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Abstract
We consider the problem of analysis of the voice source of speech within the range of short-term observations.
The problem of insufficient speed of the available methods for the analysis of voice source is described, regard-
less of the method of data preparation: either synchronous with the main tone of speech sounds or asynchronous.
We propose a method for the analysis of voice sources based on the two-level autoregressive model of the speech
signal. We describe a software realization of the developed method based on the Berg-Levinson high-speed pro-
cedure of numerical calculations. It is shown that this procedure is characterized by a relatively low level of
computation costs and its application does not require synchronization of the sequence of observations with the
main tone of speech signal. With the help of software implementation of the proposed method, we designed and
performed full-scale experiment aimed at analyzing the vowel sounds in the speech of a reference speaker. The
results of this experiment confirmed the elevated speed of the proposed method and enabled us to formulate the
requirements to the duration of speech signal for the real-time voice analysis. Thus, the optimal duration of the
speech signal should vary within the range 32–128 msec. The obtained results can be used for the development
and investigation of digital speech communication systems, systems of voice control, biometrics, biomedicine
and other speech systems in which specific voice features of speaker’s speech are of primary importance.

Keywords Speech acoustics · Speech signal · Speech analysis · Voice analysis · Vocal tract · Fundamental
tone · Fundamental tone frequency

Introduction

A voice source is understood by experts as a signal of excitation of acoustic vibration in the vocal tract of the
speaker in the production of voiced speech sounds, especially vowels [1–3]. As an object of acoustic analysis,
voice sources serve as interesting objects for the researchers in various fields of activity: from the digital
speech processing and synthesis to biomedical systems and technologies [3–6]. The general system problem of
these and similar studies is connected with the time instability of the fine structure of speech signal under the
influence of numerous random (uncontrollable) factors [7, 8]. The general problem explains and, at the same
time, stimulates the development of various theories and experimental tools aimed the analysis of voice speech
[9–11].

The aim of the present paper is to develop a rapid method that can be used for the real-time voice analysis.
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Analysis of voice sources

The acoustic theory of speech formation [12] and its model of a voice source in the form of a quasiperiodic
(or periodic for bounded time intervals) sequence of excitation pulses of the vocal tract of a speaker [13] are
now extensively used in the field of information speech technologies. The parameters of the indicated sequence,
namely, the repetition rate F0 and the shape of pulses, specify the fundamental tone and the fine structure of
vocalized segments of the speech signal. Various values of the parameters correspond to different speech sounds
and the indicated correspondence has a strictly individual (speaker-dependent) character. Therefore, the analysis
of vocal source is both a nontrivial problem and an urgent task [14–16].

As a widespread procedure used to solve the posed problem, we can mention voice inverse filtering of
the speech signal [17, 18]. The idea of filtering is to decompose the model of the observed signal into two
independent components, namely, the voice source and the vocal tract [19]. In this case, the vocal tract is modeled
by a linear recursive filter of relatively low order p1 = 8 : : : 12 [12, 20].There are two known approaches to the
realization of this decomposition [21, 22]. They differ by the procedure of acoustic measurements.

In the first approach, the sequence of observations (readings) of the speech signal is synchronized with its
fundamental tone [12, 16]. In this case, the frequency of the fundamental tone F0 is regarded as a priori specified
or preliminarily measured, and the shape of excitation pulses is computed within the period of synchronous
observations with duration � = T0 of a single period T0 = F −1

0 of the fundamental tone. However, under the
conditions of a priori uncertainty, this task is practically unsolvable, at least for the real-time voice analysis of
speech [22–24].

The second approach is based on simulation of speech signals in the frequency region [25]. In particular, the
autoregressive model [13, 15] is used fairly extensively. This model is based on the description of stationary
segments of speech signals of relatively large length � � T0 and, therefore, does not require synchronization
with the fundamental tone. In this case, we encounter the problem of proper choice of the order p of the
autoregressive model [20]. Under the conditions of a priori uncertainty in the fine structure of the speech
signal, the order p � 1 should be sufficiently large [26]. However, in the case of application of a high-order
autoregressive model as a tool for the statistical data processing, we get a general system problem of small
samples of the data of observations [27, 28]. In the analyzed case, this problem is strongly complicated by
the conditions of finite duration τ of the period of observations in which the speech signal can be regarded as
stationary [8].

