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Abstract
The study of rare diseases has long been an area of challenge for medical researchers, with agonizingly slow movement 
towards improved understanding of pathophysiology and treatments compared with more common illnesses. The push 
towards evidence-based medicine (EBM), which prioritizes certain types of evidence over others, poses a particular issue 
when mapped onto rare diseases, which may not be feasibly investigated using the methodologies endorsed by EBM, due to 
a number of constraints. While other trial designs have been suggested to overcome these limitations (with varying success), 
perhaps the most recent and enthusiastically adopted is the application of artificial intelligence to rare disease data. This 
paper critically examines the pitfalls of EBM (and its trial design offshoots) as it pertains to rare diseases, exploring the 
current landscape of AI as a potential solution to these challenges. This discussion is also taken a step further, providing 
philosophical commentary on the weaknesses and dangers of AI algorithms applied to rare disease research. While not 
proposing a singular solution, this article does provide a thoughtful reminder that no ‘one-size-fits-all’ approach exists in 
the complex world of rare diseases. We must balance cautious optimism with critical evaluation of new research paradigms 
and technology, while at the same time not neglecting the ever-important aspect of patient values and preferences, which 
may be challenging to incorporate into computer-driven models.

Keywords  Rare disease · Evidence-based medicine · Artificial intelligence · Machine learning · Philosophy of medicine · 
Ethics

Introduction

Rare diseases have—and continue to—pose a significant 
challenge for not only the patients who have to live with 
these conditions, but also the clinicians and researchers 
attempting to treat and understand them. Despite low indi-
vidual disease rates, rare diseases collectively impact an esti-
mated 3.5–5.9% of the world’s population (approximately 
263–446 million people) (Chung et al. 2022; Nguengang 
Wakap et al. 2020). In the United States, the Orphan Drug 

Act defines a rare disease or condition as one impacting less 
than 200,000 people in the country (a prevalence of < 64 per 
100,000 people), while in Europe, this number sits at less 
than 1 in 2000 people in the general population (Behera 
et al. 2007; Brasil et al. 2019; Genetic and Rare Diseases 
Information Center 2023; Hampton 2006; Sernadela et al. 
2017). In one-quarter of patients, receiving a diagnosis takes 
5–30 years (while others are never diagnosed), typically after 
having seen countless care providers, undergoing numerous 
tests, and enduring years with a nameless set of symptoms 
that few seem to understand (Visibelli et al. 2023). Unfor-
tunately, given the scarcity of treatments for many rare 
diseases, a patient’s challenges may not be over even once 
correctly diagnosed. Given that approximately 80% of rare 
diseases are thought to be genetic in origin, the past several 
decades’ explosion in genetic research and knowledge about 
the human genome has led to new insights—as well as ques-
tions—about the nature of various rare diseases. To add to 
the complexity and importance of better understanding such 
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diseases, many present early in life (often from birth), and 
have a severe, sometimes fatal course. As such, the logisti-
cal and ethical challenges of studying diseases in paediatric 
populations has added additional considerations to rare dis-
ease research efforts. This is, of course, on top of the already 
obvious challenge of working with small population sizes.

In the broader field of medicine, questions surrounding 
how best to approach clinical research and care are nothing 
new. In a response to what was seen as biased clinical 
judgement unsupported by solid scientific backing arose 
the ‘evidence-based medicine’ (EBM) movement, which 
provided a set of guidelines by which to critically assess 
evidence and apply it to clinical practice (Evidence-
Based Medicine Working Group 1992; Masic et al. 2008; 
Rosenberg and Sackett 1996). First proposed in 1981, 
through a series of articles in the Canadian Medical 
Association Journal (CMAJ), this approach—touted 
by its supporters as a ‘paradigm shift’ for practitioners 
and medical learners alike—described not only how to 
critically assess evidence, but also put forth a controversial 
evidence ‘hierarchy,’ placing certain methodologies (e.g. 
animal studies, case reports) towards the bottom (lowest 
confidence), and others (e.g. randomized controlled trials 
(RCTs), meta-analyses) at the top (highest confidence) 
(Bolignano and Pisano 2016; Burns et al. 2011; Evidence-
Based Medicine Working Group 1992; Lester and O’Reilly 
2015; Sur and Dahm 2011). EBM, it was claimed, would 
enable clinicians to critically examine evidence, as well as 
use the highest quality evidence from ‘unbiased’ research 
in making decisions for their patients. Unfortunately, this 
argument is not without its faults, many of which have been 
strongly voiced by those who have been critical of EBM (e.g. 
Goldenberg 2006; Kulkarni 2005; Tonelli 1998). Here, I will 
not provide a full discussion of the strengths and weaknesses 
of EBM, which have been explored at length in other papers. 
Rather, I aim to explore EBM’s pitfalls specifically in the 
context of rare diseases, particularly debates surrounding the 
generalizability of evidence, and challenges in applying the 
EBM hierarchy to small, complex patient populations. This 
will lay the foundation for understanding enthusiasm about 
artificial intelligence (AI) as a potential solution to the ‘rare 
disease problem.’

