
Abstract The faithfulness condition (FC) is a useful principle for inferring causal
structure from statistical data. The usual motivation for the FC appeals to theorems
showing that exceptions to it have probability zero, provided that some apparently
reasonable assumptions obtain. However, some have objected that, the theorems
notwithstanding, exceptions to the FC are probable in commonly occurring cir-
cumstances. I argue that exceptions to the FC are probable in the circumstances
specified by this objection only given the presence of a condition that I label
homogeneity, and furthermore that this condition typically does not obtain in the
FC’s intended domain of application.
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Introduction

Directed acyclic graphs (DAGs) have proven to be an extremely fruitful system of
representation in work on causal inference from statistical data (cf. Glymour and
Cooper 1999; Neopolitan 2004; Pearl 2000; Spirtes, Glymour, & Scheines 2000).
DAGs consist of arrows linking nodes: the arrows represent the relationship of
unmediated causation, while the nodes correspond to random variables. In this
framework, causal inference relies on principles that specify which probabilistic
dependence and independence relationships would obtain among these random
variables if the DAG were an accurate representation of the causal structure. The
most fundamental rule for deriving predictions about probabilistic independence
from DAGs is the Causal Markov Condition (CMC). This states that every variable
in the DAG is probabilistically independent of its non-descendents (intuitively, non-
effects) conditional on its parents (intuitively, direct causes). The CMC, however,
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only provides information concerning what probabilistic independencies obtain—it
would be trivially satisfied in any distribution in which there were no probabilistic
dependencies whatever. Clearly, causal inference from statistical data requires that
causal hypotheses make predictions not only about probabilistic independence but
about dependence as well. The faithfulness condition (FC) is an important and fre-
quently used rule for deriving predictions about probabilistic dependence from
DAGs: the FC says that the only probabilistic independencies generated by acyclic
causal structures are those entailed by the CMC. For example, the FC requires that
causes and effects are probabilistically dependent, as are joint effects of a common
cause. The FC also makes claims about conditional independence, for instance, in
the chain X fi Y fi Z, Y and Z are probabilistically dependent conditional on X.

The motivation for the FC rests on theorems showing that, given certain appar-
ently plausible assumptions, exceptions to the principle require very finely-tuned,
extremely improbable parameterizations (cf. Meek 1995; Spirtes, Glymour, &
Scheines 1993, 2000, pp. 41–42). However, some have objected that, such theorems
notwithstanding, there are commonly occurring circumstances in which exceptions
to the FC are likely (Cartwright 1999a, pp. 117–118; 1999b, pp. 16–17; Hoover 2001,
pp. 168–170). This objection could be interpreted as saying either that, in the
specified circumstances, strict exceptions to the FC are probable or only that very
near exceptions are. A strict exception is a case in which a probabilistic dependence
required by the FC is absent. A very near exception is a case in which a probabilistic
dependence required by the FC is present, but the dependence is so slight that it
would be almost impossible to detect in any practical sample size. In any situation in
which strict exceptions to the FC are probable, one or more of the assumptions of
the aforementioned theorems must fail to obtain. In a situation in which very near
exceptions are probable, one would naturally expect that one or more assumptions
of the theorem are nearly false.

I suggest that the pertinent assumption is that subsets of the parameter space of
Lebesgue measure zero also have probability zero, a proposition I shall refer to as L.
I argue that strict exceptions to L are extremely unlikely in the intended domain of
application of the FC but that the situation with regard to near exceptions is more
complex. In particular, I articulate a pair of conditions, which I call selection and
homogeneity, that are jointly but not individually sufficient for failures of the FC.
Although it is very rare that these two conditions are perfectly satisfied, very near
exceptions to the FC would be probable were they closely approximated. But the
objection shows at most only that selection is commonly present, while homogeneity
usually does not hold even approximately in the intended domain of the FC, such as
social science and biology.

The theorem

There are several ways in which the FC might be false. Exceptions to the FC can
arise through a lack of variation in the features under investigation. For example,
even if X is a cause of Y, X and Y would be independent if all members of the
population have the same value of X. The FC can also fail if some variables are
deterministic causes of others. For instance, suppose that X is a deterministic cause
of Y and that Y is a cause of Z. Then contrary to the FC, Y and Z are independent
conditional on X. However, neither of these types of counterexample is deeply

123

304 D. Steel



troubling, at least as far as strict exceptions to the FC are concerned. An utter lack of
variance in a measured variable will be obvious from the data, and hence serve to
indicate that the sample is an inadequate basis for causal inference. Moreover,
applications of the FC are generally limited to circumstances, such as those typical in
the biological and social sciences, in which causal relations are noisy and probabi-
listic rather than deterministic. But there is a further sort of counterexample that will
chiefly concern us here. Consider the DAG in Fig. 1.

