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FUNDAMENTAL PROBLEMS IN METROLOGY

COSMOLOGICAL DISTANCE SCALE. PART 12. CONFLUENT ANALYSIS, RANK INVERSION, 
AND LACK-OF-FIT TESTS

S. F. Levin UDC 519.245:519.65:52+53:520.12

The measuring problem of calibrating the cosmological distance scale is considered from the perspective of 
applicability conditions for regression analysis. The rank inversion and statistical inhomogeneity of infor-
mation on SN Ia supernovae, used in the works of 1998–1999 and 2004–2007 to detect the “accelerating 
expansion of the Universe” and as an “extraordinary evidence” of its existence, respectively, are demon-
strated to be the reason for the discrepancy and inconsistency of the obtained parametric estimates of the 
Friedman–Robertson–Walker model. Although the use of lack-of-fi t tests for cosmological distance scale 
models reduces the above negative effects, the fact remains that the cosmological distance scale based on 
the redshift has neither metric nor ordinal status.
Keywords: SN Ia supernovae, photometric distance, redshift, Friedman–Robertson–Walker model, regres-
sion analysis, confl uent analysis, lack-of-fi t tests, rank inversion.

 Introduction. In 1805, A. Legendre used the least squares method (LS) in his work “A new method for determining 
the orbits of comets.” Later, in 1808, R. Adrein in his work “Studies concerning the probabilities of errors that appear during 
measurements” gave a rough “proof” that, under some conditions, these errors obey the so-called “normal law” [1]. And in 
1809, K. Gauss in his work “Theory of the motion of celestial bodies” also gave a substantiation of this law and stated that he 
had developed the LS back in 1795 while studying at the University of Göttingen. In 1900, in order to test simple hypotheses, 
K. Pearson proposed a χ2 goodness-of-fi t test generalized by R. Fisher in 1928 for testing complex hypotheses in the maxi-
mum likelihood method. However, in 1929, for the construction of a cosmological distance scale in terms of the Hubble law 
for the radial velocity of galaxies under the Doppler interpretation of the z redshift, the LS was suffi cient:

cz = H0D,

where c is the velocity of light; H0 is the Hubble constant; and D is the distance [2].
 In the case of unequal measurements, the modern version of the weighted least squares method was developed by 
A. Aitken in 1935 followed by the presentation of a proof for the goodness-of-fi t theorem by G. Kramer in 1946. In 1957, the 
corresponding method for estimating the parameters in the works of K. Rao was called the “chi-square minimum method.” 
The specifi c feature of this method – the variance of the weighted average is lower than the smallest variance among the ele-
ments of the population – can create the illusion of a high accuracy of the results if not carefully applied. In 1998, the method 
referred to as the “Riess χ2 minimum method” was used to detect the “accelerating expansion of the Universe” [3].
 It came as a surprise that, along with a growing accuracy of astrophysical measurements and the emergence of im-
proved cosmological models, a situation called a dead end by V. Friedman – the leader of the Hubble Space Telescope (HST) 
project – arose in cosmology [4]. The causa proxima for this statement and the discussion about the crisis in cosmology was the 
discrepancy of more than “sacramental 3σ of normal law” (5–6 km·s–1·Mpc–1) in the estimates of the H0 parameter according 
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to “distance ladder” cepheids [5] and measurements of microwave background radiation in the framework of the ΛCDM mod-
el [6]. However, since 1929, the estimates of the Hubble parameter have decreased from 530 to almost 50 km·s–1·Mpc–1 [7]. 
As a result, the transition from the Friedman–Robertson–Walker model with the curvature parameter to its representation 
according to the third-order Taylor formula is described in [8] with the assumption of an unknown “new physics outside the 
ΛCDM model” described in [9]. W. Friedman demanded to “increase the accuracy of the scale assessment to one percent” for 
the resolution of the crisis [4].
 The root cause of the “dead end” in cosmology, which has been obvious since 1929, is presented in a fi gure in [2]. 
However, the preference was given to the actual redshift as the main scale.
 “Dead end” metrology. Statistical methods, including the most popular of them, primarily require verifi cation of the 
applicability conditions. The problem of calibrating the cosmological distance scale represents a typical measuring problem, 
which can be solved by the method of compatible measurements. The diverse mathematical apparatus of this method includes 
interpolation theory, statistical verifi cation of structural (nonparametric) and parametric hypotheses, variance, regression, and 
confl uent types of analysis [10–12]. Against the background of the generality in the statement of problems, the latter method 
of mathematical statistics is still the most problematic one for practical application, with the corresponding literature being 
very scarce [13–17].
 In [3, 18–20], regression analysis algorithms were used to estimate the parameters of the Friedman–Robertson–
Walker model as a general model of cosmological distance scales based on the redshift in the emission spectra of extragalactic 
sources. As a result, the “accelerating expansion of the Universe” was detected and confi rmed.
 It should be noted that, in the considered situation, regression analysis implies a set of statistical methods for analyz-
ing relationships between quantitatively precisely specifi ed Xi input variables and a mathematical model of an object with a 
statistical scatter of the Y output variable. In this case, the input and output variables represent the data of their compatible 
measurements or determinations.
 Mathematical conditions for the applicability of classical linear regression analysis for the models of the form

