: algorithm,

implementation, interpretation, compilation and so forth. It may also be true that

things that Silicon Valley calls computers do not form a coherent intellectually

delimited class. And if that were the case, then the best thing to do would be

dismissing the requirement that something only computes if Silicon Valley so

claims. Computation is a distinct subject matter, and this is probably why there’s

been an ongoing debate about computation and computers during the last century.

Computer manufacturers build them although computation is not yet thoroughly

understood. An object that has wheels and can take us from point A to point B is

usually considered to be a car or some kind of a vehicle.

The challenges that computer scientists face can’t be dismissed, but contrary to

Smith, I maintain that computation does constitute a distinct subject matter, which

calls for deeper research and analysis. He concentrates so much on ‘‘doing justice’’

to the practice (or computation in the wild) and to computationalism, that he

neglects essential meta-theoretical constraints. And those ‘neglected’ constraints are

the ones, which are necessary to providing an adequate theory of computation. The

following answers can be examined as alternatives to Smith’s criteria, and

illuminate what he has overlooked.

Piccinini’s Answer

Piccinini (2007) offers an account of computation without representation. He

maintains that computation has to be explained in mechanistic terms in a way that is

analogous to engineering. He proposes a mechanistic account of computation,

which doesn’t presuppose semantic content of computational states and processes.

Rather, it states that the capacities of a computing mechanism are due to the

organization of its sub components and their corresponding functions. This account

appeals to mechanistic explanations, and endorses the distinction between

successful computations and miscomputations.

The notion of mechanistic explanation applies to computers as computing

mechanisms whose function is computing. Furthermore, it matches the language

and practices of computer scientists and computability theorists and thus meets the

empirical criterion, which is put forward by Piccinini. Likewise, in his opinion this

account successfully meets the remaining criteria: the objectivity criterion, the

explanation criterion, the right things compute criterion, the miscomputation

criterion and the taxonomy criterion. According to this answer an adequate theory of

computation has to meet the aforementioned six criteria.

The Objectivity Criterion

This criterion dictates that an adequate theory of computation ought to identify

computations as a matter of fact. Piccinini asserts that some philosophers (like

Searle and Putnam) have suggested that computational descriptions are vacuous,
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because any system may be described as performing any computation. So allegedly

there is no further fact of the matter as to whether one computational description is

more accurate than another.

Computer practitioners appeal to empirical facts about the systems they study,

design and implement to determine which computations are performed by which

mechanisms (or components). They apply computational descriptions to concrete

mechanisms in a way entirely analogous to other credible scientific descriptions

(e.g. physicists who use empirical descriptions to explain natural phenomena).

Moreover, Piccinini argues that many psychologists and neuroscientists are trying to

understand which computations are performed by minds and brains. They do so by

appealing to empirical evidence about the systems they study (ibid, pp. 502–504).

The Explanation Criterion

This criterion dictates that an adequate theory of computation should explain the

behaviour of computing mechanisms. It ought to explain how program execution

relates to the general notion of computation. Inner computations may explain outer

behaviours of computers. Normally the outer behaviour of ordinary digital computers

is explained by appealing to the programs they execute. The literature on

computational theories of mind contains explanations, which appeal to the

computations performed by the mind. And it also contains assertions that cognitive

processes should be explained in terms of program execution (ibid, p. 504).

Traditionally, computational explanations have been translated or reduced to

explanations by program execution. Piccinni however resists this one-to-one

translation. He gives music boxes and automatic looms as examples of mechanisms,

which operate by executing programs, but do not perform computations (ibid, p. 517).

The Right Things Compute Criterion

This criterion dictates that a candidate theory of computation need to only

encapsulate the mechanisms and devices that actually compute. Such a theory

should entail that paradigmatic examples like digital computers, Turing machines,

and finite state automata, compute (ibid, p. 504). On the other hand, an adequate

theory of computation ought to exclude non-computing mechanisms and systems.

Such a theory should entail that paradigmatic examples like planetary systems,

digestive systems, Hinck’s pail3 and Searle’s walls don’t perform computations.

Digital computers, Turing machines, and finite state automata perform computations

and constitute the subject matter of computer science. To the extent that the

assumptions of computer science practitioners ground the success of their science,

they ought to be respected (ibid, pp. 504–505).