Conceivably, the strengths the two paths from X and Z could precisely counter
balance one another and make X and Z probabilistically independent, thereby
contradicting the FC. In fact, some object to the FC on the grounds that it is rela-
tively common that causal paths exactly cancel out.

In contrast, the motivation for FC rests on the observation that exceptions to it
require very special—and arguably, improbable—parameterizations. To see what this
means, consider the linear causal model in Fig. 2 corresponds to the DAG in Fig. 1.

The subscripted, lowercase e’s are called ‘‘error terms,’’ and represent any source
of variation in the dependent variable not accounted for by its direct causes. Since it
is assumed that error terms are normally distributed with zero means, a parame-
terization of a linear causal model consists in specifying numerical values for the
coefficients and for the variances of the error terms. In the example in Fig. 2, there
are six parameters: the coefficients a, b, and c and the variances of the error terms for
X, Y, and Z. The CMC characterizes those probabilistic independence relationships
that follow from acyclic causal structure and the assumption that error terms are
independent.1 In an acyclic linear causal model, the independence relationships
required by the CMC would hold no matter the values of the coefficients and
variances of the error terms. In contrast, each of the exceptions to the FC described
above depended on special assumptions about the parameters. If there is no varia-
tion in X, then the variance of its error term must be zero. Likewise, if X is a
deterministic cause of Y, then the variance of ey must be zero. Finally, if the two
paths from X to Z precisely cancel out, then b + ac = 0.

Spirtes, Glymour and Scheines (hereafter, SGS) prove a theorem that specifies
conditions under which parameterizations that violate the FC have probability zero.2

The theorem is stated in terms of possible parameterizations of linear causal models,
like that in Fig. 2, though with the additional assumption that the variances of error
terms are positive. Notice that this assumption rules out the first two types of
counterexample to the FC described above, but leaves exceptions resulting from
canceling out paths. Given this set up, the theorem proceeds as follows. Consider a
linear causal model with n parameters. For example, in the linear causal model in
Fig. 2, n equals six since there are three coefficients and three variances of error
terms. Let the set of all parameterizations of the model be represented by an
n-dimensional real space, call it Rn. Now consider a subset of Rn in which every
parameterization violates the FC. With regard to the linear model in Fig. 2, an
example of such a subset would be one in which each parameterization makes
b + ac = 0. SGS prove that any subset of Rn containing only parameterizations that
violate the FC has Lebesgue measure zero. This means that any such subset of Rn is

1 See Steel (2005).
2 See their theorem 3.2 (2000, p. 42) and its proof (2000, pp. 383–384).
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of n – 1 dimensionality or less.3 For instance, it is easy to see that making b + ac = 0
has this effect since it collapses three dimensions to just two. SGS then assume L, the
proposition that subsets of Rn of Lebesgue measure zero also have probability zero,
thereby yielding the conclusion that any subset of Rn containing only parameter-
izations that violate the FC has probability zero.

The following analogy may help to motivate the intuition underlying SGS’s the-
orem. Imagine two children, Sue and Mary. Sue has just finished her bath and is
about to get out of the tub, while Mary will climb into the bathtub as soon as Sue
leaves. Consider these two hypotheses about the water level of the tub during the
period of time in which Sue is getting out and Mary getting in. T1: the water level in
the tub does not remain constant throughout this time period; T2: the water level in
the tub does remain constant. It seems obvious that T1 is immensely more probable
than T2. Although it is conceivable that Sue and Mary displace identical quantities of
water and that their exit and entry are perfectly coordinated so as to maintain a
constant water level, such perfect coordination seems monstrously improbable in the
real world. Even if Sue and Mary were identical twins, it is unlikely that they could
pull it off if they tried. For the slightest quiver, the least motion not coordinated with
the other would alter the water level in the tub. Thus, given the information that the
water level in the tub had remained constant throughout a particular period of time,
one would infer that there had been no change in occupants of the tub during that
time. The bathtub example parallels the symmetrical canceling required for excep-
tions to the FC: the entry of Mary into the water must exactly compensate for the
exiting of Sue, and vice versa.4

The objection

The upshot of SGS’s theorem, then, is that exceptions to the FC involve probabilistic
independences that depend upon precise, unstable parameterizations and that such