I am not the first to open this debate. Indeed, many have 
realized the impossibility of applying certain methodologies, 
like the RCT, to rare disease populations. As a result, 
numerous ‘solutions’ have been put forth in an attempt to 
overcome irresolvable limitations for those studying rare 
diseases. Given the importance of these new approaches 
to the progression of rare disease research, these alternate 
methodologies will also be briefly summarized within this 
discussion (see Table 1). However, the place I wish for us 
to focus our attention on is implementation of AI into this 
realm. There is no denying the benefits of new technologies 

applied in research and clinical care, such as machine 
learning (ML) algorithms that enable data analysis and 
pattern recognition far exceeding human capabilities. In the 
world of rare diseases, AI has been proposed as a revolution 
that circumvents not only the challenges of EBM-favoured 
methodologies, but even surpasses the constraints of study 
designs developed to overcome these challenges.

This paper’s novelty lies in how the conversation is 
further extended, drawing attention to the issues that exist in 
harnessing the exciting (and indeed, powerful) opportunities 
provided by artificial intelligence and applying it to patient 
data. In much the same way that EBM was touted as a 
‘revolution’ in clinical medicine decades ago, there is 
increasingly a sense that AI technologies will ‘revolutionize’ 
medicine once again. Given the unique considerations for 
populations of patients with rare diseases, it is important to 
take pause and reflect on the logistic and ethical implications 
of such a ‘solution’ in the long and aggravating battle to 
make headway for individuals living with poorly understood, 
rare diseases.

Evidence‑based medicine, generalizability, 
and the ‘rare disease problem’

In the early 1990s, EBM fully emerged, heralded as a “para-
digm shift” that would allow clinicians to employ critical 
assessment of scientific evidence from the medical litera-
ture to answer important questions in their field of practice, 
thereby doing away with ‘biased’ professional judgement 
(Guyatt et al. 1992). Under the framework of EBM, former 
ways of making clinical decisions were considered ‘unsys-
tematic,’ citing professional experience and understanding 
of the basic mechanisms of disease “necessary, but not suf-
ficient guides for clinical practice” (Evidence-Based Medi-
cine Working Group 1992). As described above, a critical 
component of the EBM paradigm is its evidence hierarchy, 
which aims to help clinicians employ evidence gathered 
from the most unbiased, rigorous methodologies. In this 
hierarchy, RCTs and meta-analyses reside at the top, while 
evidence from sources such as case reports and animal stud-
ies are considered far less favourable and more prone to bias 
(Fig. 1). Unsurprisingly, EBM has not gone without critiques 
(e.g. Charlton and Miles 1998; Goldenberg 2006; Kulkarni 
2005; Tonelli 1998). A very important question, for the pur-
pose of this conversation specifically as it pertains to rare 
diseases, is how results from methodologies such as RCTs 
may be applied to individual patients (Kulkarni 2005).

I believe it is important to acknowledge, as others have, 
that incorporating ‘evidence’ into medicine is not an all-or-
nothing approach. As has been voiced, clinical decisions 
have always been ‘evidence-based,’ long before the EBM 
movement came into existence (Kulkarni 2005; Tonelli 
1998). The key distinction between prior research traditions 
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in clinical medicine and the EBM movement is, as Kulkarni 
rightly points out, “a fundamental difference in their philo-
sophical assumptions about what things in clinical medicine 
are able to be studied (ontology) and how clinical medi-
cine can and should be studied (epistemology and method-
ology).” As part of this heated debate is the all-important 
question about the nature of reality, which the EBM frame-
work (with its focus on “systematic, unbiased observation”) 
purports to better study than other modes of critical inquiry 
(Kulkarni 2005). Of course, problems exist in this way of 
thinking, namely the idea that there is a single approach 
(indeed, any approach) that will enable us to uncover a com-
pletely impartial view about the nature of reality. As Maya 
Goldenberg points out, “our observations are ‘coloured’ 
by our background beliefs and assumptions (and therefore 
can never be, even under the most ideal circumstances or 
controlled experimental settings, the unmitigated percep-
tion of the nature of things” (Feyerabend 1978; Goldenberg 
2006; Hanson 1958; Kuhn 1970, 1996). Recognizing this 
philosophical truth creates major issues for EBM and the 
hierarchy of evidence it claims will lead to medical ‘truths’ 
and overall improved patient outcomes. Critically, it implies 
that RCTs, meta-analyses, and other evidence high on the 
pyramid may not be as sound as once considered (Bolignano 
and Pisano 2016). And if this is the case, it begs the ques-
tion: for populations where these methodologies are not even 
a possibility, such as rare diseases, what better approaches 
can be employed?