3 Ian Hinckfuss presented the problem case (known as ‘Hinck’s pail’) to attack the functionalist theory of

mind in a discussion at the Australasian Association of Philosophy Conference, Canberra, 1978. He

described a pail of spring water in which at the micro level a vast complexity of things is going on. At the

molecular level an even more complex activity is required to sustain the micro level ‘things’ in the water.

Some may argue that this underlying complex activity might realize a human program for a brief period

(Copeland 1996, p. 336).
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The Miscomputation Criterion

This criterion dictates the requirement that an account of computation addresses the

fact that a mechanism can miscompute, i.e. a computation may go wrong. A

mechanism M is said to be miscomputing in case computing a function F on input I,
where F(I) = O1, but M outputs O2, where O1

= O2. An adequate theory of

computation should explain how it’s possible for a physical system to miscompute.

This requirement plays an important role in computer science and in computation in

the wild. Computer science practitioners devote a large portion of their time and

efforts to avoid miscomputations and coming up with the appropriate ways to

prevent them (ibid, p. 505).

The Taxonomy Criterion

This criterion dictates the requirement that any adequate theory of computation

distinguishes between capacities of different classes of computing mechanisms. For

instance, logic gates, which are a very low level component in computers, can

perform only trivial operations on pairs of bits. More sophisticated calculators,

which are non-programmable, can compute a finite number of functions for inputs

of bounded size. And ordinary digital computers can in-principle compute any

function on any input until they run out of memory. If we choose an account like

that of Cummins, who claims that computing amounts to program execution, then

we can hardly distinguish computing capacities of UTMs and digital computers

from non-universal Turing machines and finite state automata. And finite state

automata aren’t characterized by computer scientists as executing programs. The

difference between computing mechanisms, which execute programs, and those that

don’t is important to computer practice and according to Piccinini it should also

make a difference to theories of mind (ibid, pp. 505–506).

The Empirical Criterion

This criterion dictates the need to account for computational practice and existing

computational systems and applications. This criterion is distinct from the other

criteria proposed by Piccinini. The former criteria are explicit in his paper (ibid, pp.

501–506) whereas this criterion is only implicit. Piccinini emphasizes the

importance that computational practice plays in an adequate account of computa-

tion, is a way similar to Smith’s empirical criterion. However, Smith asserts that this

criterion questions the legitimacy of all the theoretical perspectives and nominates

Silicon Valley to decide whether in practice something can be deemed computa-

tional. In short, he presents this criterion to undermine the likelihood of producing

an adequate theory of computation. Piccinini is only implicitly committed to a

narrower conception of doing justice to the body of practices. He claims that the

existing computational practice, computing applications, computing systems etc.

need to be properly taken into account.
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An Adequate Alternative

Though some of Piccinini’s criteria require some fine-tuning, I believe that they

serve as an adequate alternative to those defended by Smith. The former presents

decisive criteria that serve to discriminate between a satisfactory theory of

computation and an unsatisfactory one. This is clearly not to say that I necessarily

accept the mechanistic account of computation that he proposes in his paper

(Piccinini 2007). The criteria above deal with essential characteristics of compu-

tation and address the need to account for miscomputation as well. The objectivity

criterion dictates that whether a mechanism, device, or any other objects perform

computation is a matter of fact. Performing computation is an empirical fact similar

to the functional role of the heart as a blood pump or the photosynthesis process in

plants to produce glucose. Scientists from various disciplines resort to empirical

studies to explain different phenomena, and so do computer scientists when dealing

with computations. An adequate theory of computation thus ought to provide a

suitable framework according to which attributing computation to any system isn’t a

trivial matter.

It is likewise crucial for such a candidate theory to show why certain systems

perform computations whereas others simply don’t perform any. Some philosophers

assert that almost any system, which is complicated enough, realizes a function etc.,

can be deemed performing computations (e.g. Searle’s wall implementing the

WordStar program, Scheutz’s systems that realize a function, etc.). In my opinion,

views like these trivialize the notion of computation and consequently theories of

computation become trivial. If everything can be deemed a computer, then

computational explanations become pointless and lose any philosophical interest.