 y = ΣM
m=0θmϕm(x) + ε, (1)

where θm are the parameters, ϕm(x) are the given functions (xm, etc.), ε is a random variable (remainder), are determined by 
the following assumptions [16]:
 A.1. εn remainders, where n = 1, 2, ..., N, are stochastic random variables according to Kolmogorov [21];
 A.2. Mεn = 0 are their expected values;
 A.3. Their covariances and variances are cov{εk, εl} = 0, k ≠ l, and Dεn = cov{εk, εk} = σ2, k ≤ N, respectively;
 A.4. The εn random variables are Gaussian;
 A.5. The ϕm(x) given functions are not random;
 A.6. No restrictions are imposed on the values of the θm model parameters, i.e., nothing is known about their values 
in advance;
 A.7. Number of compatible measurements is N ≥ M + 1;
 A.8. Model (1) is neither redundant nor insuffi cient.
 The main methods for parametric identifi cation of models in regression analysis include LS, methods of least abso-
lute deviation methods (LAD) and maximum likelihood, etc.
 When the A.1–A.8 assumptions are fulfi lled, the regression analysis estimates have a number of important proper-
ties: unbiasedness, effi ciency and independence (taking into account the number of model parameters) of the mean square of 
the model remainders on the type of distribution [1]. If there is a possibility of additional verifi cation or active planning of 
experiments, then the above assumptions are justifi ed in some cases.
 However, the Universe is a specifi c measurement object. Therefore, let us note violations of those applicability con-
ditions of regression analysis [1, 14–17, 10, 22] that can elucidate the discrepancy between the parametric estimates of the 
Friedman–Robertson–Walker model, including the Hubble parameter, obtained from different sources.
 A.1 is the condition of stochasticity, i.e., statistical homogeneity of the remainders. In this respect, an example of 
detecting a “disorder” of the mean for 36 SN Ia at z ≤ 0.1 [23], when the H0 = 72 ± 7 km·s–1·Mpc–1 estimate was obtained at 
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distances less than 467 Mpc. The estimate with the “disorder” turned out to be more accurate: H0 = 71.66 ± 3.68 km·s–1·Mpc–1 
(less than 309.5 Mpc) and further – the H0 = 65.95 ± 3.68 km·s–1·Mpc–1 estimate [24], which eliminated the discrepancy in 
estimates at the same time as indicating a violation of the A.2 assumption.
 A.3 is the condition of uncorrelatedness and homoscedasticity. Violation of the homoscedasticity condition is associ-
ated with a decrease in the effi ciency of parametric estimates of the regression model and a signifi cant underestimation of the 
parametric variances and covariances. In this situation, the method of weighted least squares – the Riess χ2 minimum method 
with weights of the 1/σn