Z = bX + cY+ ez

Y = aX + ey

X = ex

Fig. 2 A linear causal model

X

Y

Z

+ +

–

Fig. 1 Counteracting causal paths

3 See Halmos (1950, p. 152) and Port (1994, pp. 54–55) for definitions of an n-dimensional Lebesgue
measure.
4 Pearl’s chair analogy (2000, pp. 48–49), in which one considers the possibility that a second chair is
hidden behind a visible one in a photograph, lacks this symmetry, since it is impossible for each chair
to conceal the other. Thus, the chair analogy is problematic, since it would be easy to hide a small
chair behind a big one or to hide a second chair of the same size by placing it at a sufficient distance
behind the first.
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exact balances are unlikely to occur. However, not all find this a convincing argu-
ment in favor of the FC, and some argue that, the theorem notwithstanding, there
are circumstances in which violations of the FC are not rare. For example, Nancy
Cartwright writes:

It is not uncommon for advocates of DAG-techniques to argue that cases of
cancelation will be extremely rare, rare enough to count as non-existent. That
seems to me unlikely, both in the engineered devices that are sometimes used
to illustrate the techniques and in the socioeconomic and medical cases to
which we hope to apply the techniques. For these are cases where means are
adjusted to ends and where unwanted side effects tend to be eliminated
wherever possible, either by following an explicit plan or by less systematic
fiddling. ... The bad effects of a feature we want—or are stuck with—are offset
by enhancing and encouraging its good effects. Whether we do it consciously or
unconsciously, violating the FC is one of the ways we minimize damage in our
social systems and in our mechanical regimens. (1999a, p. 118)

A similar argument is made by Kevin Hoover.

Spirtes et al. (1993, p. 95) acknowledge the possibility that particular param-
eter values might result in violations of faithfulness, but they dismiss their
importance as having ‘‘measure zero.’’ But this will not do for macroeco-
nomics. It fails to account for the fact that in macroeconomic and other control
contexts, the policymaker aims to set parameter values in just such a way to
make this supposedly measure-zero situation occur. To the degree that policy is
successful, such situations are common, not infinitely rare. (2001, p. 171)

Cartwright and Hoover are both quite clear that they do not intend to claim that the
FC is never a reasonable assumption, but only that it is inappropriate in certain
commonly occurring circumstances, namely, when there is some process that selects
for canceling out causal paths.5

And indeed, whether SGS’s theorem provides a motivation for the FC in a given
context clearly depends on whether its assumptions are reasonable there. The most
apparent limitation of the theorem is its restriction to linear causal models. But SGS
conjecture that their theorem holds in the non-linear cases as well (2000, p. 42), and
the theorem has in fact been extended to causal models with discrete variables
(Meek 1995). Moreover, the point of Cartwright and Hoover’s objection is not that
the causal relationships might be non-linear but that selection for FC-violating
parameterizations could occur.

The other significant assumption in the theorem is L. In the linear model in Fig. 2,
L entails that any subset of Rn consisting solely of parameterizations in which
b + ac = 0 must have probability zero, since any such subset must be of n – 1
dimensionality or less. But it is precisely this assumption that is challenged in
Cartwright and Hoover’s objection. If their objection is correct, then it is likely that
the actual parameterization falls within Lebesgue measure zero subsets of Rn when
there is selection for counteracting causal paths. And L does seem to be a promising

5 Glymour (1999, p. 161) responds to Cartwright by claiming that reliable causal inference is
impossible without the FC. Even if this claim were true, it would not follow that the objection is
mistaken, since reliable causal inference might be more narrowly restricted than one would have
hoped.
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target of criticism. SGS do not provide any motivation for L, yet the assumption not
obviously true, since it is not plausible that subsets of Lebesgue measure zero must
always have probability zero. For such a claim would entail that we must be certain a
priori that no quantity is equal to any other quantity. This point can be appreciated
by reference to the diagram in Fig. 2.

In the diagram, the subset of pairs of values in which a equals b is represented by
the diagonal line in the square, and in a two dimensional space lines have Lebesgue
measure zero. Consequently, SGS’s theorem can serve as a motivation for the FC
only provided some explication of the conditions under which L is true and of why
we should think that those conditions hold in the domain of application of the FC.6

Deciding whether L is a reasonable assumption is difficult in part because it is
unclear how the probability distribution over the parameter space should be inter-
preted. For example, L might be regarded as a constraint on rational degrees of
belief. But given the well-known difficulties facing objective Bayesianism in moti-
vating such constraints above and beyond the axioms of probability,7 it seems likely
that any argument that L deserves such status would be difficult to make. A more
promising suggestion is that the probability distribution over Rn represents a
physical chance process. Given this interpretation, it is impossible to know whether
L is a reasonable assumption unless some information concerning this chance pro-
cess is provided. But if the relevant features of the physical process were described, it
might be possible to decide whether L is appropriate. Pursuing this line of thought
requires some exploration of what the relevant features of such a chance process are.
In the remainder this essay I examine this issue and its connection to Cartwright and
Hoover’s objection to the FC.

