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IMPROVING THE METHOD FOR MEASURING THE ACCURACY
INDICATOR OF A SPEECH SIGNAL AUTOREGRESSION MODEL

V. V. Savchenko UDC 53.082.4; 004.934

The problem of determining the accuracy of an autoregressive model of a speech signal is considered, and a
method for measuring the accuracy index in the sliding observation window mode is proposed. As an indicator
of accuracy, we used a modified value of the COSH-dlistance (hyperbolic cosine) of the autoregressive model
relative to the eponymous (single phoneme) Schuster periodogram as a reference spectral sample. To study the
possibilities of the proposed method, a full-scale experiment was set up and carried out, in which the object
of study was a set of autoregressive models of different orders. These models were obtained by Berg's method
for the vowel speech sounds of a test speaker. According to the results of the performed measurements for each
vowel, the optimal values of the autoregressive order and the corresponding optimal autoregressive model
were found. It is shown that this optimization made it possible to increase the accuracy of the autoregressive
model of the speech signal by more than 60%, depending on the sound of the test speaker's speech and the
characteristics of his vocal tract. The results obtained are intended for use in automatic processing and digital
speech transmission systems with radical data compression based on linear prediction coefficients.
Keywords: acoustic measurements, speech acoustics, vocal tract, speech signal, autoregressive model,
small sample problem.

Introduction. The autoregression model of the speech signal is widely used in systems of automatic processing and
transmission of speech over digital communication channels to encode speech information with radical data compression
[1, 2]. In conditions of a priori uncertainty of the thin structure of the speech signal, the autoregression model is adapted to
it in the mode of a sliding observation window [3, 4]. At the same time, the length 1 of the window is strictly limited from
above by the length of the intervals of stationarity of the speech signal [5]. As a result, in practice, the problem of small
samples often arises [6, 7]. It manifests itself in the insufficient accuracy of the autoregressive model used, associated with an
unreasonable choice of order [8]. The severity of this problem becomes especially obvious, given that in the theory there is
no strict criterion of the accuracy of the autoregressive model, and the existing criteria, for example, Akaike, Schwartz, etc.
[9], are not very suitable for application to the speech signal, since they are designed for homogeneous ergodic processes.
Therefore, the task of measuring the accuracy index of the autoregression model on a sample of finite volume N = tF, where
F is the sampling rate of observations.

The purpose of the study is to develop methodological foundations for optimizing autoregression models of the
speech signal, taking into account its variability and features of the speaker's vocal tract [10, 11]. The article is written in
the development of the results of previous works [2, 3].

Problem statement. Since the autoregressive model is directly related to the linear power spectrum envelope of
the speech signal [12, 13], we will define this spectrum within the speech frame x(n), where » = 0,1, ..., N — 1. When
choosing the method of spectral analysis, we will follow the logic of the work [7, 14] and give preference to the discrete
Fourier transform as a kind of linear signal processing that is not related to the known effects of parametric estimates of
the power spectrum: displacements and splitting of spectral lines in conditions of small sample observations. Based on the
discrete Fourier transform, Schuster's periodogram [15]:
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defines an instantaneous power spectrum estimate (PSE) signal on a selected set of discrete frequencies f,, = mAf = mM F.
If M = 2% > N, where k is some integer, the periodogram is designed for the use of fast Fourier transform algorithms [16].
In this case, only the first NV of M samples of the time series {x(n)} on the right side of (1) are nonzero. For example, with the
duration of the speech frame T = 20-30 ms and the sampling rate F'= 8 kHz (coordinated with the bandwidth of a standard
telephone communication channel) where k = 10, the dimension will be M= 1024 > N = 160-240.

According to the methodology of parametric spectral analysis, we define the autoregressive model in the frequency
domain by the general expression [17]:
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where T = F'; 012, is a scale factor; a,(i) is the ith element of the vector coefficient of the pth order linear autoregression.
The parameters 012, and a,(i) are determined from the sample {x(n)} according to the spectral analysis method used. For
example, in the Berg method, for these purposes, a recursive computational procedure of the form [15]:
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is used when it is initialized by the system of equations
Vn <N :vy(n)=my(n-1=x(n) .

. The final values of the recursion (3) together with (2) determine the autoregression model of the spectral envelope
G (f,,) of the speech signal. The accuracy of this model depends on its order. Here, the scale multiplier cf, does not play
any role because it has nothing to do with the shape of the spectral envelope. Therefore, the task is to determine the accuracy
index of the autoregressive model (2) depending on the order p and its subsequent measurement regime using a sliding
window of observations {x(n)}.