2 form was used in [3]. However, in this case, the standard deviation (SD) of the weighted mean is less 
than the smallest SD among the remainders [25], which can create an illusion of a high accuracy of the averaged result.
 Violation of the uncorrelated condition leads to the phenomenon of autocorrelation with the consequences similar to 
those of the homoscedasticity condition violation:
 – parametric estimates, although not biased, are already ineffective;
 – the variances of parametric estimates become biased, therefore leading to the recognition of input variables as 
statistically signifi cant, which may not be so in reality;
 – the variance of the regression model estimate is underestimated;
 – Student and Fisher criteria lose their meaning.
 Violation of A.4 condition leads to the LS estimates losing important properties.
 Violation of A.5 non-confl uence condition leads to a bias, an underestimation of the variance estimates, and a loss of 
consistency of the parametric estimates. Confl uent analysis solves the same problem as regression analysis provided that the 
accuracy condition of the input variables is violated.
 Violation of the A.6 unboundedness condition causes the phenomenon of stochastic multicollinearity known in cos-
mology as “degeneration of the ΛCDM model” [26, 27]:
 – the addition or exclusion of even one sample can lead to a strong change in the parametric estimates of the regres-
sion model and a sharp decrease in the accuracy of prediction according to the model;
 – a numerical instability of the estimation procedure resulting from rounding errors and their accumulation appears;
 – the parameters of the regression model turn out to be highly correlated, thus making interpretation meaningless;
 – the variances of model parametric estimates increase sharply;
 – the application of signifi cance criteria becomes unreliable, since the SD values are included in the formulas of the 
signifi cance criteria.
 An explicit violation of the unboundedness condition is given directly in the tables of the fi nal results [3, 18]: inde-
pendent parametric estimates for the ΩM “dark mass” and the ΩΛ “dark energy,” having not yet received a satisfactory phys-
ical interpretation, diverged signifi cantly until they were limited by the Ωk + ΩΛ = 1 condition. This condition was adopted in 
order to agree with the so-called “fl at Universe” concept, which followed, in turn, from the interpretation within the frame-
work of the ΛCDM model for the angular power spectrum of the microwave background radiation [28].
 A.8 adequacy condition is related to the fact that, in regression analysis, the optimality of the data approximation by 
a model with an increase in its order or complexity in terms of the number of parameters or representation members depends 
not only on the accepted signifi cance level of the difference between the remainders from zero [1], but also on the statistical 
criterion used.
 At the same time, in regression analysis, the concept of “adequacy” in connection with “ordinary” remainders was 
transformed into two concepts – “pure error” and “lack-of-fi t” [22]: if the parameters of the model are determined, then the 
value of the Yi

* output variable calculated by the model given the value of the Xi input variables is called the “predicted value.” 
Then, introducing the ηi = MYi expected value of the “true” model, the remainder is divided into the Bi bias error and the qi 
random variable with zero mean, equal to

Bi = ηi – MYi
*;     qi = (Yi – Yi

*) – (ηi – MYi
*).

 And if the model is correct (in fact, this is the result of averaging or smoothing), then [22]

MYi
* = ηi;     Bi = 0,
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otherwise
MYi

* ≠ ηi;     Bi ≠ 0,

 In other words, the “predicted value” in regression analysis has lost its direct meaning, while in the theory of mea-
surement problems the lack-of-fi t error of the model for the measured object is really defi ned as the error of model prediction 
in the crossover observation scheme – the extrapolation error [10–12].
 The incompleteness of a model leads to a shift in remainders, while its redundancy results in overestimating the 
variances of parametric estimates [6, 15].
 It seems that the A.8 goodness-of-fi t condition is always violated.
 The seven-year report of the WMAP experiment [24] noted that the introduction of one or two additional parameters 
of the ΛCDM model increases its accuracy by 90–300% with the SD of the H0 estimates increased by 1.28–6 times.
 The special requirements for the model of cosmological distance scales, based on the redshift as an argument to the 
photometric distance function, include the absence of a zero point and monotonicity. At the same time, the transition from 
“decelerating to accelerating expansion of the Universe” should be accompanied, at least, by a change in the parameters of 
the scale model, the so-called “disorder” [29] called the “cosmic push” [30]. However, in [3, 18] for Λk = 0, the estimates of 
the Hubble parameter for the Friedman–Robertson–Walker model

 DL(z) = (c/H0)(1 + z)∫
0

z
[(1 + x)2(1 + ΩM) – ΩΛx(2 + x)]–1/2dx (2)