The miscomputation criterion is yet another important feature of any adequate

theory of computation. Computational systems are susceptible to miscomputations

that result in an abnormal behaviour, which generally speaking may end in one of

two ways. The system can ‘handle’ the miscomputation and resume its normal

functioning (perhaps losing some output in the process), in a best case scenario. Or

it can malfunction and stop functioning completely, in a worst case scenario. These

miscomputations are known in computer science as bugs or faults and are likely to

be present in both hardware and software systems. Though many might expect

software (as well as hardware) to be bug free it is hardly ever the case.4

To briefly explain, software’s life cycle includes, among others, phases of design,

cutting code and testing. Theoretically, if the testing phase is long and rigorous

enough, the software should be bug free. But in practice even with sufficient testing

there are still many bugs lurking in the corner. There are two fundamental types of

bugs: logical bugs and assumption oriented bugs. The former type of bugs can

usually be attributed to human error, introduced during the software-coding phase.

The assumption-oriented bugs are those ‘pieces of code’ that developers implement

as part of the design assumptions. Some assumptions are made, for instance, in an

4 This is not to say that every program inevitably contains bugs, but it rather refers to the more complex

programs, which can be found in commercial use, for instance. Clearly, a trivial program comprised of a

single line of code, which prints ‘Hello World’, will be most likely bug free.

390 N. Fresco

123



attempt to deal with extreme conditions encountered during program runtime (e.g.

system running out of memory). Miscomputations are almost an inherent part of any

computation process and this is why practitioners of computer science spend so

much time attempting to handle as many potential miscomputations as practical.

Modern programming languages such as C++ and Java contain built-in

mechanisms to handle such miscomputations, whereas older languages like C and

Pascal don’t. The classic C approach to this lack of built-in mechanism is using

return codes. Each function returns a value indicating success or failure and

accordingly every function must check the return code of every function call it

makes. C++ and Java in contrast have a built-in mechanism, which is called

exception handling, for handling these errors. The basic function of exception

handling is to transfer control to an exception-handler when an error occurs. If a

failure code is encountered then the program invokes its error handling code and

resumes its normal function as long as it’s possible. Miscomputations are likely to

manifest themselves in practical applications and computational systems and

therefore mustn’t be ignored by any candidate theory of computation.

It may be argued that miscomputations are analogous to misrepresentations. But

such a claim presupposes that computation resembles representations to start with.

Dretske (1998, pp. 65–70) claims that to misrepresent is to say or mean that P when

P is not the case. It is the power to represent something as being so, when it is not

so. The capacity to correctly represent how things stand in the world is of paramount

importance, but only insofar as the representation in question is the sort of thing that

can get things wrong. Telling the truth is a virtue, only if one is capable of lying in

the first place. Only if a system has the capacity to misrepresent, does it have the

power to get things right, something approximating meaning. But according to

Dretske’s account of misrepresentation, computers only derive the capacity to
represent or misrepresent from humans, who already have the full range of

intentionality. The computers capacities to represent are merely reflections of our

minds.

Piccinini (2007, p. 505) argues that though miscomputation is analogous to

misrepresentation according to Dretske, it’s not the same. A computer may compute

correctly or incorrectly regardless of whether it represents or misrepresents
anything. A painting, on the other hand, may represent correctly or incorrectly

regardless of whether it computes or miscomputes anything. A computer may fail to

perform its functions in a variety of ways (e.g. running out of memory, a hardware

malfunction, etc.). Miscomputations may occur regardless of whether these

functions represent anything external to the computer or not. Some miscomputations

may result in a complete halt of the computation process, in which case the end

result isn’t incorrect but simply non-existent. And clearly, nothing can neither

represent nor misrepresent.

In sum, Piccinini arrives at an impressive set of criteria, which paves the path for

theorists of computation. However, I believe that some aspects of his answer need to

be slightly refined. For instance, in his opinion, finite state automata are

paradigmatic computing mechanisms (ibid). But finite state automata are merely

abstract descriptions of programs. A finite state automaton captures the basic

elements of an abstract machine: it reads in a string, and depending on the input and
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the way the machine was designed, it outputs true or false. Finite state automata are

highly useful practical abstractions, because they retain sufficient flexibility to

perform computational tasks. Yet, the hardware requirements for building them are

abstracted. They are analogous to the blueprints of an architect, which are plans for

a home or other structure in such detail as to enable workmen to construct it from

the print. They capture all the relevant details, but they are stripped of any physical

realization.

