
Measurement Techniques, Vol. 64, No. 9, December, 2021

0543-1972/21/6409-0689 ©2021 Springer Science+Business Media, LLC 689

Translated from Izmeritel’naya Tekhnika, No. 9, pp. 3–9, September, 2021. Original article submitted February 17, 2021. Accepted May 18, 
2021.

 GENERAL PROBLEMS OF METROLOGY AND MEASUREMENT TECHNIQUE

FORMATION OF SETS OF INDEPENDENT COMPONENTS OF A MULTIDIMENSIONAL RANDOM 
VARIABLE BASED ON A NONPARAMETRIC PATTERN RECOGNITION ALGORITHM

A. V. Lapko,1,2 V. A. Lapko,1,2 and A. V. Bakhtina2 UDC 519.7+004.93

We consider the possibility of circumventing the decomposition problem for the range of values of random 
variables when testing various hypotheses. A brief review of the literature on this issue is given. A method 
is proposed for forming sets of independent components of a multidimensional random variable, based on 
testing hypotheses about the independence of paired combinations of components of a multidimension-
al random variable. The method uses a two-dimensional nonparametric algorithm for the recognition of 
kernel-type patterns, corresponding to the criterion of maximum likelihood. In contrast to the traditional 
technique using Pearson’s criterion, the proposed technique avoids the problem of decomposing the range 
of values of random variables into multidimensional intervals. We present results of computational exper-
iments performed using the method of forming sets of independent random variables. From the obtained 
data, an information graph is constructed, whose vertices correspond to the components of a multidimen-
sional random variable, and the edges determine their independence, while the vertices of the complete 
subgraphs correspond to groups of independent components of the random variable. The results obtained 
form the basis for the synthesis of a multilevel nonparametric system for processing large volumes of data, 
each level of which corresponds to a specifi c set of independent random variables.
Keywords: hypothesis testing, a set of independent random variables, multidimensional random variable, 
pattern recognition algorithms, kernel estimate of probability density, choice of blur coeffi cients of kernel 
functions, counter-excess coeffi cient, asymmetry coeffi cient, information graph.

 Introduction. The formation of sets of independent random variables is necessary when reducing the dimension of 
information processing problems and the synthesis of effective decision-making algorithms. A priori information about the 
independence of random variables makes it possible to improve the approximation properties of the nonparametric estimate 
of the probability density in comparison with the kernel statistics for dependent variables [1–3]. The results obtained in these 
works are confi rmed by studying the asymptotic properties of a nonparametric estimate for the equation of a separating sur-
face of kernel type in the problem of pattern recognition [4].
 The traditional method for testing the hypothesis of the independence of random variables is based on the Pearson χ2 
test. However, its application includes the diffi cultly formalized stage of dividing the range of values of random variables into 
multidimensional intervals and requires large volumes of initial statistical data, which is associated with the transition from con-
tinuous to discrete random variables [5]. Methods for discretizing the interval of values of a one-dimensional random variable are 
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considered in [6–8]. In [7, 9], formulas for the discretization of the range of values of a multidimensional random variable with a 
normal distribution law are given, obtained on the basis of an analysis of the asymptotic properties of the histogram. The work [10] 
substantiates the method of optimal discretization of the range of values of a multidimensional random variable. This technique is 
consistent with the formula for choosing the number of sampling intervals for a one-dimensional random variable with a uniform 
distribution law (Heyhold and Gaede’s formula) [11], and its implementation is coupled with the estimation of the integral of the 
square of a multidimensional probability density. When evaluating this functional on the probability density, the fi rst positive 
results were obtained [12, 13]. Therefore, it was required to develop a new method for testing the hypothesis under consideration, 
which avoids the decomposition problem for the domain of values of random variables. A similar problem is solved when testing 
the hypothesis about the identity of the distribution laws of random variables based on a nonparametric pattern recognition algo-
rithm [14–16]. These works show the possibility of replacing the hypothesis testing problem about the distributions of random 
variables with the hypothesis testing problem about the equality of the pattern recognition error to a certain threshold value.
 The purpose of this article is to develop a methodology for the formation of sets of independent components of a 
multidimensional random variable using a nonparametric algorithm for pattern recognition of kernel type that meets the cri-
terion of maximum likelihood.
 Testing the hypothesis of the independence of the components of a two-dimensional random variable. Let there 
be a sample V = (x1

