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HYBRID METHOD OF SPEECH SIGNALS SPECTRAL ANALYSIS BASED ON THE 
AUTOREGRESSIVE MODEL AND SCHUSTER PERIODOGRAM

V. V. Savchenko UDC 53.082.4; 519.246.87; 004.934.2

The task of measuring the spectral density of power of a speech signal in sliding observation window mode 
is examined. A parametric approach to solving this task using an autoregressive data model is studied. 
The problem of optimizing the order of an autoregressive model under the conditions of small samples is 
studied. It is proposed to solve the problem using a hybrid method of spectral analysis based on sequential 
enumeration of a fi nite number of variants. The optimization criterion is formulated in terms of an inverse 
problem: from the speech signal to the voice source. It uses the scale-invariant measure of the spectral 
distance as the objective function, and the Schuster periodogram as the reference sample. The eff ectiveness 
of the hybrid method has been experimentally evaluated on the basis of the author's software. It is shown 
that with the duration of the observation window no greater than 10 ms, the use of the hybrid method 
increases the accuracy of spectral analysis by more than 30%, compared to the well-known Berg method, 
the order of which is established according to the Akaike information criterion.
Keywords: acoustic measurements, speech acoustics, speech signal, autoregressive model, small samples, a 
priori uncertainty, adaptive approach.

Introduction. Spectral analysis of speech signals is related to to the most dynamically developing directions of 
study in the fi eld of acoustic measurements. With reference to digital spectral analysis, the problem is, as a rule, reduced to 
determining the envelope of a power spectrum in the interval of quasi-stationarity of a speech signal of duration one frame 
[1, 2]. The spectral envelope is responsible for the timbre and voice recognition of the speaker [3–5]. Here the small samples 
problem arises [6–8]. The theory recommends parametric methods of spectral analysis to overcome this, such as the Berg 
method, autocorrective, covariational, and so forth. [9, 10] These may be studied as variants to classical methods [11] based 
on the discrete Fourier transform. The autoregressive model [4] used in the parametric methods corresponds well with the 
"acoustic pipe" model of the vocal pathway of the speaker [2]. However, application of the autoregression model does not 
fully solve the small sample problem, which is merely transformed into another acute problem of the parametric methods of 
spectral analysis: the optimization of order p < ∞ of the autoregressive model [3, 12]. This optimization is usually associated 
with the Akaike informational measure and analogs [13–15]. However, when processing speech signals in the observational 
sliding window mode of small duration τ = 5–30 ms, the eff ectiveness of these criteria sharply decreases [16, 17].

The objective of this article is to study the capabilities and eff ectiveness of a hybrid technique under conditions of 
small samples of observations. The subject of the study is a hybrid method of the spectral analysis of speech signals which 
unites the advantages of non-linear parametric and classical linear methods. The problem is formulated as optimization in 
the terms of the multivariant verifi cation of R hypotheses р = рr, 1,r R  on the order p ≥ 1 of the autoregressive model. 
The criterion will be the principle of the maximum level of correspondence of the autoregressive model of the Schuster 
periodogram as the most informative characteristic relative to the fi ne structure of a speech signal [3].

This article is written for development of the results of previous work of the author [4, 10], performed in co-
authorship with the staff  of the Laboratory of Algorithms and Techniques for the Analysis of Network Structures of NIU 
"Higher School of Economics".

Problem defi nition. We consider a speech signal {x(n)} in the discrete time n = 0, 1, …, N – 1 in the observation 
interval of fi nite duration τ < ∞, where N = τF is the sample size; and F is the frequency of time sampling. We defi ne the 
spectral density of power (SDP) of a signal through an autoregressive model of the general form [1]:
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where ap(i) is the ith element of the p-vector ap of the coeffi  cients of the linear autoregression of the pth order;  is the 
scale factor; and T = F–1.

The parameters ap and 2
p

 are defi ned in (1) from the sample {x(n)} by means of one of the known methods 
of parametric spectral analysis, such as the Berg method, autocorrective, covariational, and so forth [1]. However, in any 
variant the order p must be set a priori. The problem consists in the fact that depending on the value of p established in (1), 
the form of the autoregressive model of a speech signal varies, and especially strongly in the conditions of small samples 
[3]. Taking this into account, the problem is reduced to determining the measure of optimization of the order of a spectral 
estimate (1) in the sliding window mode for observations of fi nite duration τ.