Thus, the problem of development of a rapid method for the asynchronous analysis of the voice source of
speech aimed at the real-time application proves to be quite urgent. For this purpose, the authors of the present
paper propose to apply a two-level autoregressive model of speech signals [29]. Its order (p1,p2) is determined
by a pair of noticeably different values p2 � p1, which enables us to expect the possibility of combination,
within a single method, of the advantages of both methods of acoustic measurements, namely, synchronous
characterized by the potential accuracy of the results of analysis and asynchronous capable of decreasing the
computational costs required for its realization.

Statement of the problem

Let x(t) be a vocalized speech signal given by a sequence fx.n/g of x(n) readings at discrete times n =
0; 1; : : : ; N − 1 within the interval of observations t � � of finite length � = NT , where T is the period of time
sampling of the signal. The Fourier spectrum of the sequence fx.n/g as a function of linear frequency f is given
by the formula [30]:

K Measurement Techniques

https://doi.org/10.1007/s11018-024-02330-0


https://doi.org/10.1007/s11018-024-02330-0 153

Sx .jf / = T

N−1X

n=0

x.n/ exp .−j2�nf T / ; jf j � 0:5F; (1)

where F = T −1 is a sampling rate and j is the imaginary unit.
In the linear model of vocal tract [8] specified by the complex transmission coefficient K(jf), we get the

following equality:

Sx.jf / = K.jf /S´.jf /; jf j � 0:5F;

where Sz(jf) is a frequency spectrum of the sequence of excitation pulses ´.n/; n = 0; 1; : : : ; N − 1, and

S´.jf / = K−1.jf /Sx.jf /; jf j � 0:5F: (2)

As a result of the inverse Fourier transformation, we obtain

´.n/ =
Z 0:5F

−0:5F

S´.jf / exp.j2�nf T /df; n = 0; 1; : : : ; N − 1; (3)

In integral form, we can write

y.n/ = y.n − 1/ + ´.n/; n = 0; 1; : : : ; N − 1 (4)

The set of expressions (2)–(4) determines the vocal source of speech by the method of inverse filtering [31].
In this case, Eq. 3 describes the sequence of excitation pulses of the vocal tract, while Eq. 4 specifies the
volumetric velocity of the airflow passing through the glottis. The problem is thus reduced to the determination
of the right-hand side of expression (2). In this case, it is necessary to explicitly determine the complex
transmission coefficient of the vocal tract filter and substitute it in expression (3). Under the conditions of
a priori uncertainty of the fine structure of speech signal, this is a nontrivial problem, and its solution requires
the application of a universal probability-theory approach [13].

Statistical model of the vocal tract

The main difficulty encountered in solving the posed problem is connected with the acoustic variability of
speech signal [8]. Due to the influence of various random (uncontrollable) factors on the speaker in the process
of speech production, the signal x(t) cannot be regarded as stationary or stable with respect to its parameters
even for relatively small observation periods � = .3 : : : 5/T0.

In the work [24] devoted to the analysis of voice timbre, the author justified the procedure of modeling the
vocal tract by using a scheme of recursive filter with complex transmission factor

K.jf / =

 
1 +

p1X

i=1

ap1
.i/ exp .−j2�if T /

!−1

; jf j � 0:5F (5)

The order of this filter p1 is comparable with the double number of formants L1 in the spectrum of speech
signal [20]. Thus, within the frequency band of a standard telephone channel 4kHz in width, for the vowel
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speech sounds, we have L1 = 4 : : : 6 [32] and, hence, p1 = 8 : : : 12. At the same time, the vector of filter
coefficients (5) is determined by the p-vector of coefficients from the autoregressive equation

y.n/ = −
pX

i=1

ap.i/y .n − i/ + �.n/; n = 0; 1; : : : (6)

of the same order p = p1. Here, fy.n/g is a random (hypothetical) time series simulating the speech signal
in discrete time nI f�.n/g is the generating white noise with variance �2