i, x2
i, i = 1, ..., n) of volume n formed from independent observations of a two-dimensional random variable 

x = (x1, x2). Observations x are extracted from general populations characterized by unknown probability densities p(x1)p(x2) 
or p(x1, x2). It is necessary to check the hypothesis of the independence of the random variables x1, x2:

 H0: p(x1, x2) ≡ p(x1)p(x2). (1)

 To test the hypothesis H0 (1), we will solve a two-alternative pattern recognition problem. The classes Ω1, Ω2 corre-
spond to the domains of defi nition of the probability densities p(x1)p(x2), p(x1, x2). Under these conditions, the Bayesian de-
cision rule corresponding to the criterion of maximum likelihood has the form

 
m(x) : x 1 if p(x1, x2 ) p(x1)p(x2 );

x 2 if p(x1, x2 ) p(x1)p(x2 ).
 

(2)

 In contrast to the traditional formulation of the pattern recognition problem, in the synthesis of the decision rule (2) 
under conditions of initial uncertainty, there is clearly no training sample. The estimation of the probability densities p(x1)p(x2), 
p(x1, x2) is carried out using the sample V. For this, nonparametric estimates of the probability densities of the Rosenblatt–
Parzen type are used [1–3, 17, 18]:

 
p(x1)p(x2 )
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(4)

where c1, c2 are the blur coeffi cients of the kernel functions Φ(uv), v = 1, 2.
 In statistics (3) and (4), the kernel functions Φ(uv) satisfy the conditions

0 (uv ) ; (uv ) ( uv ); (uv )duv 1; um (uv )duv ; 0 m ; v 1, 2.

 The values of the kernel function blur coeffi cients c1, c2 decrease with an increase in the sample volume n of statis-
tical data V.
 The nonparametric statistics (3), (4) are asymptoticly unbiased and consistent [1, 2, 18]. It was found that the mini-
mum value of the standard deviation (RMSD) p(x1)p(x2) from p(x1)p(x2) with an increase in the volume n of initial statistical 
data tends to zero in proportion to the value n–4/5. The order of such convergence of the nonparametric estimate p(x1, x2) to the 
probability density p(x1, x2) is less and amounts to n–4/6. The a priori information on the independence of random variables 
enables an increase in the order of convergence of a nonparametric kernel-type probability density estimate.



691

 Taking into account expressions (2)–(4), we write the nonparametric decision rule for the classifi cation of random 
variables x = (x1, x2) as

   
 

m(x) : x 1 if p(x1, x2 ) p(x1)p(x2 );
x 2 if p(x1, x2 ) p(x1)p(x2 ).

 
(5)

 In the modifi cation of the nonparametric algorithm for pattern recognition (5), the optimal blur coeffi cients c1, c2 of 
the kernel estimates of the probability densities p(x1)p(x2) and p(x1, x2) are selected based on the results of the analysis of their 
approximation properties.
 The optimal value of the blur coeffi cient cv of the kernel functions of the nonparametric estimate of the one-dimensional 
probability density under the condition of the minimum standard deviation p(xv) of p(xv) is determined by the equation [18]:

 cv
* = [||Φ(u)||2/(n||p(2)(xv)||2)]1/5. (6)

 Here p(2)(xv) is the second derivative of the probability density p(xv) with respect to xv;

(u) 2 2 (u)du; p(2) (xv )
2 p(2)(xv )

2 dxv .