Criterion of optimization. Since an autoregressive model (1) is inseparably linked with the envelope of the SDP 
of a speech signal [17], we will defi ne the pectrum of signal power through the discrete Fourier transform [2]:
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where fm = m Δf is the discrete frequency with a shift of Δf = FM –1 = const in relation to the frequency fm–1; and M  is the 
size of the set of readings of a speech signal in the frequency domain (M < ∞).

In this theory, expression (2) is known as a Schuster periodogram [1]. This periodogram of dimensionality
M = 2k ≥ N, where k is some integral number, is calculated using algorithms for the fast Fourier transform [18]. Here only 
the fi rst N  from M  (N  ≪ M) readings of the speech signal in expression (2) are distinct from zero. For example, for a 
duration of the observation window τ = 5–30 ms and sampling frequency F = 8 kHz1 for the case k = 10, we will have
М = 1024 with the equality N = 40–240 (this is the typical relation of the number of readings of a speech signal in the 
frequency and time fi elds, respectively) [10].

Due to the linear nature of the discrete Fourier transform, expression (2) contains the maximal useful information 
about the SDP, and therefore it can be used as a spectral reference sampler in the problem of optimizing the autoregressive 
model. For this purpose, we rewrite (1) in the form of an inverse conversion

22 jm mp p pG f T A f

of the square of the modulus of the complex coeffi  cient of transmission 
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of the transversal fi lter of the pth order on the extracted sample of discrete frequency {fm}. The signal {y(n)} at the exit of 
such a fi lter in the frequency domain is described by expression [4]:
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1In accordance with the pass band of a standard telephone communications channel.
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Expression (4) defi nes the operation of smoothing or whitewashing the envelope ( )fx mG  of the power spectrum 
at input (2). Here, in the ideal for the spectral envelope of ( ; )y mG f p at exit of the equalizer network (3), the system of 
equations 0: ( o st; c n)y mm M G f p G  is valid. In terms of the inverse problem [3] "from a speech signal to its 
voice radiant," this defi nes the hypothetical white noise as the generating process for the autoregressive model (1).

However, in practice the form of the envelope of the SDP (4) may diff er substantially from rectangular, due fi rst of 
all to the non-ideal nature of the autoregressive model used. (1). The basic value in this sense has order p. We optimize its 
value within the fi nite set (R-set) of the variants p1 < p2 < ... < pR by the principle of the maximum likelihood of the form of 
the envelope of the SDP (4) to rectangular.

Taking into account the above-specifi ed, we use the modifi ed standard of the COSH distance (COSH is the 
hyperbolic cosine) function [19] as the function of the purpose of the optimization problem being solved:
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with the property of scale invariance to the SDP of a speech signal at input. With equality of the envelope ( ; )y mG f p  to an 
arbitrary constant G0 , measure (5) will be identically equal to zero. According to the results of [3], the limit accuracy of the 
autoregressive model (1) will be reached in this case. As measure (5) increases, the accuracy of the autoregressive model 
decreases, and therefore measure (5) may be examined as an objective index of the error of the generated autoregressive 
model. From this follows the criterion for adopting solutions in the problem of spectral analysis of a speech signal: on the set 
R of examined variants {pr, r ≤ R}, the optimal estimate of the SDP {G*(fm)} corresponds to expression (1) in the selection 
of the order of an autoregressive model according to the rule

 * Arg min  .
rr p pR

p p  (6)

Practical implementation of the proposed criterion reduces mainly to an estimate of the envelope of the SDP at exit 
of the leveling network (3) and to calculation of the modifi ed COSH distance (5) within the set of variants ( ; )y m rG f p , 

1,r R ,  in the interval of observations of fi nite duration τ. Here, is necessary to use fast computational methods.
Example of practical implementation. Turning away from the Berg method [20], which possesses at the same 

time fast response and high resolution capability by frequency, we use the Levinson recursion [21] to adapt the vector of 
coeffi  cients of the SDP (1) for the sample { x(n) } of fi nite size N :
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Here, in accordance with [1], the stability of the formulated autoregressive model, in the sense of digital fi ltering 
[22] independently of the sampling composition, is guaranteed. The scale factor 2

p  does not play a large role in expression 
(1). As a rule [4], this is established from the condition of normalizing the estimate of the SDP on variance to the level set 
by the user.