� = const. Assume that the preliminary
autoregressive coefficients {ap(i)} are adapted to the speech signal x(t) according to a vector of its readings fx.n/g
of finite dimension N. In the theory of parametric estimation, there exists a specially developed mathematical
procedure [33]. In particular, we can mention Berg’s method1 widely used in practice and based on the Levinson
recursion [30]:

8q = 1; pW aq.i/ = aq−1.i/ + cqaq−1 .q − i/ ; i = 1; 2; : : : ; q (7)

cq = −2S−2
q

NX

n=q+1

�q−1.n/vq−1.n − 1/;

S2
q =

NX

n=q+1

h
�2

q−1.n/ + v2
q−1.n − 1/

i

�q.n/ = �q−1.n/ + cqvq−1.n − 1/;

vq.n/ = vq−1.n − 1/ + cq�q−1.n/

in the case of its initialization by the system of equalities v0.n/ = �0.n/ = x.n − 1/ for all n � N . The final
values of recursion (7) for q = p1 determine the adaptive autoregressive model (5) of the vocal tract in the
frequency region, which should be substituted in expression (2). However, this is only the first step in solving
the posed problem.

Statistical model of speech signal

The problem is connected with the fact that not only the complex transmission factor of the vocal tract but
also the spectral density Sx(jf) of the speech signal x(t) on the right-hand side of Eq. 3 are not completely
determined by expression (1) due to the insufficient volume N = �F of the sample of observations fx.n/g.
Note that the duration of frames in the systems of digital processing and transmission of speech does not exceed
� = 30−40msec (see GOST R 53556.3-20122). Thus, by using a standard telephone communication line and
a sampling frequency of speech signal F = 8 kHz for substitution in expression (1), we get at most N = 240–320
readings of observations. A frequency resolution ıf = �−1 = 25−30 Hz attained in this case is comparable with
the lower limit of the fundamental tone frequency F0 = 80−100 Hz in male speech. However, this contradicts the
requirements imposed on the accuracy of voice analysis in the frequency domain because the spectral density
(2) has a linear form and consists of amplitude-modulated quasiharmonics with frequencies F0; 2F0; : : : ; LF0,
where L = 0:5F=F0 � 1 [29]. Thus, for the sampling frequency F = 8 kHz, there are L = 40 quasiharmonics
within the working frequency band with relative shifts (with respect to each other) by a frequency F0 = 100 Hz.
In order to significantly decrease the value of δf in these conditions, it is necessary to additionally determine

1 Researchers prefer Berg’s method to other methods for the analysis of parametric time series due to its well-known advan-
tages in the efficiency and, which is most important, in the stability of generated autoregressive models.
2 GOST R 53556.3-2012. Part 3 (MPEG-4 AUDIO). Encoding of speech signals with the use of the CELP linear prediction.
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(extrapolate [30]), within the framework of the posed problem (2)–(4), not only the vocal tract but also the
speech signal itself outside the interval of its observations. For this purpose, a special mathematical apparatus
of parametric methods of statistical analysis was theoretically developed in [33]. The methods of this kind are
based on the statistical simulation of the time series fx.n/g with the help of a hypothetical (imaginary) random
process fy.n/g. For this purpose, it is customary to use the linear autoregressive process (6) of order p2�1 [25,
26]. The power spectral density of this process is given by the expression

G.f / =
2X

�

T

ˇ̌
ˇ̌
ˇ1 +

pX

i=1

ap.i/ exp .−j2�if T /

ˇ̌
ˇ̌
ˇ

−2

; jf j � 0:5F (8)

where the coefficients {ap(i)} are computed according to recursive relation (7) with p = p2. The order of
autoregression p2 � 2L is determined with regard for the double (but less than a half of the sample volume
N) number of quasiharmonics L in the spectrum of speech signal [20]. Under the conditions of the previous
example, we obtain 80 � p2 < 120. In the general case, p2 is much greater than the order of the vocal tract
filter (5), namely, p2 � p1.