Von Neumann’s Answer

Back in the late 40s Von Neumann (1948) claimed that we were very far from

possessing a proper logical—mathematical theory of automata. He was correct then

and to some extent his claim is still resonating today. Von Neumann argued that

formal logic deals with rigid, all-or-none concepts and has very little contact with

the continuous concepts of the real and complex numbers. His motivation for

announcing the need for such a theory was the unlikelihood of constructing

automata of a much higher complexity than the ones, which existed then, without it.

The high reliabilities and error checking are crucial when dealing with high-speed

computing mechanisms. An exhaustive study, which takes them into account, and a

non-trivial theory of computation are certainly called for. According to this answer

an adequate theory of computation has to meet the precision and reliability criterion,

the single error criterion and the analogue—digital distinction criterion.

The Precision and Reliability Criterion

The result of complex computation performed by computing mechanisms may

depend on a sequence of a billion steps and has the characteristic that every step

actually matters or, at least, may matter with a considerable probability. This is the

most specific and most difficult characteristic of computing mechanisms (ibid, pp.

291–292). In dealing with modern logic the important thing is whether a result can

be achieved in a finite number of elementary steps or not. The number of steps,

which are required, is hardly ever a concern. In formal logic any finite sequence of

correct steps is, as a matter of principle, as good as any other. On the other hand,

when it comes to computing mechanisms the thing, which matters, is not only

whether it can reach a certain result in a finite number of steps at all, but also how

many such steps are needed (i.e. what computer science refers to as efficiency).

There are a couple reasons for that. The first reason is that computing

mechanisms are constructed in order to reach certain results in certain orders of

magnitude pre-assigned durations. The second reason is that componentry employed

in computing mechanisms has in every individual operation a non-zero probability

of malfunctioning (ibid, pp. 303–304). Any step is as important as the whole result

and any error can damage the entire result. Computing mechanisms not only have to

perform a billion or more steps in a short time, but in a considerable part of their

procedure they are permitted not even a single error (ibid, p. 292).
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The Single Error Criterion

Von Neumann compares the error handling of computing mechanisms to that of

living organisms. He asserts that the organism itself, without any significant external

intervention, corrects any malfunction, which occurs in it. The system must,

therefore, contain the necessary arrangements to diagnose errors, as they occur in

order to minimize their effects, and to correct or block the component at fault. Error

handling in computing mechanisms on the other hand is treated entirely different. In

actual practice every effort is made to detect any error as soon as it occurs. An

attempt is then made to isolate the erroneous component as fast as possible. The

basic principle of nature in dealing with errors is to make their effect as harmless as

possible and to apply correctives, if required. However, when computing

mechanisms are concerned an immediate diagnosis is required so an attempt is

made to ensure that errors become as conspicuous as possible. This way intervention

and correction can be applied immediately after diagnosis.

A computing mechanism could be designed so that it’s able to operate almost

normally in spite of a limited number of errors. However, as soon as the mechanism

has begun to malfunction it will most likely go from bad to worse and only rarely

restore itself. Therefore, it is essential that an intervention be made immediately

after an error occurs. The error-diagnosing techniques that are employed in practice

are based on the assumption that the computing mechanism contains only one faulty

component. Since this is the case, iterative subdivisions of the mechanism into its

sub components allows us to determine which portion contains the single fault. As

soon as this assumption is invalidated and a possibility exists that the mechanisms

may contain several faults, these powerful—dichotomic methods of diagnosis are

lost. A better built in error handling mechanism is then called for (ibid, pp. 305–

306).

The Analogue—Digital Distinction Criterion

All computing mechanisms fall into two main classes in a way, which is

immediately obvious. This classification is into analogy and digital machines.5 An

analogue computing mechanism is based on the principle that numbers are

represented by continuous physical quantities. Such quantities might be, for

instance, the intensity of an electrical current or the size of an electrical potential.

An entire aggregate of currents and electrical potentials serves as a ‘black box’ into

which two currents are fed to produce a current whose numerical magnitude is equal

to their product. These computers were fast, operated simultaneously, and had

inherently limited accuracy due to the noise level. The guiding principle concerning

this type of computers is the ‘‘signal to noise ratio’’. Hence, the question, which has

to be asked, is how large are the uncontrollable fluctuations of the mechanism,

which constitute the noise, compared to the significant signals, which express the

numbers on which the machine operates? The critical problem of any analogue

5 Von Neumann refers to analogue computers as analogy machines or analogy automata. I choose to use

the more common term analogue to avoid the debate about the analogue–analogy comparison.
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computation is how low it can keep the relative size of the uncontrollable noise level

(ibid, pp. 292–293).