To add to this conversation, consideration from a 
philosophical perspective has gone further in exploring 

the crux of EBM itself—the nature of ‘evidence.’ As noted 
by Jeremy Howick, ‘evidence’ of effectiveness within 
clinical medicine is not as simple as favourable results 
from an RCT (or other method high on the EBM hierarchy) 
(Howick 2011). Instead, one must go deeper to consider 
the complexity of a concept like ‘evidence’ itself, and 
the ways this complexity intertwines further with bodies, 
minds, and natural human variation (Anjum et al. 2020). 
For instance, evidence that holds clinical utility must also 
be relevant to individual patients—something that cannot 
be determined empirically, no matter how rigorous the 
test. Yes, a new medication may be helpful in a patient 
managing their weight, for example—but this alone does 
not satisfy a ‘patient-relevant’ outcome. For this, one 
must further explore the notion of quality of life/what a 
patient considers to be a ‘better’ life for themselves—a 
philosophical debate that is beyond the scope of this paper, 
but of utmost importance to note within this discussion 
nonetheless. Beyond patient quality of life, one must also 
consider benefit-harm analyses when considering evidence. 
In the overwhelming majority of cases, evidence is presented 
in terms of statistical significance or effect sizes—while 
neglecting to explore the many possible side-effects that may 
come with its use (Howick 2011). Moreover, the relevance 
of these side effects to an individual patient is impossible to 
factor into analyses—for one patient, chronic constipation 
may be a minor annoyance; for another, it may significantly 
impact their overall wellbeing. An additional word should 
be said about the notion of ‘best available options’ in 
medicine, and the way this is often missed when looking 
solely at the evidence produced in support of a particular 
treatment, procedure, or other intervention impacting health. 
For any condition, different options will be available—for 
some conditions, this is very broad, for others, the number 
of options may be quite narrow. One option that always 
exists (but is regularly overlooked) is simply to do nothing 
at all. While a physician considering data, for instance, 
of a new pharmaceutical drug, may see strong ‘evidence’ 
from a trial—in that the drug checks all the boxes that EBM 
demands, aspects of the larger patient picture may be missed 
(Worrall, 2022). Particularly for patients with rare diseases, 
where creative, forward-thinking approaches may be 
required to determine what the best available option is—for 
their unique case at both the biological and personal level—
EBM is not only about solid evidence, but solid evidence 
applied to unique cases that are as complex as the human 
condition itself. 

As Simon Day points out in their discussion about EBM 
and rare diseases, other forms of evidence are critical in 
piecing together clinical pictures for patients with rare 
diseases, as quite obviously, “any data are better than 
none and good and reliable quality of data are better than 
poor quality and unreliable data” (Day, 2017). Using the 

Fig. 1   The EBM hierarchy of evidence. Methodologies placed closer 
to the top of the pyramid are considered to be less biased, more rig-
orous, and reliable forms of evidence, which should be prioritized 
in making clinical decisions.  Adapted from Bolignano and Pisano 
2016; Djulbegovic and Guyatt 2017)
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common analogy for accuracy and precision—targets on a 
dartboard—Day makes the important point that in research 
(particularly research into diseases for which little is 
known), we may not even know where the “target” being 
aimed for is. Perfectly randomized trials do little to help if 
we have no idea what we are aiming at—whether that target 
be diagnoses, prognosis, treatment, or any other variable of 
interest (Figs. 2, 3). The key in the case of rare disease, made 
up of small populations of patients with complex illness, is 
to stop trying to solve the problem with tools unfit for the 
job (e.g. RCTs). Instead, we must turn to other forms of 
evidence, which prioritize quality of evidence over quantity 
or unnecessary fixation on fitting into the EBM hierarchy.

This brings us to the important point of generalizability—
which is an essential breaking point for those attempting to 
transplant rare disease research into the confines of EBM. 
When initially conceived, EBM was seen as a “way to close 
the gulf between good clinical research and clinical practice” 
(Rosenberg and Donald 1995; Tonelli 1998). And yet, one 
must reconcile themselves with the fact that this ‘gap’ 
between what is observed in research and our individual 
patient can never be fully resolved, as it “represents [both] 
an intrinsic, philosophical gap,” and well as an ethical gap 
(Malterud 1995; Tonelli 1998). The individual patient 
in front of us is not equivalent to patients documented in 
research, particularly in the context of methods like RCTs 
and meta-analyses where participant data may be pooled 
and difficult (if not impossible) to find reports of individual 

patient characteristics or measurements. A similar argument 
exists in rare disease care as that explored by Nancy 
Cartwright in the context of health policy. If we agree that 
a philosophical gap exists between the individual patient 
in front of us and outcomes reported in clinical literature 
(regardless of how ‘rigorous’ the method claims to be), then 
we can also agree that even transplanting a similar study 
protocol from one context (e.g. one patient population) to 
the next (a small sample of rare disease patients) can never 
yield precisely the same results (Cartwright 2013). It is 
very enticing to want to believe that just because a finding 
is observed somewhere (“there”), that it can be considered 
to apply widely, and therefore provide the same expectation 
in some new setting (“here”). Of course, many—even the 
layperson—would recognize that just because something 
works in one context, does not mean it can be applied to 
another. What might function as a fantastic beach umbrella 
here on Earth would lead to a sorry end for both umbrella 
and astronaut if employed as sun protection on Venus. 
Yet, this is precisely what the world of EBM has tried to 
force upon the study of challenging patient populations, 
such as those with rare diseases—and such thinking has 
influenced (as we shall soon see) the ‘solutions’ available 
to overcome our inability to run studies such as RCTs in 
these contexts. These ideas have been further explored 
in the work of Jonathan Fuller, who notes both the myth 
and fallacy of ‘simple extrapolation’—extrapolating the 

Fig. 2   Visual depiction of the dartboard analogy to describe bias and 
(lack of) precision. A. Biased, but with high precision; B. Low preci-
sion and no overall bias; C. Low precision and biased; D. High preci-
sion and low bias  (Adapted from Day, 2017)