As was noted in the introduction, the objection that violations of the FC are
common in some types of circumstance can be interpreted as making a claim about
either strict or very near exceptions. Let us consider these two cases in turn.

When L is strictly true

Judea Pearl (1998, p. 121) and Jim Woodward (1998, pp. 142–147) make similar
proposals about when L and, hence the FC, is true. Consider again a linear causal
model, such as that in Fig. 2. Pearl and Woodward’s thought is that in such fields as
biology or social science, causal structures represented in such models are often
stable across a range of populations, while the specific values of the parameters of
the model are extremely sensitive to the conditions of particular populations at
particular times. For example, the structure specified by the laws of supply and
demand is very stable, while the parameters representing quantitative aspects of the
causal relationships vary from one economy to the next. This is in effect a built in
assumption of SGS’s theorem, wherein one supposes that a given causal structure is
fixed while the parameter values vary. Pearl and Woodward’s suggestion is that L
(and thereby the FC) is appropriate when the causal structure is constant but

6 That it would be unreasonable to insist that sets of Lebesgue measure zero must always have
probability zero is noted by Pearl (1998, p. 121). SGS also acknowledge the point (2000, p. 66) but do
not explain why sets of Lebesgue measure zero should have zero probability the in the sorts of cases
relevant to their theorem.
7 For an overview of this issue, see Howson and Urbach (1993, chapter 4).
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parameters ‘‘vary independently’’ (cf. Pearl 1998, p. 121; Woodward 1998, p. 145).
However, it turns out that, given what seems the most natural interpretation,
independently varying parameters is neither necessary nor sufficient to ensure that
all sets of Lebesgue measure zero receive probability zero. In this section, I explain
how this is so, identify a necessary and sufficient condition for L, and explain why
that condition is quite reasonable in the usual domain of application of the FC.

Addressing this issue requires associating each parameter with a random variable
whose values correspond to possible values of the parameter. Let the set of all these
random variables be V = {V1, ...,Vn} where n is the number of parameters. It is
important to keep the distinction between the members of V and the variables in a
causal model (e.g., X, Y, and Z in Fig. 2) firmly in mind. Variables in a causal model
vary within populations, while parameters and hence the members of V are fixed
within particular populations at particular times but vary across populations. As
before, Rn is the n-dimensional real space of all combinations of values of the
members of V. A joint distribution function of V, then, is a function that assigns
probabilities to subsets of Rn. For example, if V = {V1, V2}, then the joint distri-
bution function, F(v1, v2), specifies P(V1 £ v1, V2 £ v2) for any v1 and v2. The
question at issue can then be rephrased as follows: what conditions must the joint
distribution function of V satisfy to ensure that subsets of Rn of Lebesgue measure
zero also have probability zero?

One way to proceed is by considering ways in which L might be false, that is, to
consider ways in which a joint distribution function might assign positive probability
to an n – 1 dimensional subset of Rn. The concept of a support of a probability
measure is useful in this regard. A set A is said to be a support of the probability
distribution P exactly if P(A) = 1.8 For example, suppose that Rn is a plane and that
A is a line in Rn. Then if A is a support of the probability distribution, there is a
subset of Lebesgue measure zero that receives probability greater than zero (e.g., A
itself). Thus, a set of Lebesgue measure zero receives positive probability whenever
a subset of n – 1 dimensionality or less is a support of the probability distribution
over the parameter space. Let us consider how such a thing might occur.

The simplest case occurs when one or more of the parameters are entirely fixed
and invariable. It is easy to see that some subsets of Lebesgue measure zero will have
positive probability when this is the case. For example, in the two dimensional case,
if one of the members of V has zero variance, then one of the two variables is
constant and a straight horizontal or vertical line is a support of the probability
distribution. But this is not the only way for a Lebesgue measure zero subset of Rn to
have a positive probability. Returning to the two-dimensional case again, suppose
that although the variance of each variable is positive, it is completely certain that
the values of the two variables are equal. In this case, a 45� diagonal line, and hence
to a set of Lebesgue measure zero, would be a support of the probability distribution
(as in Fig. 3).

Pearl and Woodward’s requirement that the parameters are unstable and vary
independently of one another is presumably intended to rule out such cases. Al-
though neither Pearl nor Woodward gives a precise characterization of ‘‘vary
independently,’’ it is quite natural to interpret this phrase as referring to the tech-
nical concept of variation independence. Variation independence means that no

8 See Billingsley (1995, p. 23).
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group of parameter values restricts the possible range of values of any other
parameter.9 In the present context, for any Vi in V and any a and b, if the marginal
probability that a £ Vi £ b is greater than zero, then the probability of a £ Vi £ b
conditional on any specification of values of any combination of the other members
of V is also greater than zero. The example described above in which V has just two
members, each with positive variance but whose values are certainly equal, is ruled
out by variation independence. For instance, suppose that the marginal probability
that V1 is between 2 and 3 is greater than zero. But then the probability that V1 falls
within this interval is zero if V2 equals, say, 4.