 After simple transformations, we represent Eq. (6) in the form

cv
* = βvσvn

–1/5,

where σv is the standard deviation of the random value xv;

βv = [||Φ(u)||2/(σv
5||p(2)(xv)||2)]1/5.

 The component of the functional βv, defi ned by the expression

λv = σv
5||p(2)(xv)||2,

is a constant for a number of unimodal probability densities. The value λv is determined by the form of the probability density 
and does not depend on its parameters [19–27].
 According to the data of computational experiments for a family of one-dimensional lognormal distribution laws, the 
authors of this article have determined the parameter estimates

bv = 1.49exp(–0.589av
0.857) + 0.021,

where av = (dv
2 + hv

2)1/2; dv and hv are the estimates of the coeffi cients of counter-excess and asymmetry of the random variable 
xv, v = 1, 2, respectively.
 The optimal kernel function blur coeffi cient in the statistic p(xv) is estimated by the formula

 cv
* = bvsvn

–1/5, v = 1, 2. (7)

 According to the proposed methodology and taking into account the results of research [27], for a two-dimensional 
random variable x = (x1, x2), the estimates of the optimal blur coeffi cients of the kernel statistic p(x1, x2) are determined by 
the expression
 c

–
v
* = bsvn

–1/6, v = 1, 2. (8)

 In Eq. (8), the parameter b takes on the value

b = 1.498exp(–0.524a0.809) + 0.0356,

where a = (d1
2 + d2

2 + h1
2 + h2

2)1/2.
 The obtained estimates for the functionals βv, v = 1, 2, and β refi ne the research results [27–29].
 Let us estimate the error probabilities of recognizing ρ1, ρ2 using the nonparametric decision rule (5) for pattern 
recognition from the statistical data V. In this case, we will take into account the estimates of the blur coeffi cients (7), (8) of 
the kernel statistics p(x1)p(x2), p(x1, x2).
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 The estimates rt are calculated in the “sliding exam” mode on the sample V under the assumption that its elements 
belong to the class Ωt:

t
1
n 1 ( j), ( j)

j 1

n
,

where 1(δ(j), d(j)) is the indicator function; δ(j) = t is an indicator of type x j = (x1
j, x2

j) ∈ Ωt; d(j) is the “decision” of algo-
rithm (5) for membership of the situation x j in one of the classes Ωt, t = 1, 2.
 When calculating rt using the “sliding exam” methodology, the situation x j = (x1

j, x2
j) from the sample V, which is 

controlled by algorithm (5), is excluded from the process of generating statistics (3) and (4).
 When forming the values rt, the indicator function is defi ned as

1 ( j), ( j) 0 if ( j) ( j);
1 if ( j) ( j).

 Let us compare the values r1, r2 under the assumption that the elements of the sample V belong to the classes Ω1, Ω2, 
respectively. The hypothesis H0 is satisfi ed if r1 < r2. This assertion is true, since with the independence of the random variables 
in the domains of defi nition Ω1, Ω2 of the estimates of the probability densities p(x1)p(x2) and p(x1, x2), the relation p(x1)p(x2) > 
> p(x1, x2) is satisfi ed with the estimated error probability r1. Otherwise, if r2 < r1, the random variables x1, x2 are dependent.
 The probabilities of Bayesian errors ρ1, ρ2 of class recognition are linear functionals of the probability densities 
p(x1)p(x2) and p(x1, x2), respectively. Since the nonparametric estimates of the indicated probability densities have the prop-
erties of asymptotic convergence [4, 18], the asymptotic convergence of the statistical estimates r1, r2 to ρ1, ρ2 is assumed.
 With bounded volumes n of the initial sample V, the problem of confi dence-based estimation of the probabilities of pat-
tern recognition errors arises. To solve it, one can use the traditional method of confi dence assessment of probabilities [5] or the 
Kolmogorov–Smirnov test [30], in which the deviation D12 = |r1 – r2| is compared with the threshold value Dβ = [–ln(β0/2)/n]1/2. 
Here β0 is the probability (risk) of rejecting the hypothesis H0: ρ1 < ρ2. If the relation D12 < Dβ holds, then the hypothesis H0 is 
valid and the risk of rejecting it does not exceed the value β0. When D12 > Dβ, the hypothesis H0 is rejected.
 Methods for the formation of sets of components of a multidimensional random variable. Suppose there is a 
sample of observations V = (xv