For selection of the spectral envelope (4) by analogy with [3], the standard recirculator is used. Its dynamic in the 
frequency domain is described by the diff erence equation [18]:

 ; ; ; ,  = 1, ,y ym m y mG f p bG f f p G f p m M  (8)

where b = const.
The operation of the recirculator reduces to accumulating the spectral components of the speech signal in sliding 

window mode in the frequency domain. The size of a window defi nes the inertance of the reciirculator which is governed in 
(8) by the parametric value of b. Depending on the type of analyzed speech frame (vocalized2 or not), the quantitative index 
of inertance θ = –Δf/ln b = –FM –1/ln b must be in agreement either with the frequency of the fundamental component of 
the speech signal [2], or with the resolution capability of the spectral analyser at frequency θ = τ–1 = FN –1. The fi rst variant 
was described in suffi  cient detail in [3]. For this reason, we will later examine the spectral analysis of non-vocal frames 
containing voiceless consonants of the speech of a conventional speaker. For this variant [4]:

 1 1exp exp .b FM NM  (9)

For example, for τ = 5–30 ms, F = 8 kHz, and М = 1024, we obtain b = 0.80– 0.96.
Expressions (1)–(9) in the aggregate defi ne the hybrid technique of the spectral analysis of a speech signal (x (n)} 

using at the same time the Schuster periodogram and the Berg method as a methodological basis. The proposed hybrid 
technique was for the fi rst time implemented in practice, based on author software,3 using which the experiment described 
later was set up and conducted.

Program and results of experiment. The object of the experimental study was a synthesized 10th-order 
autoregressive process, imitating the consonant "sh"of the Russian alphabet in the speech of the speaker being studied 
(the author of this article) and specifi ed by the vector of autoregression coeffi  cients a*10 = (1.708427645; 2.186231624; 
2.390214916; 2.155074921; 1.246001575; 0.49162809; –0.068969197; –0.416448837; –0.334798662, –0.08981284). The 
generating process for the autoregression process was white Gaussian noise with variance σ2

10. The synthesized signal of 
suffi  cient duration T0 = 3 s was linearly divided in the Phoneme Training program into frames {x(n)} of duration τ, equal 
to 5, 10, and 30 ms. As a result, for each of the three durations τ of the observation window, a representative database up to
L = T0/τ = 300 independent frames was formulated. For a signal sampling frequency F = 8 kHz, the sample size N for 
each such frame was 40, 80, and 240 readings, respectively. Further, for each frame, the Schuster periodogram (2) of 
dimensionality М = 1024 and frequency step Δf = 8000/1024 = 7.8125 Hz was calculated using the fast Fourier transform. 
At the same time with the Schuster periodogram, the Berg method obtained a spectral estimate (1) at R = 16 alternate 
variants of its order р = 5–20. The total computational complexity of the computational procedure (7) was on the order of 
3NpR = 3∙240∙20 = 14.4∙103 elementary operations in the interval of duration τ. This, with a margin, is responsible for the 
effi  ciency of modern information systems and real-time technologies [18, 19]. Further, according to expressions (8) and (9), 
estimates are obtained for the spectral envelope ;( )my rG f p  of the signal {y(n)} at output of the leveling fi lter (3), for all 
variants pr, r ≤ R. The corresponding value of the characteristics of ρ(p) is determined from these estimates in accordance 
with (6). The obtained values were averaged further from the results of L independent tests of observations for each duration 
τ. As a result the relative error of the experimental data [4, 5] was no greater than ε = 165∙(300)–1/2 = 9.5% with a confi dence 
probability 0.9 and above.

Figure 1 shows a typical family of Berg spectral estimates obtained in the same observation window of duration 
τ = 10 ms. The corresponding Schuster periodogram (2) is shown by a dashed line for comparison One may observe the 
advantages of the variant of a spectral estimate of order р = 10. They are confi rmed by the graph of the corresponding SDP 
(4) in Fig. 2, where the dashed line refl ects the form of the spectral envelope: for р = 10, the form is maximally close to 

2Vocalized frames are diff erentiated and selected from the speech stream according to the amplitude indication [4, 10].
3Phoneme Training. URL: https://sites.google.com / site / frompldcreators / produkty-1 / phonemetraining (date: accessed 2/2/2023).
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rectangular. The histogram in Fig. 3 — the operating characteristics (5) of the hybrid techniques for τ = 10 ms — serves as 
rigorous substantiation of order р = 10. In accordance with the histogram, a strong argument for the use of criterion (6) is the 
global minimum ρ (10) ≈ 0.085 of the operating characteristicss ρ(p). Under the examined conditions, the minimum point 
also defi nes the best value p* = 10 of the order of the autoregressive model (1).