From expression (8), by the method of spectral factorization [30], we obtain an autoregressive model of
speech signal in the frequency domain:

Sx .jf / = c0

 
1 +

p2X

i=1

ap2
.i/ exp .−j2�if T /

!−1

; jf j � 0:5F; (9)

where c0= const is an adjustable scaling factor.
The problem of resolving power ıf � F0 in model (9) can be overcome due to the effect of superresolution

in frequency [28, 34]. According to (2), by using (9), we can write

S´ .jf / = c0

1 +
Pp1

i=1 ap1
.i/ exp .−j2�if T /

1 +
Pp2

i=1 ap2
.i/ exp .−j2�if T /

I jf j � 0:5F (10)

Expression (10) defines the general system autoregressive moving-average (ARMA) model in the theory of
statistical analysis of random time series [30]. In the analyzed case, this model describes the voice source in
the frequency domain (2). Substituting (10) in expression (3), in the time domain, we obtain

´.n/ = c0

Z 0:5F

−0:5F

1 +
Pp1

i=1 ap1
.i/ exp .−j2�if T /

1 +
Pp2

i=1 ap2
.i/ exp .−j2�if T /

exp .j2�nf T / df =

= c0

Z 0:5F

−0:5F

F TN fb1g
F TN fb2g exp .j2�nf T / df =

= c0IF Tn

�
F TN fb1g
F TN fb2g

�
, ´N .n/; n = 0; 1; : : : ; N − 1:

(11)

In (11), we have used the following notation:

F TN fbrg , T

NX

i=0

br .i/ exp.−j2�if T / = T

"
1 +

prX

i=1

apr
.i/ exp.−j2�if T /

#
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is the operator of Fourier transform, br = fbr.i/; i � J g =
�
1; apr

.1/; apr
.2/; : : : ; apr

.pr/ ; 0;0; : : : ; 0
�
is the

vector of coefficients with dimension N+1, where r = 1:2; IF Tnfg is the operator of inverse Fourier transform
of the spectral density S´;N .jf / = K−1

N .jf /Sx;N .jf /; jf j � 0:5F of the excitation signal of vocal tract {zN(n)};
andKN .jf / = F T −1

N fb1g andSx;N .jf / = c0F T −1
N fb2g are the autoregressive models of the vocal tract (5) and

speech signal (9), respectively, formed according to the results of recurrent processing (7) of the sequence of
observations fx.n/g of finite volume N.

Expression (11), together with (7) and (10) specifies a method intended for the asynchronous analysis of
a vocal speech source within the general formulation of the form (3). This method is based on the two-level
autoregressive model aimed at the description of speech signals for two different levels of autocorrelation within
the period of the fundamental tone (if the orders are equal p = p1) and in the interval of several consecutive
periods (for p = p2). The problem of small samples in the proposed method is overcome due to the high
rate of convergence of the Berg-Levinson recursion [31]. The problem of speed is solved by combining two
computation procedures of different kinds within the framework of the common recurrence scheme (7). These
procedures are aimed at the estimation, according to a sample {x(n)}, of the autoregressive coefficients

˚
ap2

.i/
�

and moving average
˚
ap1

.i/
�
as parameters of the ARMA model of the voice source (10). The efficiency of the

proposed method was experimentally investigated by using the software specially developed by the authors3.

Program and experimental results

As the object of the experimental investigations, we used the signals of six Russian vowel phonemes pronounced
by a control speaker (one of the authors of the present paper): “a”, “i”, “o”, “u”, “y”, and “é”. A sufficiently
large (3.5–4.0sec) duration of these signals was chosen with an aim to be able to perform automatic partition of
signals with a period of 16msec into stationary segments of speaker’s oral speech of the same duration equal to
� = 128 msec. For the sampling frequency of speech signal F = 8 kHz, the volume of experimental database for
each vowel was not smaller than R = .3:5 − 0:128/=0:016 � 210 frames of speech of the control speaker with
dimensions N0 = 8 � 128 = 1024. For each frame, we formed four single-phoneme sound files x(t) of different
duration τ: 128, 64, 32 and 16msec. In this case, the dimensions of N vectors of the same name fx.n/g were
equal to N1 = 1024I N2 = 512I N3 = 256; andN4 = 128 readings, respectively. All sound files of the frame of
vowel speech sound “a” are depicted in Fig. 1. It is easy to see that any kind of synchronization of the data of
observations with the fundamental tone of speech signal is excluded.