Fig. 3   Reality of data collection. Given that the target is unknown 
(e.g. in developing a new treatment for a rare disease), we do not 
know whether the data is on target or not. We also do not know the 
relative precision—whether bullets are closely packed in relation to 
the actual size of the target.  (Adapted from Day, 2017)
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findings of trials to clinical practice through EBM (Fuller 
2021). Within this argument, Fuller notes that a myth exists 
whereby statistics are wrongly seen as transposable metrics 
that can be applied from the context of their origin (studies 
that are ‘solidly constructed’ under EBM criteria) to general 
patient populations – what has been coined as the ‘myth of 
the golden risk ratio’ (Fuller 2021; Reiczigel et al. 2017). 
Furthermore, simple extrapolation carries a crucial fallacy 
rooted in ignorance, blindly concluding that effect sizes can 
be transplanted from highly controlled EBM contexts to 
other patient populations (or even, as is important for our 
discussion, individual patients), simply because contrary 
evidence is not provided. It should also be noted that even in 
cases where a clinician finds an RCT studied in a population 
similar to the patient in front of them, issues with external 
validity continue to remain underreported in such trials, 
and meta-analyses may even be worse for concealing biases 
(Borgerson 2009). Moreover, failing to incorporate unique 
patient values and preferences into care creates serious 
ethical dilemmas—and these factors are impossible to 
capture and translate from large, quantitative studies into 
the clinic.

New methodologies, none perfect: fitting rare 
diseases into EBM

While the key takeaway of this paper lies in the proceeding 
discussion of AI’s implementation into rare disease research 
and care, it is important that other methodologies are 
documented in brief. These approaches have been discussed 
at length by others, and I encourage those interested to 
explore each in more detail than what is provided here, 
which is by no means complete. Rather, this summary will 
serve as our bridge from a strict EBM paradigm into the 
newest paradigm of artificial intelligence and its offshoot, 
machine learning.

As demonstrated in Table 1 below, numerous different 
methodologies have been proposed to apply EBM principles 
to smaller patient populations, even down to the level of 
the individual patient. As with any study methodology, each 
has their own advantages and disadvantages and crucially, 
no single approach has been developed as a perfect fit for 
EBM research applied to rare diseases. For instance, ‘N-of-
1’ trials are one such approach for studying individual 
patients, where (as the name suggests), a single person is 
included in the trial (Lillie et al. 2011). Here, the principles 
of crossover RCTs are applied to individual subjects, thus 
allowing the participant to act as their own control, and with 
the benefit that preferred treatments can be determined at the 
individual level (Abrahamyan et al. 2016; Tudur Smith et al. 
2014). Unfortunately, as outlined below, N-of-1 trials, while 
an innovative solution, do suffer the same disadvantages as 
crossover trials, and meta-analyses based on N-of-1 trials 

suffer limitations in generalizing findings owing to unique, 
individual patient variability/characteristics. 

Other methodologies face challenges due to the wide 
variation that exists in diseases themselves, with some 
approaches suitable for one condition, but perhaps 
impractical for another. As an example, randomized 
withdrawal designs/randomized discontinuation designs 
(whereby subjects receive an experimental treatment for a 
specified time, after which they are randomly assigned to 
continue the treatment or be switched to a placebo) have the 
potential to increase study efficacy because fewer patients 
are exposed to the placebo, but are limited to predictable, 
chronic/slowly progressing diseases (Tudur Smith et al. 
2014). Conversely, other methods may be limited by the 
nature of the treatments themselves. For instance, factorial 
designs, which may be excellent for comparing multiple 
interventions and uncovering interactions between groups, 
cannot incorporate treatments that must be administered 
separately (which would exclude a necessary combination 
of interventions in the factorial design) (see Table  1). 
Altogether, these challenges (and more) highlighted in 
the table below point to the difficulties of applying EBM 
to small populations of rare disease patient cohorts. Even 
amongst these novel, rigorous techniques for uncovering 
clinical ‘evidence,’ no perfect fit for rare disease research 
emerges, encouraging us to consider the next section of this 
article, where the novelty of artificial intelligence in this 
context is explored. 