So, is L true whenever no parameter has a fixed, constant value and variation
independence obtains? That the answer to this question is ‘‘no’’ can be seen from the
example in Fig. 4. Continuing with the two-dimensional case, suppose that the two
parallel lines are a support of the probability distribution.

For instance, let the joint distribution function F(v1, v2) equal 0.5v2 if v1 is either
0.25 or 0.75, and zero otherwise. Then the marginal distribution of V1 is discrete with
P(V1 = 0.25) = P(V1 = 0.75) = 0.5, and V2 is continuous with a probability density
function of 1, so that the marginal distribution function of V2 is
F2ðv2Þ ¼

R v2

0 dv2 ¼ v2: Since V1 and V1 are probabilistically independent, variation
independence is clearly satisfied, yet a subset of Lebesgue measure zero is a support
of the probability distribution.

The counterexample in Fig. 4 relies on having one of the variables vary discretely
rather than continuously. Thus, we could rule out the counterexample by requiring
that each member of V be marginally continuous, that is, that each varies continu-
ously considered separately from the others. Indeed, perhaps Pearl and Woodward
intended the instability of parameters to imply that the variation of each parameter
is marginally continuous. It turns out that variation independence together with the
marginal continuity of each member of V entails that any Lebesgue measure zero
subset of Rn receives probability zero. However, variation independence and mar-
ginal continuity are stronger than necessary, as can by shown by identifying a weaker
sufficient condition for L.

A sufficient condition for L is that the variables in V are jointly continuous.10 Joint
continuity is simply an extension of the concept of a continuous distribution for a
single variable to joint distributions of arbitrarily many variables. In a continuous

a 

b 

Fig. 3 A set of Lebesgue measure zero

9 See Lindsey (1996, p. 29). Thanks to an anonymous referee for suggesting this interpretation.
10 This seems to be what Meek (1995, p. 411) has in mind when he writes that all Lebesgue measure
zero subsets of Rn have probability zero when the distribution function of V is ‘‘smooth.’’ For a more
formal definition of jointly continuous random variables than that provided here, see Stirzaker (2003,
chapter 8).
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distribution of a single variable, the distribution function specifies areas over
intervals of a line. Similarly, a jointly continuous distribution for two variables
specifies volumes over areas of a plane. When n = 1, the probability of any interval
of Rn corresponds to the area above it. Likewise, when n = 2, the probability of any
area of Rn equals the volume above. The idea generalizes to examples in which n is
greater than two, though such cases are not easy to visualize.

The joint continuity of the members of V ensures that all subsets of Lebesgue
measure zero receive probability zero because it entails that no subset of Rn of n – 1
dimensionality or less receives a positive probability. For concreteness and without
loss of generality, consider the two dimensional case. Then it can easily be seen that
if the members of V are jointly continuous, any line receives probability zero, since
the volume over a line is zero. By similar reasoning, any point must also receive
probability zero. In short, any one-dimensional or less subset of Rn must receive
probability zero if V is jointly continuous and n = 2. But in a two-dimensional space,
any set of Lebesgue measure zero is of one or less dimension. So, in general, if the
members of V are jointly continuous, then any subset of Rn of n – 1 dimensionality
or less, and hence any set of Lebesgue measure zero, has probability zero.

It is obvious that marginal continuity and variation independence together entail
joint continuity, and hence that the conjunction of these two conditions is also
sufficient for L. However, variation independence is not necessary, since it is not
entailed by joint continuity. If the members of V are jointly continuous, then each
member of V is continuously distributed not only marginally but also conditional on
any of the other members of V. But joint continuity does not require that variation
independence be true, since the range of possible values of one variable may be
restricted by the value of another even if each variable is continuously distributed
conditional on any combination of other variables. For instance, suppose that,
marginally, the probability V1 is uniformly distributed over a particular interval [a,
b], but that conditional on certain values of V2 it is uniformly distributed over a
proper subset of [a, b]. In such a case, variation independence is violated yet V1 and
V2 may nevertheless be jointly continuous.