A digital computing mechanism is based on the method of representing numbers

as aggregates of digits. These computers represent quantities by discrete states,

operate serially, and have inherently unlimited accuracy. The basic operations of a

digital mechanism are usually the four species of arithmetic: addition, subtraction,

multiplication, and division. Prima facie one might mistakenly think that a digital

computing mechanism possesses absolute precision. Even if the operation of each

component produces only fluctuations within its pre-assigned tolerance limits, errors

eventually creep in.

If a digital mechanism is built to handle ten digits numbers only, it will have to

disregard the last ten digits of a twenty digits number, which is the product of

multiplying two 10-digit numbers. The necessity of rounding off the product

introduces in a digital computing mechanism qualitatively the uncontrollable noise

of its analogue counterpart. Only the error in the former isn’t a random variable like

the noise in the latter. The important difference between digital and analogue

computing mechanisms lies in the ability to reduce the fluctuations. The

computational noise level can be reduced in digital computing mechanisms in an

increasingly easy manner comparing to analogue mechanisms (ibid, pp. 294–296).

‘‘Everything’’ Computes Answer

Views like those of Putnam and Searle imply a very loose notion of computation so

that almost everything can be deemed to be computing. Searle’s notorious wall and

Putnam’s realization theorem of finite automata suggest that even a rock can be

claimed to be computational (Chalmers 1996). The fourth answer advocated by

Scheutz, Putnam and others states that a satisfactory account of computation is

underpinned by an adequate theory of implementation. However, existing accounts

of computation are inadequate due to lack of a satisfactory theory of implemen-

tation. Scheutz (1999) asserts that the notion of implementation is construed as

realization of functions, rather then the standard concept of physical state to

computational state correspondence. According to this answer an adequate theory of

computation has to meet the implementation theory criterion.

The Implementation Theory Criterion

According to Putnam’s realization theorem (1992, pp. 121–125) every ordinary

open system is a realization of every abstract finite automaton. For the purposes of

the current discussion my assumption is that by ‘‘every ordinary open system’’ he

essentially means every physical object.6 This assumption is substantiated by the

fact that Putnam (1992, p. XV) asserts that there is a sense in which every physical

6 It can also be interpreted as a sufficiently complex physical object similar to Searle’s (1990) thesis that

any physical system can be seen to implement any computation, so that even the wall behind him might

be seen as implementing the Wordstar program.
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system implements every computation. Furthermore he argues that the computer

analogy doesn’t answer the question what the nature of mental states is (ibid, p. XI).

Based on this view every physical object can be viewed as implementing every

program, even a rock (Chalmers 1996). As Scheutz (1999, p. 162) claims, Putnam’s

theorem shows that every account of computation, which lacks an adequate theory

of implementation, is built on weak grounds. In consequence, a satisfactory theory

of implementation is required to answer essential questions like: ‘What computation

does a given physical system implement?’

Scheutz (ibid, pp. 162–163) suggests tackling computation from a practical point

of view, i.e. by looking at existing applications and systems that are designed,

implemented and used by people. Rather then asking how abstract computations

relate to physical systems, it should be the other way around. This approach will

result in a more restricted notion of function realization based on the physical

constraints (e.g. measurability, feasibility, error range, etc.). One of the defining

characteristics of the standard notion of computation is that it is independent from

the physical system that realizes it. This means that the same computation can be

executed on a range of different physical systems. The motivation for appealing to

behavioural descriptions of concrete systems instead of the abstract levels is that this

approach ensures that the close ties to the concrete world are maintained.

Computational systems are physically situated in the world and by appealing to the

abstract levels we tend to lose sight of this fact.

Scheutz (1999) claims that Putnam’s theorem and Searle’s wall have a

tremendous impact on the foundations of computer science. But these foundational

difficulties seem to be limited to the theoretical level as the computational practice

doesn’t seem to be holding back. To avoid such difficulties a different approach to

an implementation theory is called for. Such a theory needn’t depend on state-to-

state correspondence, but rather one that exploits descriptions of certain properties

of concrete systems and abstract computations. It should appeal to the link between

the concrete and the abstract, while emphasizing the practical constraints.