The conclusions drawn are not trivial, if one comparea the behavior of the two operating characteristics: the proposed 
criterion ρ(p) and the Akaike information criterion in its modifi ed variant of BIC (the Bayesian information criterion) [14]:

Fig. 1. A family of Berg spectral estimates of order p = 5, 10, and 20 (curves 1–3) against the background 
of the Schuster periodogram (curve 4) at duration τ = 10 ms.

Fig. 2. Spectral power density of the signal at the output of the leveling fi lter (4) (curve 1) of order p =10 
at duration τ = 10 ms and its spectral envelope (curve 2).

Fig. 3. Working characteristics of the criterion ρ(p) (6) and {BIC} ϕ(p) at duration τ = 10 ms.
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For τ = 10 ms, the dependence (ρ) is also provided as a scatter plot in Fig. 3, and the minimum of the dependence 
is reached at the point р = 7. This is a substantially diff erent result in comparison with the order established above, p* = 10. 
As a result, in the case being studied, one may speak of the gain in precision of the hybrid technique in comparison with the 
Berg method when applying the Akaike criterion, defi ned as [3]:

*
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p p
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When the duration of a speech frame is reduced to τ = 5 ms, the gain increases to B(p) = 36.6%. In order to illustrate the 
obtained results, Fig. 4a shows the family of operating characteristics (histograms) ρ(p) of the hybrid technique for three 
observational durations. These characteristics are similar in nature, and a tendency is observed towards smoothing the base 
in neighborhoods of the minimum point p* = 10 s, as the duration τ of a frame increases. This fact is explained by the known 
universality of higher-order autoregressive models [1].

Fig. 4. A family of histograms of the operating characteristics (6) (a) and the dependencies (10) (b) at
τ = 30, 10, and 5 ms (rows 1–3, respectively).

a

b
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Discussion of obtained results. The results of the second and fi nal stage of the experimental studies can serve as 
additional reasons for the proposed hybrid technique of spectral analysis and its criterion (6). At this stage, the autoregressive 
model (1) was adapted to sample the observations by the Berg method in the same condition as in the fi rst stage. In variant 
(3), the autoregressive model was also used in order to smooth the envelop of the Schuster periodogram (2). However the 
envelope of the SDP Gy(fm; p) was compared, according to its form in (6), not with the rectangular envelope G0 = const, but 
with the envelope ; *( )myG f p  of the SDP at exit of the ideal smoothing fi lter (3) for which the vectorial equality ap = a*10 
is fulfi lled. Figure 5 presents a graph of the true SDP (1) against the same Schuster periodogram that is portrayed in Fig. 1. 
By analogy with (5), we write as the characteristics in this variant
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This is only a hypothetical variant, unrealizable in practice due to the defi nition of the spectral analysis problem 
under conditions of a priori uncertainty. There is interest in the comparison of dependence (10) with the characteristics (5) 
within the criterion used (6).

Figure 4b shows the family of histograms of the dependence of ρ(p) for the three durations of observations that were 
studied, from which follows the practically perfect analogy with the data of Fig. 4a, Hence, one may derive a conclusion on 
successful resolution of the small samples problem by using the proposed hybrid technique.

Conclusion. In the proposed hybrid technique of the spectral analysis of speech signals in the sliding window of 
observations mode, the Berg spectral estimate interacts with the Schuster periodogram estimate, although in practice they 
usually compete with each other. As a result, it was possible, in the hybrid technique, to consolidate the known advantages of 
the Berg method (speed of convergence and resolution capability by frequency) and Schuster (precision of representations 
of the thin structure of a speech signal in the frequency domain). The results of the experiment that was performed serve as 
proof.

The results obtained may be used in development of systems of digital spectral analysis of speech signals, as well 
as of signals of a speech-like structure for the fi elds of technical, economic, and biomedical diagnostic [6–9, 12].

Confl ict of interest.The author declare no confl ict of interest.
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