3 Information system of phonetic analysis and speech training Phoneme Training: [site]. URL: https://sites.google.com/site/
frompldcreators/produkty-1/phonemetraining (reference date: 18.02.2024).

Fig. 1 Signal of the Russian vowel phoneme “a” for the ob-
servation intervals equal to N=1024, 512, 256, and 128, re-
gions 1–4, respectively

f, kHz

Fig. 2 Amplitude spectrum of the speech signal (1) and the
amplitude-frequency response of the vocal tract filter (2) ac-
cording to the results of processing of the data of observa-
tions with a volume N = 1024
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f, kHz

Fig. 3 Amplitude spectrum of the model of voice source of
the Russian vowel phoneme “a” for the sample size N =
1024

Fig. 4 Model of voice source of the Russian vowel pho-
neme “a” based on the results of processing of the data of
observations with a volume N = 1024 in two versions of
the description: excitation pulses (1) and pulses of the vol-
umetric velocity of air flow (2) at the entrance of the vocal
tract

The software implementation of the voice source (11) with parameters p1 = 10 and p2 = 90 was experi-
mentally investigated. In this case, the operators of direct and inverse Fourier transforms are realized on the
basis of rapid algorithms of Fourier transformations with dimension M = 210 and the frequency selectivity
�f = FM −1 = 7:8125 Hz. The purpose and principle of action of both operators are illustrated in Figs. 2, 3
and 4.

In Fig. 2, we present the amplitude spectrum Sx;N .f / = jSx;N .jf /j of the Russian vowel phoneme “a”
signal and the amplitude-frequency characteristic KN .f / = jKN .jf /j of the vocal tract filter (5) for c0 =

p
10

constructed according to the results of processing the data of observations fx.n/g with the following volume:
N = 1024. In Fig. 3, we display the corresponding amplitude spectrum S´;N .f / = jSZ;N .jf /j of the model
of voice source (11). The envelope of the amplitude spectrum characterizes the shape of the excitation pulses
zN(n), whereas the repetition period of its quasiharmonics characterizes the frequency of the fundamental tone
of the signal x(t). In the analyzed case, it is approximately equal to F0 � 132 Hz. This fact is confirmed by the
results of the profile work [29].

The same source (for the volume of observations N = 1024) in the time domain is presented in Fig. 4 by
two impulsive sequences: excitation of the vocal tract (11) and volumetric velocity of the air flow:

yN .n/ = yN .n − 1/ + ´N .n/; n = 0; 1; : : : ; N − 1

The shape of excitation pulses on the enlarged scale is shown in Fig. 5 and compared with an impulsive
sequence {zN(n)} obtained for N = 256. It follows from Fig. 5 that both the shape and repetition frequency

Fig. 5 Model of the voice source in the interval of the first
two periods of the fundamental tone of speech signal accord-
ing to the results of processing of the data of observations
with sample sizes N=1024 and 256; marks 1 and 2 respec-
tively

Fig. 6 Dependence of the parameter of accuracy of the
ARMA model of voice source (11) on the duration of Rus-
sian vowel phonemes: “a” (1), “i” (2), “o” (3), “u” (4),
“y” (5), and “é” (6)
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F0 � 131:5 Hz of the pulses of voice source (11) are stable with respect to the duration of the speech signal
x(t) within a broad range � = 32 : : : 128 msec. This conclusion is used as a foundation of the second (final)
stage of the experimental investigation of the efficiency of the proposed method of voice analysis.