Before moving on, this discussion would not be 
complete without considering some of the statistical 
and endpoint challenges that fed into the design of these 
new methodologies (and still plague many). Given the 
small sample sizes that are naturally part of studying rare 
diseases, it can be difficult—if not impossible—to recruit 
cohorts large enough to reach the standard 80% statistical 
power typically sought after by those looking for ‘high-
quality’ research (as well as those funding this research). 
As Abrahamayan et al. (2016) point out in their discussion 
of alternative designs for clinical trials in rare diseases, 
nothing is inherently biased about small study sizes, but in 
cases where researchers do find significant P-values (usually 
set at less than 0.05, another topic of debate), the observed 
difference will be greater than the true value. In the [more 
likely] case where insignificant results are obtained, there 
is a high likelihood that the results may not even have the 
opportunity to be published in the first place (Abrahamayan 
et  al. 2016). Moreover, many rare diseases arise from 
genetic causes, of which there may be unique genetic sub-
groups that have different responses to the variable(s) 
under study (e.g. different responses to treatment; different 
safety profiles). Testing in multiple sub-groups (potentially 
important to gain a true picture of the study effect) may run 
into issues of even smaller, more diluted sample sizes. In 
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some cases, researchers may decide to reserve sub-group 
testing for a final analysis stage to investigate different 
treatment effects across genetic populations. This too creates 
issues, where testing in multiple subgroups increases the risk 
of Type I error, as well as potentially increasing Type II error 
(particularly if the study was not designed to have sufficient 
power for treatment-subgroup interactions) (Abrahamayan 
et  al. 2016; Korn 2013). A final consideration during 
analyses of rare disease populations lies in the challenge 
of working with small populations, which may have non-
normal distributions. With many standard statistical analyses 
relying on assumptions of normality, researchers may run 
into issues with meeting necessary assumptions, as well 
as finding faulty results from analysis that appeared sound 
on the surface (Abrahamayan et al. 2016; Ludbrook 1995). 
When working with other illnesses that naturally have larger 
populations to draw participant samples from, the central 
limit theorem tends to minimize such concerns surrounding 
normality (Kwak and Kim 2017).

Beyond statistical challenges and the methodologies 
themselves, defining endpoints in rare disease research has 
been cited as yet another critical issue (Abrahamayan et al. 
2016; Brown et al. 2018). It is agreed that primary endpoints 
of clinical trials should have well-defined and reliable 
measurements, which are also “clinically meaningful and 
relevant to the patient, readily measurable and sensitive to 
intervention” (Aronson 2005; Fleming and Powers 2012). 
Given that many rare diseases have poorly understood 
etiologies and disease progression, responses to treatments, 
and incurability (among other considerations), surrogate 
endpoints that are easy to measure are often employed 
(Abrahamayan et  al. 2016). For instance, as discussed 
by Brown et al. (2018) in the context of rare oncological 
tumor research, overall survival (OS) is used as a “robust 
and realistic indicator of efficacy,” but may not be ideal or 
entirely realistic as an endpoint for rare tumor trials. For 
instance, in malignancies that have long survival times, 
using OS as a primary endpoint may lead to long studies that 
are not feasible, particularly given the number of patients 
needed to provide sufficient power to the study. In many 
rare diseases, surrogate outcomes that come from measures 
such as biomarkers are cheaper, easier, and faster to measure, 
as well as being more accepted by patients and clinicians 
alike (Abrahamayan et al. 2016; Aronson 2005). However, 
it should be noted that using biomarkers (e.g. lab results) 
as a primary endpoint may not lead to the most accurate 
or clinically relevant conclusions (particularly in cases 
where disease biology is poorly understood). Of course, 
using solely biological measurements as trial endpoints 
also brings in the all-important issue of neglecting patient 
values and preferences in the discussion. Other less easily 
definable—but no less important—measures, such as quality 
of life, pain levels, and so forth—may be better endpoints, 

but this brings in debates surrounding how best to produce 
‘unbiased’ measures that can be generalized across patient 
populations.

Unfortunately, solutions to these challenges are yet to 
exist (and may never exist). As Bolignano et al. (2014) point 
out in the setting of rare renal diseases, perhaps the best 
option is agree to disagree, and focus more specifically on the 
quality of evidence, rather than quantity. Of course, meeting 
these goals does not happen in isolation, and the importance 
of collaboration across health centres and research groups 
cannot be understated. These collaborations are key, as we 
shall see, in the context of artificial intelligence and machine 
learning, our next and final point of discussion.

Machine learning in medicine: panacea to the ‘rare 
disease problem,’ or an even greater challenge?

As is evident from the preceding discussion, the proposed 
solutions to the ‘rare disease problem’ continue to have their 
challenges, and still strive to make themselves fit within an 
EBM methodological framework. Along with many other 
areas of medicine, a recent movement towards utilizing 
AI has entered the world of rare disease research. As most 
readers will be aware, artificial intelligence is not a new 
concept, though one that has grown in popularity over the 
past decade as technological advancements have radically 
altered what AI can accomplish. One of AI’s most promising 
elements is its ability to bring together and analyze data 
from numerous sources, including imaging, multi-omics, 
laboratory results/biomarkers, electronic health records, 
and so forth (Brasil et al. 2019). Two subsets of AI that are 
important to our discussion of medicine and rare diseases 
are machine learning (ML) and deep learning (DL). 
Machine learning, which constructs algorithms based on 
training datasets, can be used to produce outputs that can 
assist with diagnosis, prognosis, and treatment (Kufel et al. 
2023). Deep learning takes this a step further, employing 
even more complex and abstract models. One of the most 
important benefits of ML and DL, as it applies to medicine, 
is its ability to find patterns within data (often enormous 
datasets) that would be challenging, if not impossible, for 
humans to recognize (Visibelli et al. 2023).

