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MEDICAL AND BIOLOGICAL MEASUREMENTS

METHOD FOR DETECTING R-WAVES OF AN ECG SIGNAL BASED ON WAVELET 
DECOMPOSITION

A. A. Fedotov UDC 57.087

Increasing the effi ciency of cardiological diagnostics based on the analysis of human heart rate variability 
necessitates the development of accurate methods for detecting the R-waves of the electrocardiogram signal 
(ECG signal). A technique for detecting R-waves of an ECG signal based on the wavelet multiresolution 
analysis (WMRA) is developed. The proposed technique for detecting R-waves includes sequential stages of 
digital processing of an ECG signal: WMRA; selection of nonlinear operators; adaptive algorithm for detect-
ing signal peaks. A comparative analysis of the proposed technique with existing approaches to the detection 
of R-waves of the ECG signal has been carried out. To obtain quantitative characteristics of evaluating the 
effi ciency of detecting R-waves, we used imitation modeling of an ECG signal containing noises and inter-
ferences of various intensity and nature of occurrence. The effectiveness of the considered approaches to the 
detection of R-waves of the ECG signal was investigated for clinical recordings of biosignals. The absolute 
error of measuring the RR-interval durations for model signals with different noise levels is estimated. It is 
shown that the proposed method for detecting R-waves of an ECG signal based on WMRA is characterized by 
small errors in measuring the duration of RR-intervals, high rates of true detection and small errors of false 
detection and omission.
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 Introduction. Registration and processing of electrocardiogram (ECG) signals is widely used in various systems of 
medical diagnostics. The active development of systems for monitoring the state of the body based on the analysis of heart 
rate variability makes it necessary to accurately detect ECG QRS-complexes to minimize the errors in measuring the duration 
of the cardiac cycle under the infl uence of interference and noises of various origins [1, 2]. The QRS-complex of the ECG is 
the most high-frequency and high-amplitude fragment of the electrocardiogram, refl ecting the processes of bioelectric exci-
tation of the ventricles of the heart. The highest-amplitude component of the QRS-complex is the R-wave, with its help the 
heart rate is measured. R-wave detection is the main stage of automated ECG signal processing [2].
 There are many different algorithms for detecting the ECG R-waves using the fi rst and second derivatives, frequency 
fi ltering, wavelet transforms, matched fi lters, syntactic methods and neural networks, as well as various combinations of al-
gorithms [3–11].
 The purpose of the study is to develop an effective method for detecting ECG R-waves, which consists of the follow-
ing sequential stages of digital processing of the ECG signal: wavelet multiresolution decomposition; selection of nonlinear 
operators; adaptive detection algorithm.
 Materials and methods of research. Signal decomposition based on multiscale discrete wavelet transforms is a 
decomposition of the original signal into a sequence of approximating and detailing coeffi cients [7]. The key parameters of 
the wavelet decomposition are the type of the wavelet function and the number of decomposition levels. Numerous studies 
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show that in problems of ECG signal processing the most effective results are achieved using the 4th order of Daubechies 
wavelets (db4) [7, 12].
 To determine the optimal parameters of the ECG signal wavelet decomposition in the problems of R-wave detection, 
consider the mathematical model of the ECG signal with additive noise and interference. To obtain model dependences of the 
ECG signal, we use the simulation model proposed in [13]. This simulation model makes it possible to form biosignal frag-
ments with the required morphology and specifi ed values of the amplitude-time parameters.
 The creation of mathematical models of distorting infl uences is based on a priori information about the nature of the 
arising interference or noise. Distorting effects during ECG signal registration are mainly caused by electrical interference 
caused by the infl uence of power supply networks, noise of the analogue path for recording a biosignal, fl uctuations in the 
polarization potentials of electrodes, as well as physiological artifacts caused by respiration, movements of the examined 
person and spontaneous myographic activity of peripheral muscles [1, 3].
 The mathematical model describing the infl uence L of external electromagnetic fi elds of power supply networks has 
the form