Let us return to the question of whether strict exceptions to L are ever probable
within the FC’s intended domain of use. The answer to this question is no as long as
each parameter varies continuously considered separately and conditional on any
subset of the others. And this will be case so long as the parameter values depend
upon continuously variable factors that are not themselves perfectly coordinated.
Yet it is quite plausible that this is indeed the case in biology and social science, and
indeed, in any field that studies complex systems in which the strength of causal
relationships depend on a plethora of variable factors. In such systems, the distri-
bution function of V might be tightly focused on a Lebesgue measure zero subset of
Rn, but it nevertheless is extremely probable that there will be some continuous

V1

V2 

0 1 

.75

.25

Fig. 4 Why variation independence is not sufficient
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variation in the parameter values. However, even if strict failures of L (and hence the
FC) are indeed highly unlikely, it does not follow that the same is true of near
exceptions, which for practical purposes may be just as problematic as strict coun-
terexamples. Let us turn, then, to a consideration of near failures of the FC.

Homogeneity, selection, and near exceptions to the FC

Near exceptions to the FC raise several complications not found in the case of strict
exceptions. Near exceptions might occur as a result of counteracting causal paths
that very nearly, though not exactly, cancel out. But they can also occur in other
ways. For instance, suppose that X is a cause of Y and that these two variables are
otherwise unrelated. Then if the influence of X upon Y is extremely minute, so too
will be the probabilistic dependence between them. Such near failures of the FC are
not particularly worrisome, since it is not much of a mistake to conclude that an
extremely weak causal link is no causal connection at all. Consequently, I shall not
be concerned with near exceptions of this sort in what follows. A second compli-
cation arises in connection to the variation in the variables. As explained in Sect. 2,
strict exceptions to the FC can result if the variances of some error terms are zero.
Yet it seems reasonable to assume that such circumstances are unlikely in the in-
tended domain of application of the FC. Presumably, this is what motivates the
assumption in SGS’s theorem that the variances of the error terms are positive.
However, near exceptions to the FC can result from positive yet very minimal
variances of error terms that make some variables almost constant or some con-
nections almost deterministic. I will be primarily concerned with cases involving
almost canceling out paths, but I will also briefly discuss near exceptions arising from
minimal variation in variables.

Consider a social planner attempting to do what Hoover describes in his objec-
tion, that is, create a compensating mechanism to precisely counteract an undesired
side effect of some policy. For example, imagine a road improvement program that
involves resurfacing and widening a number of large thoroughfares and some smaller
side streets. Although improved, safer roads contribute to fewer traffic accidents,
they also have the unfortunate side effect of increasing speeding, which is a signif-
icant cause of traffic fatalities. Letting R, S, and T be variables denoting road
improvement, rates of speeding and traffic fatalities, respectively, the causal rela-
tionships can be represented in the graph in Fig. 5.

Suppose that, initially, the net effect of the road improvement is to increase the
rate of traffic fatalities. To offset this problem, more police are hired to patrol the
newly improved roads and the fines for speeding are increased. However, given a
tight budgetary situation, the social planners do not want to spend more money on

R 

S 

T 

+ +

–

Fig. 5 Road improvement and traffic fatalities
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speeding prevention than necessary. They want to do just enough to make the two
causal paths cancel out, and no more.

The strategy of the social planners in this case is to implement changes in the
situation that will weaken the positive influence of R upon S so as to even the
balance between the two paths. In principle, if the strength of influence of R upon S
can be fine-tuned independently of the other parameters, this would be possible. But
the relevant question is whether the social planners really can make the exact
canceling out occur, or at least be sufficiently approximated for practical purposes.
Their ability to do so requires the following two things:

Selection of parameters: a process that tends to concentrate the weight of the dis-
tribution of parameterizations on a subset in which the FC is violated.
Homogeneity of parameters: the absence of factors that perturb parameter values
and thereby alter their distribution in uncontrolled ways.

It may be helpful to consider what these two conditions mean with respect to an
example of a particular causal model, for instance, the linear causal model in Fig. 2.
Recall that parameters are assumed to be fixed for particular populations at par-
ticular times, although they may vary from one population to the next. Imagine a
collection of populations in which the causal structure represented in the linear
causal model in Fig. 2 is constant, but across which the values of the parameters (the
coefficients and variances of error terms) are variable. Selection, then, is a process
that if applied to such a collection of populations, would over time focus the dis-
tribution of parameters on a subset of Rn in which the FC is violated. Homogeneity
refers to a lack of other perturbations of the parameters besides those involved in
the selection process, so that parameters set to particular values by the selection
process tend to stay put. For convenience, I will generally abbreviate ‘‘selection of
parameters’’ and ‘‘homogeneity of parameters’’ to ‘‘selection’’ and ‘‘homogeneity.’’
However, it is important to keep homogeneity of parameters of a model distinct from
a lack of variance in the variables of that model. For instance, the fixity of the
parameters in the linear causal model in Fig. 2 entails nothing about the variances of
the variables in any population accurately characterized by that model.