i, v = 1, ..., k, i = 1, ..., n) of volume n, composed of statistically independent observations of the 
components of a multidimensional random variable x = (xv, v = 1, ..., k). The form of the probability density p(x) is a priori 
unknown. From the statistical data of the sample V, using the above proposed hypothesis testing criterion

 Hvj: p(xv, xj) ≡ p(xv)p(xj) (9)

for the components xv, v = 1, ..., k, xj, j = 1, ..., k, v > j, it is required to generate sets of independent random variables x(t) = 
= (xv, v ∈ It), t = 1, ..., m. Here It is the set of indices of components that make up the set x(t), and the number m of sets of 
components of a random variable x is unknown.
 The proposed technique consists of three stages.
 Stage 1. In accordance with the above recommendations, the hypothesis Hvj of type (9) is tested for each pair of 
components (xv, xj) of a multidimensional random variable x = (xv, v = 1, ..., k). The number of such pairs is 0.5k(k – 1).
 Stage 2. Based on the results of stage 1, an information graph G(X, A) is constructed, where X is the set of vertices 
corresponding to the components of the random variable x; A is the set of edges. If the hypothesis Hvj holds, that is, the com-
ponents xv, xj are independent, then there is an edge between two vertices xv, xj.
 Stage 3. Analyze the information graph G(X, A) and determine the complete subgraphs G(Xt, At), t = 1, ..., m. If the 
components of the random variable x are independent, then each pair of vertices of the subgraph G(Xt, At) has an edge. Detect 
the complete subgraphs with algorithms to decompose the original graph using its adjacency matrix [31]. The components 
xv, v ∈ It, corresponding to the vertices of the complete subgraph G(Xt, At) form a set of independent random variables. In this 
case, one can fi nd a number of options for decomposing the information graph.
 Analysis of the results of computational experiments. Let us check the effi ciency of the proposed method when 
analyzing the data of a computational experiment. Let us investigate the effi ciency of the procedure for forming sets of inde-
pendent components on the volume n of the initial statistical data and the degree of dependence of random variables.
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 When designing computational experiments, the statistical data V = (x1
i, ..., x4

i, i = 1, ..., n) of the components x1, x2, x3 
of a multidimensional random variable x = (x1, x2, x3, x4) are assumed to be independent. Their values are formed using sensors 
with uniform p(x1) = R(3; 1) and normal distribution laws p(x2) = N(3; 1), p(x3) = N(3; 1), where R(3; 1) and N(3; 1) are the dis-
tribution laws of random variables with mathematical expectation and standard deviation equal to three and one, respectively. 
The values of the component x4 are found from one or another dependence determined by various conditions of the study:

 x4 = ϕ(x1) = x1
2 – 6x1 + 10 + ε; (10)

 x4 = ϕ4(x1, x2) = x1
2 – x2

2 + 6(x2 – x1) + 20 + ε. (11)

 Here ε are the values of a random variable with a normal distribution law N(0; 1).
 Sensors of random variables x2, x3 with normal distribution laws are formed on the basis of expressions

xv 3 0
l

l 1

r
0.5r 6 3r , v 2, 3,

where ε0
l are values of random variables with a uniform probability density on the interval [0; 1]; r = 12.