L(k) = Lmaxsin(2πfpk /fs),

where Lmax is the amplitude of the interference caused by the infl uence of the power supply network; fp is the frequency of the 
power supply network; fs is the sampling frequency of the interference signal; k is the ordinal number of the signal sample.
 Interference caused by human breathing and displacement of electrodes during involuntary movements lead to dis-
tortion of the isoline and shape of the ECG signal and the emergence of isoline drift – a quasi-periodic signal of a stochastic 
nature, the main frequency band of which is located below the average heart rate [1, 3].
 The analysis of the factors that infl uence the appearance of the ECG signal isoline drift, carried out by the author of 
this article, showed that the ECG signal isoline drift W(k) can be expressed as a sum of deterministic and random components:

W (k) Wmax sin(2 fik / fs ) (k)
i 1

4
,

where Wmax is the amplitude of the model isoline drift signal; fi is an array of frequencies of an additive set of harmonic signals 
representing a deterministic component ψ(k) – a random component obtained by fi ltering white Gaussian noise with a low-
pass fi lter with a cutoff frequency of 1 Hz.
 The ECG signal isoline drift was simulated at frequencies f1 = 0.1 Hz, f2 = 0.2 Hz, f3 = 0.4 Hz, f4 = 0.8 Hz.
 Interference from the peripheral muscles located in the projection of the electrodes is a random signal of a broadband 
nature. The mathematical description of myographic activity is presented as a normal process with zero mean and variance 
σ1

2 [3]. The additive component of noise with a normal distribution also simulates the infl uence of the internal noise of the 
ECG signal registration unit and the random nature of the appearance of motion artifacts.
 To select the optimal level of decomposition and the type of wavelet decomposition coeffi cients when detecting 
R-waves of the pacemaker, in this work, the correlation coeffi cient was determined between the model pacemaker containing 
only QRS-complexes and the sequence of the wavelet decomposition coeffi cients of the model pacemaker.
 Based on research carried out by the author, a technique for detecting the R-waves of the pacemaker is proposed, 
which sequentially includes: multiscale wavelet transform of the initial ECG signal for six levels of decomposition; formation 
of the sum of the detailing coeffi cients of the fourth and fi fth levels; replacing negative counts of the received signal with 
zeros; squaring the result.
 After passing through the preliminary stages of processing, the ECG signal entered the input of the adaptive circuit 
for detecting signal maxima, the temporal position of which corresponds to the position of the R-wave.
 The essence of the adaptive maximum detection algorithm is in the formation of a sliding window with a duration of 
2 s and the search for maximums exceeding a given threshold value Lev within that window. The threshold was determined 
separately for each sliding window based on the following threshold function:

Lev(i)
0.4 max(i), (i) 0.2max(i)& max(i) 2max(i 1);
0.4 max(i 1), (i) 0.2max(i)& max(i) 2max(i 1);
1.6 (i), (i) 0.2max(i),
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where σ(i) is the standard deviation of the signal readout amplitude values within the ith sliding window; max(i), max(i – 1) 
are the maximum values of the signal sample amplitudes within the current ith and previous sliding windows, respectively; 
& denotes the simultaneous fulfi llment of the specifi ed conditions.
 Numerical values of the threshold function parameters were chosen empirically as a result of the studies carried out 
according to the criterion of maximizing the correct detections of ECG signal R-waves and minimizing false detections and gaps.
 The detector maximum determined the temporal position of the signal maximum in the search time interval while 
the following conditions were simultaneously observed:

A(n) := Peak,  if A(n) > Lev & A(n) > A(n + 1) & A(n) > A(n – 1),

where A is the input signal of the adaptive maximum detection scheme (the resulting signal from the 4th stage of ECG signal 
preprocessing); := means “assign,” that is, if the conditions specifi ed after the “if” are met, the count A(n) is recognized as the 
peak or maximum of the Peak signal in the time interval of the search.
 The detection of the temporal position of the ECG signal R-waves occurred with some error due to signal distortions 
due to interference and noise. One of the criteria for evaluating the effi ciency of the detector was the random error in measur-
ing the duration of the RR-interval.
 To estimate the absolute error ΔRR for measuring the duration of the RR-interval, we used the quantile characteristics 
of errors at a confi dence level P = 0.9 [14]:

RR 1.6 RR; RR [RR (i) RR(i)]2
i 1

N
N ,

where σRR is the root-mean-square deviation of the duration of RR-intervals from the true value; RR(i), RRʹ(i) represent the 
true and measured duration of the RR-interval, respectively; N is the total number of RR-intervals in the considered fragment 
of the ECG.
 As a criterion for evaluating the effectiveness of the proposed method for detecting R-waves and existing approaches, 
we chose the absolute error in measuring the duration of RR-intervals in a wide range of changes in the signal-to-noise ratio:

S/N = 10log(Smax/Xmax),

where Smax, Xmax are the total spectral powers of the model ECG signal and the additive signal of the present interference and 
distortions, respectively.
 To verify the developed detector when processing real biosignals, the publicly available ECG signal database from 
the Massachusetts Institute of Technology was used [PhysioNet. The Research Resource for Complex Physiologic Signals, 
http://physionet.org]. To assess the effi ciency of detecting R-waves, the probability PT of correct detection of control points, 
the probability PF of false detection of control points, and the indicator Per of the detection error level were used:

PT = (NT/N)·100;     PF = (NF/N)·100;     Per = [(Nm + NF)/N]·100,

where N is the total number of R-waves; NT, NF, Nm are the number of correctly detected, mistakenly detected and missed 
R-waves, respectively.
 In testing, we used ECG samples from the MIT-BIH Arrhythmia Database, containing 48 fragments of real ECGs, 
each 30 min long; one weakly noisy sample (No. 100) and two most noisy fragments (samples Nos. 104, 105) were selected 
for the study [15].
 Research results. The research results were obtained in the MATLAB R2013a system of applied computing using 
the standard functions of the Signal Processing Toolbox.
 Figures 1 and 2 show the dependences of the change in the approximating and detailing coeffi cients of the wavelet 
decomposition on time for a noisy model ECG signal, respectively.
 The obtained results of decomposition of the model ECG show that high levels of detailing expansion coeffi cients 
(see Figs. 1, 2, curves 3–6) are free of high-frequency noise and isoline drift, approximating expansion coeffi cients contain a 
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signifi cant level of isoline drift and at high levels of decomposition (see Figs. 1, 2, curves 5, 6) QRS-complexes of the ECG 
become indistinguishable.
 Table 1 shows the results of calculating the correlation coeffi cient between the model ECG containing only QRS-
complexes and a sequence of detailing (DC) and approximating (AC) coeffi cients from the fi rst to sixth levels of wavelet 
decomposition (WDL).
 The sum of the detailing coeffi cients of the fourth and fi fth levels of signal decomposition has the greatest correlation 
with the model ECG signal containing only QRS-complexes. Therefore, this sum of coeffi cients is preferable for further pro-
cessing in order to detect the ECG R-waves.
 Figure 3 shows the diagrams of processing a model ECG signal with the presence of motion artifacts, baseline drift 
and broadband noise based on the developed approach, where AECS is the amplitude of the initial ECG signal; kd(4+5) is the 
sum of the detailing coeffi cients of the fourth and fi fth levels of signal decomposition; Sin is the input signal for the detection 
scheme, obtained by replacing the negative counts of the coeffi cients of the fourth and fi fth levels of signal decomposition 

Fig. 1. Approximating coeffi cients kа of decomposition levels of a noisy ECG (curves 1–6 correspond to decomposition levels 1–6).