The infamous duo computation—implementation has to make way for the

‘‘realization of a function’’ notion, i.e. what it means for a physical system S, which

is described by a theory P, to realize a function F. It is inevitable that more and

more constraints like input/output, abstract time/real time, range of errors, etc. are

factored into the equation. The time constraint, for instance, seems to be overlooked

by standard notion of computation in favour of computational steps. However, every

input to a physical system occurs in real time, and hence the realized function has to

have a time parameter attached to it.

In Scheutz’s view (1999, p. 190) such an approach doesn’t require a notion of

physical states, but it directly determines the function, which is realized by a

physical system. It doesn’t even need to rely on a particular computational

formalism like Turing machines or finite state automata, but can be related to any of

them via the functions that these abstract computations give rise to. This way,

Putnam’s theorem and Searle’s wall no longer pose a threat because state-to-state

correspondence mappings can be avoided. Furthermore, taking this approach is a

result of practical considerations of functions, which are realized by systems that we

can recognize and use as computers. Scheutz’s theory of implementation also
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implicitly presupposes the empirical criterion. He maintains that computation

should be defined in terms of an abstraction over the physical properties determining

the functionality of a physical mechanism.

The Empirical and Cognitive Criteria Revisited

Scheutz’s version of the empirical criterion is weaker than the one outlined by

Smith. The former maintains that the approach he takes in his theory of

implementation reflects the computational practice. Computer practitioners define

computation in terms of the functions realized by concrete systems, rather then

appealing to abstract computations independently of real life computer systems.

Smith asserts that the empirical criterion precludes any satisfactory theory of

computation. In contrast, Scheutz uses the empirical criterion in a constructive

manner when theorizing about implementation, which consequently affects

subsequent theories of computation too. The computational practice guides Scheutz

to give up the standard notion of state-to-state correspondence, and come up with a

substitute notion of implementation, which is based on functions realization.

Scheutz also acknowledges that the notions of computation and implementation

have implications for the theory of mind. He ties the cognitive descriptions of the

brain directly to the level of description of computation (ibid, pp. 191–192). The

class of functions, which are realized by computers, is effectively what it means for

something to compute. If brain activities can be adequately explained at this level of

description, then computationalism may be true. However, if they can only be

explained in levels that are lower than those applicable in computation, then we’ll

have to either give up computationalism or the current notion of computation.

Similar to Smith’s claim above, if computationalism is true, then the current notion
of computation will have to change to be described as the class of functions, which

are realized in a lower level. Otherwise, computationalism is false, because the brain

can’t be described at the same mechanical level of computers.

Everything Computes?

A very loose concept of computation emerges by accepting Putnam’s realization
theorem approach, Searle’s wall (which implements the Wordstar program) or

Scheutz’s functions realization notion of implementation. The resulting notion of

computation is philosophically uninteresting. If in a way everything can be deemed

to perform computations, then theories of computation become trivial.7 Putnam

(1992, pp. 121–125) proves a theorem stating that every ordinary open system is a

realization of every abstract finite automaton. Thus, in a sense every physical system

implements every computation, since the system’s physical states can be mapped

onto the computational states of the corresponding automaton.

7 Computationalism also becomes trivial, since if everything computes, then it’s trivially true that minds

compute as well. This is exactly what Searle and Putnam have tried to show by arguing that (almost)

everything computes.
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Searle (1990) brings the wall behind him as an example of an object that

implements the Wordstar program, and similarly the same may be claimed for every
object. He also maintains that brains are digital computers because everything is a

digital computer (ibid, p. 5). Even Scheutz, who offers a new theory of

implementation, admits that in a way, every system, which realizes a function,

could be seen as a computer, namely a computer computing that very function

(Scheutz 1999, p. 191). However, he claims that most of those computers are not

useful for us, because we can’t influence their inputs and outputs, for instance.

Hence, they do not qualify as computers in a practical sense.

Discussion

Smith claims that computation is intrinsically intentional, which also prompts him

to formulate the cognitive criterion. He maintains that the misconception of

computation as being entirely abstract and formal hides the semantic character of

computation. Thus, any adequate theory of computation has to rely on a solid theory
of semantics and intentionality. Furthermore, he claims that there are many

ontological questions at the foundations of computation that must be answered

beforehand. Computation doesn’t constitute a distinct ontological category. What

qualifies as computers according to Silicon Valley doesn’t form a coherent

intellectually delimited class. By showing that extant theories of computation fail to

meet the above criteria, Smith maintains that any candidate theories are condemned

to failure. His demand for a conceptual meta-theoretical constraint isn’t unjustified.