 The technique of computational experiments is implemented in the Delphi-7 programming environment. To generate 
a random variable ε0 ∈ (0; 1) with a uniform distribution law, we use a standard function random and the procedure Randomize, 
which takes into account the time of day as the basis for generating pseudo-random numbers with a uniform distribution law.
 The volume n of initial statistical data in computational experiments was 100, 500, 1000. For a specifi c volume n of 
initial data, the parameters r1, r2, D correspond to dependencies (10), (11). The parameter values r1, r2 are calculated 10 
times and then averaged (cf. Table 1).
 With relatively small volumes n = 100 of initial statistical data and using dependence (10), the values r1 and r2 for 
pairs of random variables (x1, x2), (x1, x3), (x2, x3), (x2, x4) and (x3, x4), are not reliably different. Under these conditions, the 

TABLE 1. Results of Testing Hypotheses about the Independence of Paired Combinations of a Four-Dimensional Random Variable

n Parameter Equation x1, x2 x1, x3 x1, x4 x2, x3 x2, x4 x3, x4

100

r1

(10) 0.51 0.52 0.75 0.59 0.57 0.59

(11) 0.52 0.56 0.77 0.67 0.76 0.65

r2

(10) 0.49 0.48 0.25 0.41 0.43 0.41

(11) 0.48 0.44 0.23 0.33 0.24 0.35

D
(10) 0.02 0.04 0.50 0.18 0.14 0.18

(11) 0.04 0.12 0.54 0.34 0.52 0.30

500

r1

(10) 0.460 0.432 0.808 0.48 0.498 0.442

(11) 0.448 0.476 0.706 0.49 0.822 0.430

r2

(10) 0.540 0.568 0.192 0.52 0.502 0.558

(11) 0.552 0.524 0.294 0.51 0.178 0.570

D
(10) 0.080 0.136 0.616 0.04 0.004 0.116

(11) 0.104 0.048 0.412 0.020 0.644 0.140

1000

r1

(10) 0.422 0.462 0.789 0.479 0.473 0.451

(11) 0.495 0.475 0.725 0.458 0.813 0.480

r2

(10) 0.578 0.538 0.211 0.521 0.527 0.549

(11) 0.505 0.525 0.275 0.542 0.187 0.520

D
(10) 0.156 0.076 0.578 0.042 0.054 0.098

(11) 0.010 0.050 0.450 0.084 0.626 0.040
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values D12, D13, D23, D24, D34, are less than the threshold Dβ = 0.192 with the risk β0 = 0.05 of rejecting the hypothesis H0. 
According to the conditions of the computational experiment, these paired sets of components of the random variable are a 
priori independent. With small volumes of initial data, there is an uncertainty in decision making, which follows from the 
analysis of the results of testing the hypotheses under study. This conclusion is explained by the difference in the convergence 
conditions, for example, in the nonparametric estimates of the probability densities p(x1)p(x2) and p(x1, x2), which is con-
fi rmed by the results of studies in [1–3].
 If the paired combinations of random components are dependent, then the proposed method, under the conditions of 
the considered computational experiment, unambiguously rejects the hypothesis H0.This conclusion is valid for the compo-
nents (x1, x4) when using dependence (10) in the computational experiment. In this case, the inequality r1 > r2 holds, i.e., the 
condition p(x1, x2) > p(x1)p(x2) is satisfi ed, and the decision that is made according to rule (5) is valid. The specifi ed condition 
is reliable, since D14 < Dβ when D14 = 0.5 and Dβ = 0.192. With the complication of dependencies between random variables 
under the conditions of using the transformation (11) with n = 100, the above-mentioned regularities are preserved.
 With an increase in the volume n of the initial statistical data V, the effi ciency of the proposed method for testing 
hypotheses about the independence of random variables increases. With the volume of initial data n = 500, the hypothesis 
about the independence of paired combinations of random variables (x1, x2), (x1, x3), (x2, x3), (x3, x4) is fulfi lled, since the 
corresponding errors of pattern recognition by the decision rule (5) are connected by the relation r1 < r2. This relation holds 
for the paired combinations (x1, x3), (x3, x4) when using dependence (10) and the risk β0 = 0.05 in the computational experi-
ment to reject the hypothesis H0. The dependence between the components (x1, x4) is more signifi cant when D14 = 0.616 and 
Dβ = 0.086. As the relationship between random variables (11) becomes more complex, a reliable dependence is observed 
between (x1, x4), (x2, x4), as well as a reliable independence of the components (x1, x2),  (x3, x4).