If selection and homogeneity were perfectly achieved, then the probability dis-
tribution of parameterizations would be restricted to an n – 1 dimensional subset of
the parameter space. Thus, when selection and homogeneity are perfectly satisfied,
assumption L of SGS’s theorem (that all n – 1 dimensional subsets of the parameter
space receive probability zero) is false. Of course, perfect homogeneity and selection
rarely if ever occur in real life. But as Christopher Meek points out, ‘‘the interesting
questions about reliably inferring Bayesian networks from data (rather than a
population distribution) have to do with near violations of faithfulness’’ (1995, p.
411). In other words, near exceptions to the FC would not be a concern for an
omniscient being with perfect knowledge of the probability distribution, since such a
being would always be able to distinguish zero correlations from non-zero ones, no
matter how miniscule the difference. However, for humans who must estimate
probability distributions from finite samples of data, very near exceptions to the FC
can be just as bad as strict ones.

I claim, then, that selection and homogeneity are jointly but not individually
sufficient for (near) failures of the FC to be probable. That they are jointly sufficient
is straightforward, since when perfect selection and homogeneity are closely
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approximated, the distribution over the space of parameterizations will be tightly
focused on an FC-violating subset. And in this case it is very probable that the
parameterization will be one in which the FC is nearly false. Hence, it only remains
to show that neither condition is sufficient in the absence of the other. The case in
which homogeneity but not selection is present is simple. Although lack of variation
in the variables of a model can produce exceptions to the FC, the same is not true
with respect to homogeneity of parameters. Of course, the values of the parame-
ters—particularly, the variances of the error terms—matter to the variation of the
variables. But that the parameters are constant across distinct populations entails
nothing about what the values of those parameters are. And since strict or near
exceptions depend on the specific parameter values, nothing can be inferred about
violations of the FC from homogeneity of parameters alone.

The more interesting case is that in which selection is present and homogeneity is
absent. Even if there is a process at work that tends to focus the probability distri-
bution of parameterizations around a FC-violating subset, it does not follow that
exceptions or near exceptions the FC are probable, since the distribution of
parameters might also be influenced by other trends that undo the work of the
selection process. Suppose that there are a wide variety of difficult to predict or
control factors at play that are capable of altering the values of the parameters, i.e.,
that homogeneity does not hold even approximately. Clearly, these disturbing fac-
tors would be expected to increase the variance of the distribution of parameter-
izations, increasing the chance that the actual parameterization would fall in a region
distant from a subset in which the FC is false. In addition to enlarging the variance of
the distribution, factors that alter the values of parameters can also change its mean
if not all parameters are uniformly susceptible to disturbance. For instance, if some
parameters are more susceptible than others to factors that alter their values in a
particular direction, then the mean of the distribution may be driven away from an
FC-violating subset. In the above example, if the effect of R upon S is sensitive to
factors that tend to increase its value while the other parameters are relatively
stable, then the mean of the parameterizations will move towards a positive net
effect of R upon T.

The simple moral, then, is that the existence of a selection process can fail to
make exceptions or near exceptions to the FC probable when a variety of uncon-
trollable factors that perturb parameter values are present. Consequently, noting the
presence of a selection process does not suffice to show that (near) violations of the
FC are likely to occur. Yet Cartwright and Hoover’s objection points out that it is
common that selection processes are present or at least that some effort is made to
create them and thence concludes that exceptions or near exceptions to the FC are
likewise commonplace. This argument is invalid on two grounds. First, effectively
designing and implementing a selection process may be very difficult, so the fact
there is some effort afoot to create one provides little assurance that one exists.
Secondly, even if selection processes were common, Cartwright and Hoover’s con-
clusion would follow only if homogeneity generally obtained in the intended domain
of application of the FC, and there is reason to suspect that the opposite is true.

For simple systems whose parts are easily manipulated and inspected, causal
knowledge can often be readily attained without the need for sophisticated analysis
of large samples of statistical data. The intended domain of principles that facilitate
causal inference from statistical data, therefore, consists of more complex systems
whose workings are not so easily ascertained, such as social groups, biological
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organisms, ecosystems, and so forth. But such complex systems are ones in which
parameter values depend upon variable factors that are difficult to predict or control.
Hence, the intended domain of the FC consists of causal systems of which it is quite
doubtful that homogeneity is typically true or approximately true.11