were below the Planck Collaboration estimates and did not cause problems. The corresponding initial data are presented in 
Table 1, where the μ distance moduli are replaced by DL = 100.2μ–5 photometric distances [3]; SN Ia supernovae with the same 
rank numbers of redshifts and photometric distances are shown in bold. The characteristics of the remaining supernovae do 
not form a monotonically increasing sequence, i.e., a rank inversion of the photometric distance estimates relative to the red-
shift estimates takes place.
 The physical interpretation of rank inversion is associated with the properties of a random function with a space-time 
trend and signifi cant errors in estimates of the relationship between redshift and photometric distance having a multiplicative 
nature [7, 24]. Therefore, it makes sense to consider the problem of calibration of the Friedman–Robertson–Walker model not 
as a regression problem, but as a confl uent analysis problem with all the ensuing consequences. The most negative of them 
involve bias, underestimation of variance estimates, and loss of consistency of model parameter estimates.
 These consequences are indicated in the discussion [4, 5, 9, 31]. The latter of the mentioned consequences of the 
non-confl uence condition violation corresponds not only to the discrepancy between the estimates of the Hubble parameter in 
the Friedman–Robertson Walker model and the ΛCDM model, but also their total scattering from (61.4 ± 1.3) to (91.8 ± 5.3) 
km·s–1·Mpc–1 [7].
 The problem of rank inversion in confl uent analysis is referred to as an important “case, when, performing single 
observations, either there is a rule for dividing the measurement results of the input quantities into groups, regardless of the 
measurement errors, or the order of increasing true values of the input quantities is known” [32]. A more defi nite general 
conclusion was made in [33]: “an LS estimate exists if the data and approximating functions have similar qualitative charac-
teristics (positivity, monotonicity, convexity, etc.).” However, these limitations do not solve the problem of applicability of 
statistical methods in non-confl uence conditions [34].
 Cross-sectional observation scheme. Until the shortest proof of the theorem on the expected value of the modulus 
of the difference of a random variable and its position parameter (the theorem on the modular criterion) had been obtained, as 
well as the lemma on the kappa-criterion for the reproducibility of the probability distribution density [35, 36], two facts were 
out of sight of metrologists:
 – the Kolmogorov distance between distribution functions is the basis of the only goodness-of-fi t criterion that has a 
strict probabilistic meaning – the area of intersection of the probability distribution densities at a single point of their intersec-
tion; this meaning is preserved when the criterion is generalized to the case of a fi nite number of intersections;
 – the distance in the Feller variation [37] is reduced by a linear transformation to the goodness-of-fi t probability and 
the kappa-criterion [35].
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TABLE 1. SN Ia Supernovae Rank Table According to [3, 18–20]