The parallels between the EBM and AI movements are 
striking, both seen as paradigm shifts for the clinical and 
research communities. In each case, EBM and ML models 
attempt to support clinical decision making, but vary in their 
epistemological methods (Scott et al. 2021). While EBM 
uses empirical research to drive inferences, ML focuses on 
using data mining methods to find patterns and associations 
in datasets. As Scott et al. (2021) point out in their article 
exploring the complimentary approaches of EBM and ML, 
“[o]bservational data and ML are useful when prospective 
research studies, especially RCTs, are not feasible because 
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of ethical concerns, logistical barriers, limited timespans, 
cost, or inability to recruit patients and/or clinicians.” 
They go on to propose that ML could offer a new means of 
supporting clinical decisions, which is more closely tailored 
to an individual patient than the information derived from an 
RCT would be. In short, EBM is based on hypothesis-driven 
discoveries. ML, on the other hand, is data-driven.

Currently, ML is being applied in numerous areas of rare 
disease research, primarily diagnosis and to some extent, 
prognosis and treatment discovery. As an example, for 
patients with genetic changes, AI algorithms have made 
great strides in helping us predict the significance of these 
variants (for instance, whether a specific variant is likely to 
be pathogenic and contributing to a patient’s phenotype, or 
simply an incidental finding) (Brasil et al. 2019). Phenotype 
and biochemical-driven diagnoses are another area where 
AI is increasingly being explored for rare disease, where 
computerized recognition of characteristic physical features 
present in imaging or derived from lab results, may point 
towards new ways of diagnosis and providing prognosis 
to patients (Hallowell et al. 2019; Visibelli et al. 2023). 
Although still in its infancy, using AI for research on 
treatments for rare diseases is also increasing, such as in 
models that can simulate therapeutic options to help guide 
more individualized treatments. According to a recent 
review by Visibelli et  al. (2023), the most commonly 
applied algorithms are SVM (Support Vector Machine), RF 
(Random Forest) and ANN (Artificial Neural Networks), 
which can handle the complex, high-dimensional data that 
rare disease research demands. Most commonly, images 
were the sources of data input, which has implications 
for which rare diseases have the opportunity to be most 
rigorously studied.As an example, in a scoping review 
conducted by Schaefer et al. (2020), 211 studies from 32 
countries investigating 74 rare diseases were identified. Of 
these studies, there was an overrepresentation of disease 
groups that have imaging data, such as neurologic diseases 
which often have CT, MRI, and other such scans to use for 
ML pattern recognition. This review also found that most 
studies of ML for rare diseases focused on diagnosis (40.8%) 
or prognosis (38.4%), with only a small proportion of studies 
where ML was applied specifically to improve treatment 
(4.7%) (Schaefer et al. 2020).

In further conversations about clinical evaluation of 
ML in medicine, the application of RCTs specifically for 
the purpose of assessing these models has been suggested 
(and simultaneously, brought into question). While the 
medical community calls for more RCTs to explore the 
reliability and validity of AI approaches in healthcare, 
assessing ML using EBM-based methodologies does not 
come without limitations. Whether studying treatments/
interventions themselves, or new AI models used to study 
them, philosophers of science have been careful to point 

out the challenges of RCTs in the new age of AI (Genin 
and Grote 2021). These include threats to internal validity 
(such as level of physician experience/willingness to change 
decisions based on AI feedback, and other ‘physician 
effects’) and external validity (e.g. ‘novelty effects,’ where 
physicians involved in a study are not acclimated to AI 
technologies as they would be after routine use in the real-
world). Many of the same EBM-based suggestions for 
improving studies, such as randomization and blinding, have 
been proposed to improve ECTs in medical AI (Genin and 
Grote 2021). Importantly, the common thread amongst most 
researchers of rare diseases—including those employing 
AI algorithms to better understand these conditions—is the 
need for international collaboration, with initiatives and 
networks that bring together both data and expertise to a 
common place.

Despite obvious—and well-deserved—excitement about 
the many possibilities that AI brings to the world of rare 
diseases, it is also critical that careful consideration is taken 
into the limits of AI, logistically as well as ethically. Here, 
I outline these issues in chronological order (see Table 2), 
starting at the model development stage. Early in the 
process of developing an ML or DL model, one of the most 
obvious issues is that of overfitting and by extension, lack 
of generalizability. While methods to develop ML models 
may vary, utilizing training sets to develop models that can 
then be applied to real-world data is a common feature. Fit 
your model too closely to the training dataset, and its outputs 
may not be able to extend to future contexts (Freiesleben and 
Grote 2023). There is a constant trade-off between fitting 
the algorithm to the data currently at hand, and having it 
perform accurately when presented with a new patient. In 
many areas of medicine, ML holds immense promise—for 
instance, when presented with thousands of imaging results 
to discriminate between healthy patients and those with a 
common disease. However, can the same be said for rare 
diseases, or is applying ML frameworks only opening an 
even greater black box and generalizability issue than EBM 
methodologies such as RCTs?

The answer, I contend, is not so simple—naturally owing 
to the incredibly varied nature of rare diseases. Let us imag-
ine, for instance, a rare genetic disease resulting from a very 
specific mutation. We will call this disease X (Fig. 4). Let 
us also imagine, for argument’s sake, that disease X has full 
penetrance (every case of the mutation manifests with dis-
ease), and has the same, clearly observable, well-defined 
phenotype for every patient. In such a case, ML algorithms 
may (and I say ‘may’ with caution) be a wonderful solu-
tion to issues such as small sample sizes, where even a tiny 
patient cohort might provide rich insights into the underlying 
biology and potential treatments for the disease. ML in this 
context could allow us to make the most of data collected 
from few patients, which could then be extended to the care 
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of future patients with the same mutation leading to disease 
X.