In short, Cartwright and Hoover’s objection has failed to show that exceptions or
near exceptions to the FC are common in its intended domain of use. Nevertheless, it
would be a mistake to conclude that the FC is always an entirely unproblematic
assumption with regard to complex systems. Since near exceptions to the FC are to
be expected when selection and homogeneity are well approximated, a natural
question is whether realistic examples of such cases occur within the intended do-
main of application of the FC. In fact, cases of this sort sometimes arise in gene
knockout experiments.12

For example, consider a gene that serves as a template for the transcription of a
protein that normally performs a specific set of functions in a cell, but when that
protein is not present in sufficient quantities, the transcription of a distinct yet
functionally similar protein from a second gene is increased. It is plausible that there
would be an adaptive benefit in having the quantitative strengths of the two paths
counterbalance one another. For example, maintaining the function may require that
the sum quantity of two products be kept within certain bounds. Hence, it would not
be optimal for the genes for both to normally be transcribed together, while it is
beneficial that the function be maintained at the normal rate when the usual product
is not present in adequate quantities. Thus, natural selection would constitute a
selection process that favors parameterizations in which the counteracting paths
exactly or very nearly cancel out. As explained above, the presence of a selection
process alone is not sufficient to make exceptions or near exceptions to the FC
probable; homogeneity is also required. But this latter condition is much more likely
to be approximated in the context of a gene knockout experiment than in a wild
population. Organisms in knockout experiments are typically generated from ex-
tremely genetically homogenous strains that have been reared for numerous gen-
erations under standard laboratory conditions.

Given the above analysis, one would expect near exceptions to the FC to be a
concern in gene knockout experiments, and this is indeed the case (cf. Pearson 2002,
p. 8). For example, there are examples of nearly canceling out causal paths (cf. Scarff
et al. 2004). Other types of near exceptions to the FC can also be found in the gene
knockout literature, particularly, cases resulting from a lack of variance. For
example, there are cases in which two genes perform the same function, and nearly
all units of the experimental population possess both genes, which has the result that
disabling one of the genes makes no detectable difference to the function (cf. Lil-
jegren et al. 2000). Lack of variation in measured variables and homogeneity of
parameters likely arise from a common source in gene knockout experiments,
namely, the genetic and environmental homogeneity of the experimental organisms.

11 A consequence of this point is that examples of relatively simple technological devices in which
near violations of the FC can be made probable do not show that near exceptions to the FC are likely
in its intended domain of application. In regard to this, see Cartwright’s ‘‘solition’’ example, which
she uses to motivate her objection to the FC (1999a, pp. 30–31, 118).
12 Chu, Glymour, Scheines and Spirtes (2003) demonstrate an obstacle to the Causal Markov
Condition in studies that aim to infer gene regulatory networks from microarray data. However, as
they observe (Chu et al. 2003, p. 1147), this difficulty is not relevant to gene knockout experiments.
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In the context of gene knockout experiments, then, it would be unwise to presume
the FC in anything but a very tentative manner, a point which is clearly reflected in
practice.13 This conclusion shows that Cartwright and Hoover were correct to assert
that exceptions, or at least near exceptions, to the FC may be common in some
circumstances, SGS’s theorem notwithstanding. However, the range of circum-
stances in which the FC is a doubtful premise for causal inference is much more
narrowly restricted than they suggest. Neither attempts to devise a process that
selects for FC violating parameterizations nor the presence of such a process are
sufficient to make near exceptions to the FC probable. It is also necessary that
factors capable of perturbing parameter values in uncontrollable and unpredictable
ways be significantly diminished. But such homogeneity is unlikely to occur most
circumstances in which one wishes to utilize the FC, although it may occur in some
tightly controlled laboratory settings.

Conclusion

The FC entails that where there is no probabilistic dependence, there is also no causal
connection. This principle significantly facilitates causal inferences from statistical
data and is implicit in nearly any study that reports no statistically significant corre-
lation among a certain pair of variables and thereby concludes that neither is a cause
of the other. The potential of the FC to aid causal inference makes it worthwhile to
consider what basis there is for regarding it as an appropriate assumption.

In this essay, I have examined an objection, made by Cartwright and Hoover, to
attempts to justify the FC by reference to theorems showing that exceptions to it
have probability zero given some apparently reasonable assumptions. I maintained
that selection and homogeneity are jointly but not individually sufficient for
exceptions to the FC to be probable. Given this, Cartwright and Hoover’s objection
fails to show that exceptions to the FC are common in its intended domain, since
they only point out that one of these two conditions—selection—not infrequently
occurs. In contrast, homogeneity is usually not a plausible assumption with regard to
the complex systems that fall into the intended range of application of the FC. Of
course, that does not mean that the FC is always an unproblematic assumption. But
it does indicate that the status of the FC as a general principle of causal inference is
on firmer ground than the objection would suggest.
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