Accuracy index. We rewrite expression (2) in the form of an inverse transformation

G,(f) = 3T |4, (ify)|

of the square of the modulus of the complex transmission coefficient 4,(jf;,) of the pth order transverse filter
p —
Ay (if) = 1= a, () exp (~2mimM ™), m = 0; M 1. )
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This filter is used to equalize in the frequency domain the envelope Gy (f,») of the Schuster periodogram (1), which
in this case acts as a reference spectral sample [3]. The signal at the output of the leveling filter
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determines the PSE of the sequence {y(n)} of impulses that excite the vocal tract of a test speaker within the framework of
the inverse task of speech formation [18]: from the speech signal to its voice source.
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Ideally, PSE (5) is a rectangular sequence K = O.SFFO_] of harmonic components with a shift between themselves
by the frequency of the fundamental pitch Fy [19]. However, in practice, the shape of the spectral envelope G,(f,,; p) can
differ significantly from the rectangular one, primarily due to the imperfection of the autoregression model used (2). From
this point of view, the order of the model is of fundamental importance. We optimize the value of p within the finite set
(R-set) of alternatives p; < py < ... < pp.

The optimization is based on the obvious understanding: the higher the accuracy of the autoregressive model, the
more pronounced in PSE (5) are the harmonic components and the closer the shape of their envelope {G,(f,,; p)} to the
rectangular G = const will be for all m < M. When taking this into account, we will use as a criterion function a modified
measure of COSH distance (COSH, hyperbolic cosine) p(p) with the property of scale invariance in the frequency domain
[20]:
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Measure (6) is identically zero if the spectral envelope is equal to an arbitrary constant: Ey (fs P) = Gy Vm < M.
As follows from the results of the work [3], it is in this version of the PSE (5) that the accuracy of the autoregression
model (2) will be maximum. With an increase in p(p), the accuracy decreases. Measure (6) can then be considered an
objective indicator of the accuracy of the generated autoregressive model. Hence follows this decision-making criterion in
the problem of optimizing the model order on the set R of the alternatives under consideration:

p =Arg minp(p) . @)
Vr<R P = Dy

The optimal model satisfies expression (2) when you select its order p < pp according to rule (7). Practical
implementation is reduced to the measurement of indicator (6) in the mode of the sliding window of observations.

Method for measuring the accuracy index. The structural diagram of the device for measuring the accuracy index
(6) and optimizing the order of the autoregressive model (2) is presented in Fig. 1. The device contains series-connected
elements: analog-to-digital ADC transformer; FB frame builder; the first unit of digital spectral analysis DSA1; blocks
for aligning SEF and detecting ED the spectral envelope; blocks for calculating the trajectory of partial results BCPI and
selecting the minimum MSS of the partial accuracy indicators; determination and reading of the results RR; two clock
pulse generators CPG1, CPG2; the second block of DSA2. Red lines indicate many dimensional (dimension M) functional
connections. Adjustable parameters of the device are the sampling period 7 of the speech signal and the length t of the
observation window.

The operation of the device begins with the launch of generators that are necessary to synchronize the operation of
individual elements of the computational process (3)—(6). With the help of the generators periodically (with a period of 1)
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Fig. 1. Block diagram of the device for measuring the accuracy indicator and the optimal order of the
autoregressive model of a speech signal: ADC, analog-to-digital converter; FB, frame builder; DSAI,
DSAZ2, the digital spectral analysis blocks; SEF, spectral envelope flattening block; ED, envelope detector;
BCPI, block for calculating partial indicators; MSS, minimum selection scheme; RR, result reading block;
CPG1, CPG2, the clock pulses generators.
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the frames of the voice signal {x(n)} are formed and updated at the inputs of the blocks DSA1, DSA2. Accordingly, PSE
(1), (2) will be periodically updated at their outputs. Moreover, according to (2), the model is updated simultaneously in R
different variants {G,(f,,)} depending on the order p = p,. for all » < R. i.e. in accordance with the expression (5) there will
be R variants of the spectral envelope G, (f,,; p). To isolate them in the device one uses a spectral envelope detector. Its
practical implementation works according to a recirculator scheme [16]:

Gy (fos ) = Gy (fon = A5 D)+ Gy (fus p)s m=1, M, (8)

based on the procedure of accumulating or smoothing the speech signal in the frequency domain. The constant 5 on the right
side of (8) affects the inertia of such accumulation. The quantitative index of inertia 6 = -Af/In b must be consistent with
the frequency F|, of the fundamental pitch of the speech signal. Hence in the first approximation we will write

b =exp (- & [Fy) = exp (= F/(MFy))

and, for example, in the operating range of values Fy = 100-200 Hz [3], for F'= 8 kHz, M= 1024 we obtain b = 0.93-0.97.