SN Ia Source z Rank DL, Mpc Rank D SN Ia Source z Rank DL, Mpc Rank D

1995D [3]* 0.008 1 39.99447498 1 HST04Haw [19, 20] 0.490 61–62 3221.068791 75

1995E [3]* 0.012 2 52.48074602 2 1996cg [18] 0.490 61–62 2322.736796 50

1992al [3]* 0.014 3 60.81350013 3 1996ci [18] 0.495 63 2051.162179 44

1994S [3]* 0.016 4–5 71.44963261 5 1995as [18] 0.498 64 3006.076303 69

1995bd [3]* 0.016 4–5 67.60829754 4 1997cj [3]** 0.50 65 3019.95172 70–71

1992bo [3]* 0.018 6 87.90225168 6 HST05Zwi [19, 20] 0.521 66 2570.395783 60–61

1992bc [3]* 0.020 7 94.18895965 7 2002hr [19, 20] 0.526 67–68 4130.47502 86

1995ak [3]* 0.022 8 107.1519305 8 1997H [18] 0.526 67–68 2570.395783 60–61

1994M [3]* 0.024 9 119.6740531 11 1997L [18] 0.550 69 2884.031503 66

1993H [3]* 0.025 10 109.6478196 9 1996I [3]** 0.57 70–71 3564.511334 80

1992P [3]* 0.026 11–12 141.9057522 12 1996cf [18] 0.570 70–71 2594.179362 62

1992ag [3]* 0.026 11–12 118.5768748 10 1997af [18] 0.579 72 2924.152378 67

1996C [3]* 0.028 13 157.0362804 13 1997F [18] 0.580 73 2844.461107 65

1994T [3]* 0.036 14–15 172.9816359 14 1997aj [18] 0.581 74 2421.029047 53

1992bg [3]* 0.036 14–15 178.6487575 15–16 1997K [18] 0.592 75 4168.693835 87

1992bl [3]* 0.043 16 178.6487575 15–16 1997S [18] 0.612 76 3019.95172 70–71

1992bh [3]* 0.045 17 240.9905429 20 1995ax [18] 0.615 77 2398.832919 52

1995ac [3]* 0.049 18 234.4228815 19 1997J [18] 0.619 78 3341.950400 78

1990af [3]* 0.050 19–20 202.3019179 17 1996H [3]** 0.62 79 3944.573021 84

1993ag [3]* 0.050 19–20 229.0867653 18 HST05Dic [19, 20] 0.638 80 3784.425847 81

1993O [3]* 0.052 21 254.6830253 21 2003be [19, 20] 0.640 81 3999.447498 85

1992bs [3]* 0.063 22 332.6595533 22 1995at [18] 0.655 82 2500.345362 57

1992ae [3]* 0.075 23 363.0780548 24 1996ck [18] 0.656 83 3090.295433 73–74

1992bp [3]* 0.079 24 338.8441561 23 1997R [18] 0.657 84 3388.441561 79

1992br [3]* 0.088 25 438.5306978 25 2003bd [19, 20] 0.670 85 4345.102242 89

1992aq [3]* 0.101 26 480.8393484 26 2002kd [19, 20] 0.735 86 4246.195639 88

1996ab [3]* 0.125 27 633.8697113 27 HST04Rak [19, 20] 0.740 87 4742.419853 90

1997I [18] 0.172 28 762.0790100 28 1997G [18] 0.763 88 3854.783577 83

1997N [18] 0.180 29 816.5823714 29 1996cl [18] 0.828 89 3801.893963 82

2002kc [19, 20] 0.216 30 1164.126029 30 1997ap [18] 0.830 90 3265.878322 77

1996J [3]** 0.30 31 1887.991349 38–39 HST05Spo [19, 20] 0.839 91 4897.788194 91

1997ac [18] 0.320 32 1412.537545 32 2003eq [19, 20] 0.840 92 5420.008904 94

1994F [18] 0.354 33 1949.844600 40–41 HST04Man [19, 20] 0.854 93 6194.410751 96

HST04Kur [19, 20] 0.359 34 1761.976046 36 2003eb [19, 20] 0.900 94 5345.643594 92–93

1994am [18] 0.372 35 1729.816359 35 2003XX [19, 20] 0.935 95 6223.002852 97

1994H [18] 0.374 36–37 1348.962883 31 2002dd [19, 20] 0.950 96 6251.726928 98
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 The identifi cation of mathematical models of dependencies between physical and calculated quantities as a mapping 
of the function and arguments of the cause-and-effect relationship between them differs from the approximation of the rela-
tionship between the series of named numbers, even those having a physical meaning. The fundamental difference is that the 
properties of the parametric estimates and the models themselves should be preserved not only for intermediate values of the 
arguments, but also in a certain area outside the observation interval, when the model is extrapolated.
 This distinguishes prediction (in the full sense of the word) from statistical averaging (smoothing), the results of 
which are called “predicted values.” Therefore, the errors of extrapolation are determined not only by the statistical dispersion 
of the output variable of the model, but also by the errors of the input variables. In this sense, it is the extrapolation errors that 
are a more complete characteristic of the model’s lack-of-fi t rather than its remainders or approximation errors. Thus, algo-
rithms for parametric identifi cation of regression analysis in the scheme of lack-of-fi t error cross-sectional observation serve 
for solving confl uent analysis problems. The resulting additional component of the model error naturally takes into account 
the unobservable component of the input variable error.
 It is crucial that, in the calibration problem, the difference between the mean modulus of the lack-of-fi t error 
(MMLFE) and the mean absolute deviation (MAD) of the remainders characterizes errors due to the discrepancy between the 

SN Ia Source z Rank DL, Mpc Rank D SN Ia Source z Rank DL, Mpc Rank D

1997O [18] 0.374 36–37 2937.649652 68 2003es [19, 20] 0.954 97–98 7244.359601 101

1994an [18] 0.378 38 2004.472027 43 HST04Tha [19, 20] 0.954 97–98 5888.436554 95

1996K [3]** 0.38 39 2118.361135 46 1997ck [3]** 0.97 99–100 7555.922277 102

1995ba [18] 0.388 40 1949.844600 40–41 HST04Pat [19, 20] 0.970 99–100 8590.135215 107–108

1995aw [18] 0.400 41 1674.942876 34 HST04Omb [19, 20] 0.975 101 6950.243176 100

1997am [18] 0.416 42 1853.531623 37 HST05Str [19, 20] 1.010 102 8994.975815 110

1994al [18] 0.420 43 2228.435149 47–48 HST04Eag [19, 20] 1.020 103–104 8016.780634 105

1994G [18] 0.425 44 1506.607066 33 HST05Fer [19, 20] 1.020 103–104 6280.583588 99

1997Q [18] 0.430 45 1887.991349 38–39 HST05Gab [19, 20] 1.120 105 8590.135215 107–108