 With the volume of initial data n =1000, the above-mentioned patterns for n = 500 are basically preserved. Application 
of the developed methodology enables detection of dependency characteristics contradicting the hypothesis H0 with a high 
level of reliability when using transformations (10), (11) in a computational experiment. If the components of the random 
variable x are a priori independent, then the inequality r1 < r2 holds; however, under the conditions of the considered compu-
tational experiment, it can be reliable or unreliable.
 Based on the data in the Table 1, we will form an information graph G(X, A), where X is the set of vertices that cor-
respond to the components xv, v = 1, ..., 4, of the random variable x; A is the set of edges between the vertices of the graph. 
There is an edge between two vertices xv, xj if the corresponding components are independent (cf. Fig. 1).
 When using transformation (10), there are two versions of complete subgraphs, which correspond to sets of inde-
pendent components (x1, x2, x3) and (x2, x3, x4) (cf. Fig. 1a). The choice of a specifi c option is determined by the method 
of subsequent processing of the initial data. If transformation (11) is applied, then one set of independent random variables 
(x1, x2, x3) is found (cf. Fig. 1b). The results obtained correspond to the conditions for designing a computational experiment 
based on transformations (10), (11).
 Conclusion. The proposed method for the formation of sets of independent components of a multidimensional ran-
dom variable can be replaced by testing hypotheses about the independence of their paired combinations. To solve this prob-
lem, a two-dimensional nonparametric algorithm of kernel-type pattern recognition is used, which corresponds to the criterion 
of maximum likelihood. This approach allows us to bypass the problem of decomposition of the values of random variables 

Fig. 1. Information graphs G(X, A) for n = 1000 using transformation (10), (11) (a, b, respectively).
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into multidimensional intervals. When optimizing a nonparametric pattern recognition algorithm, it is advisable to use fast 
algorithms for selecting the blur coeffi cients, which is especially important when processing large volumes of data. Based on 
the results of testing hypotheses about the independence of two-dimensional random variables it is possible to build an infor-
mation graph, whose vertices correspond to random variables, and edges defi ne their independence. Decomposition of the 
information graph into complete subgraphs enables detection of different variants of sets of independent components of a 
multidimensional random variable. The choice of a particular set is determined by the adopted procedure for the subsequent 
processing of the initial data.
 According to the results of computational experiment, it was established that the proposed technique is especially 
sensitive to the detection of dependent random variables, which is characteristic of small and large volumes of initial statisti-
cal data. In conditions of small volumes of values of a four-dimensional random variable (for n <500), it is impossible to make 
an unambiguous decision about the independence of random variables. At n ≥ 500 under the conditions of a computational 
experiment, it is possible to reliably detect the dependent components of a four-dimensional random variable. Independent 
random variables in these conditions are determined with varying degrees of reliability with limited amounts of initial statis-
tical data. A promising direction for further research is the comparison of the proposed method with the traditional one based 
on the use of Pearson’s criterion with different formulas for discretization of the range of values of random variables.
 The results obtained form the basis for the synthesis of a multi-level nonparametric system, where each level corre-
sponds to a specifi c set of independent random variables. Such systems are effi cient when processing large data volumes.
 The study was carried out with the fi nancial support of the Russian Foundation for Basic Research, the Government 
of the Krasnoyarsk Territory, and the Krasnoyarsk Regional Science Foundation within the framework of the scientifi c project 
No. 20-41-240001.
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