The main result of the operation of the device is that the indicator of the potentially achievable accuracy of the
autoregression model (2) is superimposed in the R-channel scheme of the minimum selection block MSS (cf. Fig. 1)
according to criterion (7) for selecting the optimal order. In accordance with the order p* the optimal autoregression model
is read using the RR block {G*(fm)}.

The program and the results of the experiment. In the experiment, the pilot version of the device was used (cf.
Fig. 1), implemented on the basis of the author's software module Phoneme Tlraining.1 The program is publicly available,
its interface is described in detail in the work [11].

The objects of the experimental study were the signals of the six vowel sounds of Russian speech of the test
speaker — the author of this article. Sufficiently long (23 s) duration of each signal was initially acquired for automatic
sequential segmentation into a set of frames of duration T = 30 ms with a time shift duration of 10 ms. At the sampling
rate ' = 8 kHz, the dimension of frame N was 240 samples. The shape of the observation window is rectangular. As a
result, a representative database of L = 200-300 eponymous samples was formed for each vowel sound of speech. Next,
for each sample the Schuster periodogram (1) with dimension M = 1024 and frequency increment Af = 8000:1024 =
= 7.8125 Hz is calculated. Also the autoregressive model of the speech signal determines the spectral Berg estimates (2)
for R = 40 alternative versions of order p = 10-50. In accordance with Levinson's recursion (3), the total complexity of the
computational procedure is of the order of 3Npy = 3:240-50 = 36,000 elementary multiplication-addition operations on the
interval of one speech frame. This volume with a margin corresponds to the performance of modern speech systems and
technologies [21].

In the course of the experiment, for each of the 40 alternatives for b = 0.96, according to (8), estimates of the
spectral envelope G, (f,,; p) were obtained according to which, in accordance with criterion (7), we established the
optimal value of the order p*, the corresponding autoregression model (2) and the indicator (6) of its accuracy. Then the
results were averaged according to the results of L tests for each vowel phoneme of the test speaker. As a result, the relative
error of experimental estimates [3] was & = 1.650712 = 1.65(200—300)71/ 2 with a confidence probability of 0.9 no more than
10-12%.

Figure 2 shows a graph of the operating characteristic p(p) of the proposed method (1)—(7) in relation to the vowel
sound of speech "a". Vertical segments in the control points of this graph determine the boundaries of the confidence interval
of the values of the indicator according to the results of multiple measurements. The curve p(p) has a single minimum
p* = 32 that indicates the effectiveness of criterion (7) and, in general, of the acoustic measurement method. The achieved
effect can be characterized by the value of the gain B in terms of the accuracy of the autoregressive model (2) due to the
optimization of its order p* with respect to its standard value p = 10 [2]:

p(10)—p’
=LY "P q90. 9
0 ©)

"Phoneme Training. Information system for phonetic analysis and speech training [site]. URL: https://sites.google.com/site/
frompldcreators/ produkty-1/phonemetraining (accessed 20.09.2022).
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Fig. 2. Performance characteristic (with confidence limits according to the results of multiple measurements
of the accuracy index) of the proposed method for measuring the accuracy of the autoregression model on
the example of the vowel sound "a" of the speech of test speaker.

According to the data of Fig. 2 the value calculated by formula (9) was B = 79.48%.

To illustrate the obtained result, Fig. 3 presents the family of Berg spectral estimates for autoregressive models of
order p = 10 (curves 1-3) versus Schuster's periodogram (curve 4) on the example of the same (typical) frame {x(n)} of the
vowel sound "a". All curves are normalized by the average power to unity. The model of order p = 32 is optimal in terms of
accuracy. Figure 4 shows the graph corresponding to order G, (f,,; p) of the PSE (5) at the output of the leveling filter (4),
as well as the envelope p = 32 (shown by the dashed line). Its shape is close to rectangular. The indicator (6) in this case is
characterized by the minimum p* = p(32) = 0.04 (cf. Fig. 2).