1996E [3]** 0.43 46–48 2228.435149 47–48 2002ki [19, 20] 1.140 106–107 8749.837752 109

1996U [3]** 0.43 46–48 3235.936569 76 HST04Gre [19, 20] 1.140 106–107 7726.805851 103

1996cn [18] 0.430 46–48 2454.708916 54–55 HST05Red [19, 20] 1.190 108 5345.643594 92–93

1997ce [3]** 0.44 49 2454.708916 54–55 HST05Koe [19, 20] 1.230 109–110 10814.33951 117

1996cm [18] 0.450 50 2546.830253 59 HST05Lan [19, 20] 1.230 109–110 9862.794856 113

1997ai [18] 0.450 51–52 2108.62815 45 2003az [19, 20] 1.265 111 8472.274141 106

1995az [18] 0.450 51–52 2301.441817 49 2002fw [19, 20] 1.300 112 10280.16298 115

1995aq [18] 0.453 53 2477.422058 56 2002hp [19, 20] 1.305 113 7979.946873 104

1992bi [18] 0.458 54 1986.094917 42 2003aj [19, 20] 1.307 114 9954.054174 114

HST04Yow [19, 20] 0.460 55 2792.543841 64 2003dy [19, 20] 1.340 115 9638.290236 112

1995ar [18] 0.465 56 2606.153550 63 HST04Mcg [19, 20] 1.370 116 11117.31727 118

1997P [18] 0.472 57 2387.811283 51 HST04Sas [19, 20] 1.390 117 9549.92586 111

2002dc [19, 20] 0.475 58 3076.096815 72 2002fx [19, 20] 1.400 118 11376.27286 119

1995K [3]** 0.48 59–60 3090.295433 73–74 2003ak [19, 20] 1.551 119 10327.61406 116

1995ay [18] 0.480 59–60 2523.480772 58 1997ff [19, 20] 1.755 120 11748.97555 120
* SN Ia sample with small redshift values; ** SN Ia sample with large redshift values; the moment of “push” corresponds to SN 1997G.
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measurement plan and the extrema of the systematic component of the model – the lack-of-fi t error of the measurement plan. 
In the case of a cosmological distance scale based on the redshift attributed to SN Ia supernovae according to the redshift of 
the “parent” galaxies, the role of the measurement plan is played by the order of sampling, which, of course, is not balanced 
by chance. And this component of the model error in the calibration problem without a cross-over observation scheme re-
mains unobservable.
 The conducted analysis [7, 24, 38] of data samples on SN Ia supernovae [3, 18–20, 39] for model (2) and its repre-
sentations by Taylor’s formula or power polynomial (1) showed the following.
 1. All samples are compositionally inhomogeneous and each sample separately forms a nonzero zero-point, which 
can be excluded by combining data samples as a result of increasing the MMLFE.
 2. In the absence of a zero-point, the best combination according to the criterion of the minimum MMLFE is formed 
by data [3, 18] in the
 2L(l, b, z) = (c/H0)[(1 + abb)z + 0.5(1 – q0)(1 + all)z

2], (3)

where ai = 2.568655129·10–3, ab = 2.027311498·10–3 are the anisotropy coeffi cients in galactic coordinates (l, b); H0 = 
= 60.80404234 km·s–1·Mpc–1, q0 = –0.14378664 deceleration parameter [38].
 The model is insensitive to the SN Ia 1997ck outlier at z = 0.97 (see Table 1) and is structurally similar to the 
Heckman representation [40]:
 DL = (c/H0)[z + 0.5(1 – q0)z

2]. (4)

 For all the data in Table 1, the model of optimal complexity in the class of three-dimensional polynomials not higher than 
the 3rd degree at MMLFE = 519.40485 Mpc is the anisotropic MCLS model (MC – maximum compactness method) (Fig.1):

DL = (c/H0)[(1 + ab)z + 0.5(1 – q0)z
2],

where H0 = 53.7096422 km·s–1·Mpc–1; ab = –7.408153677·10–4 is the coeffi cient of anisotropy in galactic latitude (corre-
sponding to the polar dipole in galactic transparency windows); q0 = 0.9993918367.
 3. The remainders of model (2) according to the data [3, 18] at the ΩM = 0.24, ΩΛ = 0.76 values of the parameters 
reach the minimum MMLFE = 113.4913127 Mpc with the estimate H0 = 65.2 km·s–1·Mpc–1 [42]. But at ΩM = 0.28, ΩΛ = 0.72 