Fig. 2. Detailing coeffi cients kd of decomposition levels of a noisy ECG (curves 1–6 correspond to decomposition levels 1–6).
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with zeros and then squaring the obtained value. The results show that preliminary processing of a noisy ECG signal allows 
to effectively suppress the present noise and interference and provides reliable detection of ECG R-waves.
 Figure 4 shows the dependences of the absolute error in measuring the duration of the RR-intervals of the ECG signal 
on the signal-to-noise ratio S/N for various R-wave detectors. The dependences were obtained with the following model pa-
rameters: heart rate 60 beats/min; QRS-complex amplitude 1 arb. unit; QRS-complex duration 80 ms; fp = 50 Hz; fs = 500 Hz; 
parameters Lmax, Wmax, σ1

2 were set in accordance with the value of the signal-to-noise ratio S/N.
 An analysis of the obtained dependences shows that with a decrease in the signal-to-noise ratio, the error in measur-
ing the duration of the RR-intervals of the ECG signal increases; in low-noise conditions, all four considered algorithms 
demonstrate a similar level of error. However, high-noise conditions, the Pan–Tompkins algorithm and the algorithm based 
on matched fi ltering are characterized by the largest error values, and the algorithm based on neural networks provides the 
best accuracy. The algorithm proposed in this work is slightly inferior to the neural network algorithm.

TABLE 1. Correlation Coeffi cients between the Model ECG and the Wavelet Expansion Coeffi cients

WDL DC AC

1 0.08 0.46

2 0.13 0.51

3 0.17 0.48

4 0.60 0.32

5 0.71 0.35

6 0.60 0.20

4 + 5 0.80 0.33

Fig. 3. Diagrams of processing of a noisy model ECG signal; for Sin, detected R-waves of the ECG signal (+) and 
the adaptive threshold value (gray line) are shown.

Fig. 4. Dependences of the measurement error ΔRR of the RR-intervals duration on the signal-to-noise ratio S/N 
for various detectors of ECG R-waves: 1) the algorithm proposed in this work based on wavelet decomposition; 
2) matched fi lter-based algorithm [9]; 3) Pan–Tompkins algorithm [8]; 4) neural network-based algorithm [6].
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 Table 2 shows the results of a quantitative assessment of the effectiveness of the developed detector in comparison 
with existing approaches in processing real ECG signals, where algorithms 1–4 are, respectively, the proposed algorithm 
based on wavelet decomposition, a matched fi lter algorithm, a Pan–Tompkins algorithm and a neural network algorithm; 
S48 is the average value of the probabilities of detecting the ECG singla R-waves calculated for all 48 fragments of real ECGs 
from the database; the highest probability PT and the lowest probabilities PF and Per are highlighted in bold.
 Analysis of the results of the detection effi ciency of R-waves in real ECGs shows that for a slightly noisy sample 
(No. 100), the detection effi ciency of all methods, except for the Pan–Tompkins algorithm, is 100%. For ECGs with high in-
terference and noise levels (samples Nos. 104 and 105), the best detection results are provided by the neural network method 
and the method based on wavelet decomposition proposed in this work. The detection effi ciency and the level of errors of the 
proposed method are tenths of a percent inferior to the neural network method.
 Conclusion. Analysis of the obtained results showed that the proposed method for detecting R-waves in an ECG 
signal by wavelet decomposition is an effective means of processing ECG data recorded in real clinical conditions. Based on 
the developed approach, it was possible to achieve 100% correct detection and complete absence of errors for a weakly noisy 
ECG signal sample with a duration of 30 minutes, as well as an error rate not exceeding 0.9% for noisy ECGs.
 Simulation results showed that the developed detector based on wavelet decomposition provides smaller errors in 
measuring the duration of RR-intervals of the ECG in a wide range of changes in the signal-to-noise ratio in comparison with 
the classical approaches based on matched fi ltering and the Pan–Tompkins algorithm. In terms of accuracy, the proposed al-
gorithm is comparable to a much more complex approach based on neural networks.
 The advantages of the proposed method for detecting ECG R-waves include relative simplicity of implementation, 
suffi cient performance for modern computing systems, small errors in measuring the duration of RR-intervals, high rates of 
true detection, small errors of false detection and omission. The proposed approach loses insignifi cantly in the detection ac-
curacy and measurement errors of RR-intervals to the neural network detector; however, the latter method is much more 
complicated and time consuming and requires preliminary training of the neural network on signifi cant experimental data to 
achieve high effi ciency.
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