As a parameter of efficiency, we use the objective measure of stability of the ARMA model of the voice
source (10) regarded as a function of the sample size N of the data of observations fx.n/g:

�.N / ,

s

F −1

Z 0:5F

−0:5F

S2
´;N .f /S

−2

´ .f /df �
s

F −1

Z 0:5F

−0:5F

S
2

´.f /S−2
´;N .f /df − 1 � 0 (12)

Here, S´.f / , 0:25
P4

i=1 S´;Ni
.f / is the mean value of the amplitude spectrum SZ,N(f) of the speech signal

on the set of four versions S´;Ni
.f /; i = 1:4; considered in the experiment. In [35], the authors showed the

invariance of measure (12) to the scale of the excitation signal {zN(n)}. The lower the value of ρ(N), the higher
the stability of the considered model in the dynamics [36]. Moreover, the stability of the ARMA model (10)
guarantees the validity of the proposed method of voice analysis [7].

The obtained results are presented in Fig. 6 in the form of a family of plots of the function ρ(N) for six Russian
vowel phonemes pronounced by the control speaker. The vertical segments at the control points of these plots
specify the boundaries of the confidence interval of parameter (12) according to the results of multiple (R-fold)
measurements. In this case, the relative length of the confidence interval " = 1:65=

p
R [29] for a confidence

level equal to 0.9 does not go beyond 165 � 210−
1
2 = 11:38%. The plots presented in Fig. 6 differ from each

other only in details. However, they are similar in the main: in all versions, the optimal choice of the size of
sample {x(n)} lies within the range N = 256−512. This volume corresponds to the length of the interval of
observations � = 32−64 msec. This is, in fact, the requirement of the proposed method to the duration of the
speech signal x(t) in the problem of voice analysis (2)–(4). Moreover, the lower boundary � = 32 msec of the
acceptable signal duration is directly related to the period T0 of its fundamental tone [29]. In the experiments,
for different vowels, it varied within the range 7–8msec. At the same time, the upper boundary � = 64 msec of
acceptable duration reflects a natural requirement of the proposed method (7), (10), and (11) to the stability of
fine structure of the speech signal in the interval of observations.

Discussion of the obtained results

We now consider the speed of the developed method for the analysis of voice sources determined by the two
factors: the duration τ of the speech frame characterizing the period of updating the results of the voice analysis
of speech in formulation (11) and the computational complexity of the proposed method caused by the total
amount of calculations W� = W7 +W10 performed according to relations (7) and (11). For relations (7), we have
about W7 = 3Np2 = 3�Fp2 elementary operations of multiplication and division of real numbers [30]. The cost
of simulation of the vocal tract by the autoregressive model (5) of order p1 < p2 is not taken into account in this
case because, in the recurrence computational scheme, they are included in the computation cost of modeling
of the speech signal (9) [36]. In the case of relation (11), the volume of computations includes the threefold
cost of performing the M-point rapid Fourier transform for M � N , which correspond to W10 = 3M log2 M

elementary operations. In total, we get W� = 3 .Np2 + M log2 M / elementary operations within the interval
of observations of length τ or W = W� =� = 3F

�
p2 + N −1M log2 M

�
operations per second. Thus, under the

conditions of the performed experiment, for p2 = 90I F = 8 kHz; � = 25 msec; N = 28I andM = 210; we get
W = 3 � 8000

�
90 + 2−8 � 210 � 10

�
= 3:12 � 106c−1, which gives, as a result of recalculation to the clock frequency

of the computing device, 3.12MHz. This result, with a significant margin (by an order of magnitude or more)
corresponds to the efficiency of modern speech systems operating under the conditions of soft (with delays for
the duration of a single frame) real-time mode [37].
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Conclusions

The proposed method for the analysis of voice sources of speech makes it possible to model the excitation
signal (3) of the vocal tract of a speaker in real time. Its sufficiently high speed is explained by the use of
a high-speed recurrence procedure (7) used to adjust the parameters of the ARMA model (10) for a sequence of
excitation pulses (11) according to a speech signal x(t) of finite duration τ. The proposed method does not require
synchronization of the sequence of observations fx.n/g with the fundamental tone of the speech signal and is
characterized by relatively small calculation costs required for the technical implementation. The performed
full-scale experiment confirmed the high speed of the proposed method and, at the same time, allowed us to
formulate the requirements to the duration of speech signals.

The obtained results are intended for applications in the development and investigation of modern systems of
digital speech communication, voice control, biometrics, biomedicine, and other speech systems [7] in which
the specific voice features of speaker’s speech are of primary importance.
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