On the other hand (which is far more likely to be the case) 
let us also consider some disease Y, again a rare genetic 
condition resulting from single nucleotide mutations. How-
ever, perhaps disease Y presents with a variable phenotype, 
where some features are common to all patients (thus, giving 
them the ‘disease Y’ diagnosis), while other features are 
only observed in a select few. Let us further imagine that 

the phenotype depends on the precise mutation a patient 
carries. Rather than disease X, which is caused by a single 
mutation in a single gene, disease Y may be caused by mul-
tiple different mutations within a single gene. Or, even more 
challenging—a similar phenotype may be caused by differ-
ent mutations in different genes. Quite quickly, we can see 
that even if ML can provide deep insights into the patients 
under current study, it is difficult to apply these findings to 
new patients with disease Y. Doing so may lead to errone-
ous, if not also dangerously misleading, conclusions. Even in 
the seemingly ‘clear-cut’ case of disease X, with incredibly 
small sample sizes of patients for certain rare conditions, it 
is impossible to know whether the currently reported cases 
represent the entirety of this patient population—past, pre-
sent, and future. Just because I pick ten red balls out of a 
bag does not mean no other colours exist. We would need to 
empty out the entire bag to be sure (and never add any new 
balls). Increasing certainty can be found in additional reports 
of cases that either support or refute our current understand-
ing of disease—the kind of case reports that EBM places 
at the bottom of its evidence pyramid. Yet, enough reports 
together may paint the nuanced clinical picture that quantita-
tive methodologies will never fully be able to. Only once we 
have increased confidence in exactly what we are studying 
can we fully apply and rely on new, exciting possibilities like 
AI to the world of rare diseases (Fig. 4).

An additional consideration at the model development 
stage, with important implications for generalizability, is 
the need to include clinical experts in the feature selection 
process (the process by which variables are selected to 
include in ML algorithms). While data scientists can bring 
the expertise required to build complex models, decisions 
surrounding which inputs are clinically relevant to patients 
with specific diseases are essential. Otherwise, we run the 
risk of producing models that may spuriously predict a 
particular outcome, but with little connection to measures 

Table 2   Key considerations for the implementation of AI methodologies into the study of rare disease

Model development Overfitting/Generalizability—Will this model apply to patients outside my training dataset?
Clinical experts in feature selection—Are the variables included in model prediction clinically relevant to the patient 

population in which these models will be applied?
Model application External validity—Do these models perform accurately within clinical settings?

Reproducibility of results—Does this model produce reliable results when implemented repeatedly? Do models 
purporting to deliver similar outputs in similar patient populations actually have comparable results?

Interpretability—Is the decision-making process transparent and understandable to the clinicians employing them? 
Would a clinician be able to detect an erroneous result (or result that may not be appropriate for the individual patient in 
front of them?)

Ethical issues Data handling, patient consent—With the call for large, pooled datasets and consortiums, how do we ensure patients are 
properly consented for the many situations their data may be used within?

Preventing commoditization of patient data—As data becomes an increasingly valuable commodity, how do we ensure 
that patients are benefitting from their health data?

Incidental findings—How are incidental findings handled? Are patients informed? How are these findings confirmed and 
interpreted for individual patients?

Fig. 4   Hypothetical diseases ‘X’ and ‘Y’. A. Disease ‘X,’ which 
results from the same genetic change in every patient, and has the 
same outwardly observable disease characteristics. B. Disease ‘Y,’ 
which may result from multiple different mutations within the same 
gene, or different mutations in different genes. This disease may also 
have variation in disease presentation across patients
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that are actually related to the disease pathology in question. 
For instance, a clinician may know that certain laboratory 
measurements are highly indicative of a disease or disease 
outcome, while other measurements hold no relevance 
to the patient at hand. Blood haemoglobin levels or liver 
function tests may be a critical biomarker for one condition, 
and not another. Just because data is available for certain 
features (input variables), does not mean it should be 
randomly integrated into models. Clinical experts need to 
work alongside computer scientists to ensure that models are 
being built with variables that have true clinical relevance 
and value to the patient in front of them.

At the stage of applying AI models to actual patient 
cohorts, the external validity of these algorithms must be 
considered (Scott et al. 2021; Visibelli et al. 2023). Without 
rigorous means of validating models in clinical settings, 
we have no way of knowing how effective these models 
are at delivering outputs that are accurate and meaningful 
to patients and their healthcare providers. When thinking 
about individuals with rare diseases, this becomes even 
more important, as described above in cases of overfitting 
to training datasets. The international community has yet to 
outline clear and specific guidelines to assess the external 
validity of ML models (Visibelli et al. 2023; Youssef et al. 
2023). As with RCTs, which lack clear guidelines for 
assessing and reporting external validity—so too do these 
new AI-driven models. On top of external validity, ensuring 
that results from an algorithm are reproducible will be 
integral, just as EBM places a high degree of importance 
on the reproducibility of studies, and value of systematic 
reviews and meta-analyses (Beam et al. 2020; Scott et al. 
2021). Reproducibility of results will be an important 
checkpoint in the external validation process to ensure 
that results are not simply due to chance, perhaps overfit to 
training data and unable to produce the same results when 
mapped onto real patients (especially those with complex, 
rare diseases).