Fig. 1. Anisotropic MСLS-model (Y – DL, X1 – z, X2 – b) for data [3, 18–20] built in the program “MMK- stat M ”[39]; the blue 
circle shows the moment of the redshift “cosmic push” according to [18], red arrows denote the most signifi cant inversions.
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with the estimate H0 = 63.0 km·s–1·Mpc–1, its MAD = 460.3806527 Mpc, and with the estimate H0 = 70.0 km·s–1Mpc–1 – 
MAD = 1759.828986 Mpc, which confi rms the suspicions [3].
 4. The transition to a model with the push parameter j0 [5]:

 DL(z) = (c/H0)[z + (1 – q0)z
2/2 – (1 – q0 – 3q0

2 + j0)z
3/6] (5)

led to an estimate of H0 = 73.24 km·s–1·Mpc–1, which became the reason for discussions about the crisis in cosmology at the same 
time as denying the results of 1998–1999. However, model (3) with MMLFE = 247.72842 Mpc and MAD = 226.03539 Mpc 
showed that model (5) is redundant [41, 42].
 5. The parametric identifi cation by the least absolute deviation method (LAD) of the interpolation model with the 
shape parameter α [43]:
 DL(z) = α(c/H0)[(1 + z)1/α – 1] (6)

gave an unexpected result: at α = 0.499160639 ≈ 1/2, H0 = 77.2924661 km·s–1·Mpc–1 the MAD of the model remainders was 
278.32 Mpc. But for α = 1/2, the photometric distance is defi ned as

 DL (z) = α(c/H0)[(1 + z)1/α – 1]α=1/2 ≡ (c/H0)[z + z2/2], (7)

and there is a strict coincidence with model (4) at q0 = 0.
 6. The verifi cation of the structural-parametric identifi cation of model (7) by the algorithms without taking into ac-
count the “disorder” gave the following estimates:

 H0 = 74.01766727 km·s–1·Mpc–1; MMLFE = 2252.901035 Mpc; MAD = 276.4261897 Mpc for MCLS;

 H0 = 73.48214569 km·s–1·Mpc–1; MMLFE = 466.1801294 Mpc; MAD = 276.3335578 Mpc for MCLS.

 7. Only the random (observed) component of the error or the residuals of the considered variants of the Friedman–
Robertson–Walker model as a function of the photometric distance is of a multiplicative nature, which on average is more 
than 10% [24], that is, as a percentage, an order of magnitude more than is accepted in works of the discussion groups. And 
the reason for this state of affairs is in the properties of the weighted average.
 8. The “disorders” of the models, although they are expressed by changes in the parameters and structure of the 
characteristics of the position of the models, are accompanied by the rank inversion of the data on the redshift and photometric 
distance, which makes the most signifi cant contribution to the MMLFE model.
 Otherwise, it should be recognized that the photometric distances to supernovae SN Ia were determined with large 
errors, since, for this, the problem of reconstructing their luminosity curves from discrete data was solved to fi nd the luminos-
ity maximum, and this is another problem of the same confl uent analysis. As a result, photometric distances are determined 
by the method of indirect measurement, and a reasonable question arises about the lack-of-fi t errors of the models and formu-
las for distance modules used for this.
 Conclusions. The discrepancy between the estimates of the Hubble parameter within the framework of the so-called 
“normal law” is, most likely, a purely external manifestation of the real reasons for the “dead end” in cosmology. However, the 
rank inversion of the data on the redshift and distance to extragalactic objects should have been qualitatively evident at least 
since 1929. Nevertheless, the fundamental result of works on the “accelerating expansion of the Universe” [3, 18] and “ex-
traordinary proofs” of its existence [19, 20] – rank inversion – takes place in the data on redshift and photometric distances. 
This is a direct illustration of the fact that the redshift scale in cosmology has no status of either a metric or an ordinal scale.
 In other words, at the maximum luminosity, brighter SN Ia supernovae, which are attributed to a larger redshift of 
the host galaxies, may actually be closer than those supernovae with a lower redshift. Therefore, due to the importance of rank 
inversions as “extraordinary evidence,” the data for 2004–2007 appears to be doubtful.
 Most likely, there will be no “dead ends” in cosmology. However, it makes sense to pay attention to the problems 
concerning applicability of mathematical statistics and metrology in the problem of calibrating the cosmological distance 
scale, as well as to the lack-of-fi t problem of mathematical models.
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