Theories that explain a phenomenon need to address the underlying concepts that

are at the core of this phenomenon. A theory of computation thus needn’t

presuppose that notions like algorithm, implementation, process etc. are self-

explanatory, but rather it needs to address them.

Arguably, as Smith claims computers don’t form a coherent intellectually

delimited class. However, our goal needn’t be providing a theory of computers, but

rather a theory of computation. The most sophisticated commercially available

computer today will be rendered obsolete in some years to come. Similarly,

computers, which were deemed powerful at some point in the past, are no longer

suitable to run today’s programs. New architectures, stronger CPUs, high volume

memory chips, etc. make computers much more powerful and robust. The thing,

which constantly changes so rapidly, as Smith identifies is technology. For one to be

able to determine whether an arbitrary object is indeed a computer, one has to do

examine it from the prevailing technological perspective.

Though commercially available computer platforms may be ordinary digital

computers at present, in the near future they may just as well be molecular

computers, DNA computers, Quantum computers and so on. Computer theorists

should channel their efforts to provide an adequate theory of computation and let

technology dictate what computers are. As Agassi (1985) asserts that one may claim

that since theory should guide practice, the engineer should by right be the boss of

the technician. But, theory and practice always mix and so every technician is a bit

of an engineer, and vice versa. Moreover, techniques offer less room for rational
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debates of abstract matters. Techniques are easily tested by implementation, so it is

easy to falsify claims about them. Therefore, there seems to be no need for a unified

theory of technology for successful application of various techniques, and

technology has no need for abstraction. Similarly, there’s no need for a unified

theory of computers as technological artefacts, but for a theory of computation.

Smith pushes it further and proposes two criteria that are extremely hard to meet.

Though the empirical criterion isn’t unexpected, he takes it to the extreme. Not only

does a theory of computation have to do justice to real life computation by

explaining programs like the Open Office Writer, but it should also give rise to

reconstructing computational practice. The analysis has to remain grounded in real-

world examples, in computation-in-the-wild. The scope of a satisfactory theory

should be sufficiently broad to account for physical mechanisms, implementations,

architectures, programs, processes, algorithms, languages, networks, interactions,

behaviours, interfaces etc. Moreover, it also has to account of the design,

maintenance and even the way we use such systems. Such a theory is no longer

confined to scientific and philosophical domains, but rather extends over to other

domains like economics, social sciences and even ethics. Smith claims that the

computer revolution adapts, expands, and in general outstrips our theoretical grasp.

This is exactly what his empirical criterion accomplishes: destroying all chances of

producing an adequate theory of computation.

This is not to imply though that there is no justification for adopting a subtler
version of the empirical criterion. Piccinini’s implicit empirical criterion implies

that existing practices, computing applications and other real life examples need to

be properly taken into account. Assumptions and empirical facts of computer

science practitioners, which ground the success of their science, have to be

respected by an adequate theory of computation. Theorists of computation may not

have the ‘luxury’ of being completely detached from practice, but they certainly

needn’t account for any particular use of any particular program. Scheutz is another

good example of how the empirical criterion can be put into good use. The

implementation theory criterion reflects computational practice by revisiting the

standard correlation between computation and implementation. Rather then

appealing to a top down approach that begins in the abstract level and progresses

down to the concrete, Scheutz’s starting point is real life examples of computers and

applications. In his view, an implementation theory should appeal to the link

between the concrete and the abstract, while emphasizing the practical constraints.

This eventually leads him to abandon the common state-to-state correspondence in

favour of the function realization analysis. Even Von Neumann’s classic view,

which is reflected in the third answer, ‘does justice’ to practice. By emphasizing the

single error criterion, he points out that in practice every effort is made to detect

errors as soon as they occur. Error handling can be easily neglected, if a theory of

computation is completely detached from practice. But this serves to show that

considerations of practice can be taken into account in a constructive manner,

without renouncing future candidate theories.

Smith’s cognitive criterion is also too difficult to meet. Whilst proponents of the

computational theory of mind should obviously heed the theory of computation,

Smith believes it should instead be the other way around. Theorists of computation
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need to consider the potential consequences of candidate theories of computation for

computationalism. An adequate theory of computation should apparently be an

intelligible foundation for the formulation of the computational theory of mind.