At the stage of implementing ML and DL algorithms 
in clinical spaces, the question of interpretability becomes 
critical. Techniques like RCTs are opaque enough as it is to 
the healthcare providers who may be trying to make sense 
of them (Wadden 2021). When it comes to the ‘black box’ 
of computer algorithms, it will be even more essential that 
transparency is maintained, allowing clinicians to scrutinize 
these models, understanding what goes on ‘underneath 
the hood,’ and how output decisions are arrived at Zhang 
and Zhang 2023). This includes, as occurred with EBM, 
implementing new additions to the medical curriculum 
for learners and practicing physicians alike—so that care 
providers can critically assess the AI tools they are using. 
Otherwise, we create the danger of entering an era of 
‘automated medicine,’ with clinicians blindly believing 
computer-generated outputs to be absolute truth. While 

EBM initially aimed to drive away what it saw as ‘biased’ 
clinical judgements, we must take care that the pendulum 
does not swing too far in the opposite direction, where 
perhaps even more biased algorithms take over, and future 
clinicians are left without the skillset and confidence to make 
individualized decisions based on professional experience, 
personal knowledge, and other available evidence (Genin 
and Grote 2021).

As a final point, ethical issues do not end with AI, but 
rather, only intensify. Hallowell et al. (2019) brings up a 
number of these considerations in their paper exploring big 
data phenotyping in rare diseases, such as the safeguards 
that must be put in place to handle patient data (especially 
if, as has been suggested, this data is pooled and used by 
numerous research groups and organizations, both academic 
and private) (Larson et al. 2020; Murdoch 2021; Safdar 
et  al. 2020). Moreover, it is clear that large datasets of 
patient information hold great economic value, in that they 
can be used for means such as developing new diagnostic 
technologies and in the discovery of novel treatments 
(Martinho et al. 2021). How do we prevent patients from 
being taken advantage of—their health information turned 
into a commodity, perhaps with no benefit provided to 
them? What consent processes must take place to ethically 
create the larger datasets so desperately needed? How can 
we ensure patients do not feel like they are being turned 
into a nameless research subject—especially in the context 
of rare diseases, where patient numbers can be so few, and 
researchers can be so desperate for data? Along with these 
ethical issues, AI research must contend with many of the 
same questions the genetic research community did when 
introducing new genetic testing methodologies into its 
practice, such as how to deal with incidental findings.

A last, and very important limitation of tools based on 
artificial intelligence is the additional complexity when 
patient values and preferences are considered, which are 
much more challenging to incorporate into a computerized 
model than, for instance, objective imaging data. In many 
ways, AI has stepped into the place that EBM originally did, 
holding great promise for a ‘clean,’ logical way to go about 
making clinical decisions. Just as one of the major critiques 
of EBM was its inability to clearly address personal prefer-
ences and experiences of the individual patient, so too does 
this challenge plague an automated approach to medicine. 
Now, unlike decades ago when EBM emerged, the issue is 
even more pressing—can clinical decisions be trusted, if 
humans are no longer critically evaluating evidence them-
selves, but rather, relying on a computer to do this evaluation 
for them? In all cases, we must remember that patient wishes 
should feed into the ultimate output: the final, mutually-
agreed upon decision from care providers and patients. The 
individual patient, above all, must exist at the finish line of 



281Navigating the uncommon: challenges in applying evidence‑based medicine to rare diseases…

decision-making, regardless of the approach (e.g. EBM, AI, 
etc.) used to arrive there.

Conclusion

Despite having small patient numbers at the individual level, 
rare diseases represent an important—and difficult—area 
of medical investigation. Unfit for the ‘tools’ (e.g. RCTs) 
highly advocated for in the EBM paradigm, clinicians 
and researchers alike are left to grapple with how best to 
study these conditions, and by extension, provide the best 
care possible to their patients. Despite numerous modified 
methodologies having been proposed to make rare disease 
research fit within the scope of EBM, these trial designs 
come with their own disadvantages, and none are perfect 
in overcoming every limitation. As with other fields of 
medicine, artificial intelligence is gaining increasing 
attention for a potential solution to these issues. However, 
given the complex, opaque nature of computer algorithms 
and their outputs, important considerations must take place 
before thoughtlessly bringing new technology into clinical 
practice. This article outlined logistic and philosophical 
factors that must be addressed to ensure safe, accurate, and 
reliable use of machine learning in the world of rare disease 
research and care. While artificial intelligence is a powerful 
tool, it is one that can easily be misapplied. It is important 
that in the early stages of its integration into healthcare 
decisions, consistent checks and balances be put in place 
to ensure the best for our patients—and to ensure that 
those with rare diseases (whose data makes advancement 
in the field possible)—also benefit from medical progress. 
Will AI hold the key for improving rare disease research 
and care, or only complicate matters further? Likely both, 
though only time will tell. Until then, clinicians will be 
left to grapple with the ongoing challenge that infrequent, 
poorly understood diseases present—and patients with rare 
diseases, left to grapple with continued questions that far too 
often, go unanswered.
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