The conclusions drawn remain true for the rest of the vowel sounds of the test speaker's speech. At the same time,
according to criterion (7), their optimal model order values can vary greatly from each other, for example, for the "o"
sound we have p* = 22. At the same time, one can recognize in each case the winning values obtained from the score (9).
A histogram of their distribution for vowel phonemes is shown in Fig. 5. Optimization made it possible to increase the
accuracy of the autoregression model of the speech signal by more than 60%, depending on the speech sound of the test
speaker and the specifics of his vocal tract. The maximum gain was achieved for the (Russian) upper vowel sounds "n", "y",
"bi", which can be attributed to the features of a particular speaker.

0 625 1250 1875 2500 3125 f. Hz

Fig. 3. Berg spectral estimates for the speech sound frame "a" of orders 32; 50 (curves 1-3) against the
background of the Schuster periodogram (curve 4).
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Fig. 4. Graphs of the normalized power spectrum estimation (5) of the speech sound signal "a" at the
output of the flattening filter (4) with order of the autoregression model.
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Fig. 5. Histogram of distribution of the score B (9) by vowel phoneme signals.
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Fig. 6. The average Schuster periodogram (blue line) compared with the Berg estimate of the order p =32
(red line) at the input of the flattening filter (4).

Discussion of the results obtained. Unlike Berg's method, Schuster's periodogram currently finds almost no
independent application in the problems of spectral analysis of time series due to its inappropriate statistical characteristics
[15]. Instead of Schuster's periodograms, for these purposes one uses the methods of Bartlett, Welch, and others, based on
the effect of averaging periodogram PSE on samples of observations of large volume N >> M. However, according to
the conditions of the task considered in this article, the exact opposite relation holds, which excludes statistical averaging
and thereby limits the possibility of Shuster's periodogram as a PSE of the speech signal. Therefore, a natural question
arises regarding the validity of expression (1) as a reference spectral sample. The answer to this is given in the results of
the second, final, stage of experimental studies, within the framework of which the comparative efficiency of the method
proposed above was studied in two options for specifying a spectral sample: in a practically implemented version of the
periodogram (1), and also in a speculative (hypothetical) version of Welch

GV (f,), Vm<M-1, (10)

™~

G (f)=1"

i=1

with /-fold averaging of Schuster's partial periodograms on the observation interval with a total duration of t/. Here the
symbol G(f,) denotes the partial periodogram (1) within the boundaries of the ith speech frame {x(n)} of finite volume N.

The results obtained are presented in Fig. 6 as graphs of two spectral estimates of the phoneme "a" signal of the
test speaker: Welch (10) with 7 =240 (blue line) and Berg (red line) with the optimal order p* = 32 of the model (2). Berg's
estimate was not averaged, i.e., one of the frames {x(n)} was used, however, it agrees well with the envelope average
periodogram estimate.

The PSE envelope at the output of the leveling filter in this case is no longer more uniform in comparison with the
similar graph in Fig. 4. Moreover, its accuracy indicator (6) p(32) = 0.051 did not go beyond the corresponding confidence
interval [0.02; 0.06] at the optimum point of the working characteristic (cf. Fig. 2). Hence we can conclude that the averaging
of the Schuster periodogram according to the Welch method (10) gives almost nothing in terms of improving the accuracy
of the formed autoregression model (2). Schuster's periodogram in this case plays the role of a non-final PSE, and a source
of useful information regarding the fine structure of the speech signal. In this capacity, it is flawless due to the linearity of
the processing of the speech signal during the discrete Fourier transform [7].

Conclusion. As a result of the study, an indicator of the accuracy of the autoregression model of the speech signal
and a method for measuring it in the sliding window of observations mode of finite duration t are proposed. Within the
framework undertaken to optimize the autoregression model, the Berg spectral estimate and the Schuster periodogram
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mutually complement each other, although in practice they usually compete with each other [15, 17]. In this case, the
optimization criterion was for the first time rigorously formulated in terms of the inverse problem of speech production.
In contrast to criteria such as AIC, BIC, and the like [8, 9], the proposed criterion does not require synchronization of the
observation window with the pitch period of the speech signal, which greatly weakens the precision of the problem due to
a priori uncertainty [3].

The results obtained are intended for use in automatic processing and digital speech transmission systems with
radical data compression based on linear prediction coefficients [1, 2].
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