Moreover, when considering this criterion in conjunction with his claim that we will

never have an adequate theory of computation, the result is surprising. If we take the

main claim of computationalism to be that minds are computational systems, and

given that there will never be an adequate theory of computation, it follows that

there will never be an adequate computational theory of mind. In my opinion, this

defeats the purpose of introducing the cognitive criterion in the first place.

Acknowledging the paramount role of theories of computation in computation-

alism is by no means unique to Smith. Each one of the competing answers presented

in this paper addresses the relevance of computation to cognition or to

computationalism in particular. Piccinini argues that the difference between

computing mechanisms that execute programs and those that don’t is important

not only to computer science, but also to theories of mind. It is also crucial to

distinguish different kinds of computational descriptions, because some might be

relevant to explaining the behaviour of computers or minds by appealing to their

computations.

Piccinini asserts that his mechanistic account allows systems to be described as

rule following. Thus, it is suited to formulate explanatory theories of rule-following

systems like the computational theory of mind. By individuating computing

mechanisms and the functions they compute, determining whether minds are

computing mechanisms becomes a matter of whether they have the relevant

functional properties. Even the earlier view of Von Neumann emphasizes the

similarities of computing mechanisms to the human central nervous system. He

compares nerve impulses to binary digits due to the binary digit’s nature of being an

all-or-none affair. The influence of muscular contractions, which are induced by

nerve impulses, on the blood stream is analogue-like. In his opinion, living

organisms are very complex-part digital and part analogue mechanisms.

Scheutz (1999, p. 192) argues that if brains are best described at a lower than

mechanical level of description, which is crucial to a theory of mind, then either

minds are not computational (if computational is taken to mean ‘mechanical’) or a

different notion of computation is called for. The lack of a reasonable notion of

implementation renders not only computer science meaningless but also compu-

tationalism. Moreover, if natural cognitive systems do essentially exploit ‘non

discrete magnitudes’, ‘quantum effects’, etc., then they are essentially non-digital
systems. And in that case they cannot be described solely in terms of functions

realized by digital systems.

Conclusions

I believe that the competing answers, which were outlined above, show that there

are acceptable alternatives to Smith’s view. This is sufficient to re-establish the need

for an adequate theory of computation. Obviously, other answers ought to be

considered and I don’t necessarily argue that any of the above answers is the one we

Evaluating Adequate Theories of Computation 399

123



should adopt. Each of the answers is susceptible to some legitimate criticism. The

mechanistic account of Piccinini, in its current form, excludes analogue compu-

tation, which is clearly a valid type of computation. Von Neumann argued that all

computers fall into one of two main classes: analogue and digital. This classification

excludes the case of hybrid computers, for example (and evidently more recent

examples like molecular computers). The fourth answer discusses the need for a

solid theory of implementation. But it allows for a loose notion of computation in

terms of which given enough complexity almost any object may be deemed

computational.

The four answers discussed above are of varying levels of severity. Two of the

three criteria, which are included in the first answer advocated by Smith, are

extremely hard to meet. Thus according to that answer an adequate theory of

computation is implausible. The criteria, which are included in Piccinini’s answer,

are easier to meet by an adequate theory of computation (he even proposes such a

theory). The third answer advocated by Von Neumann suggests criteria, which are

even easier to meet by a broader range of theories of computation. The

implementation theory criterion, which is supported by the last answer, is highly

achievable, and yields a loose notion of computation. A key criterion, which an

adequate theory of computation has to meet according to most of the aforemen-

tioned answers, is the empirical criterion. Whilst Smith explicitly proposes this

criterion and takes it as a reason for rejecting future theories of computation, it is

only implicit in the other answers. Piccinini, Von Neumann and Scheutz attribute

significant importance to computational practice, but don’t use the empirical

criterion against any potential candidate theories of computation.

Smith concludes with a negative claim, I will opt for a positive one. Smith claims

that we will never have a theory of computation, and he raises some valid points that

require further discussion. However, I maintain that there is no compelling reason to

renounce every attempt to provide an adequate theory of computation. The answers

above clearly show that there is yet work to be done. Former theories of

computation, which were refuted, simply pave the path for a more adequate theory

of computation.
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