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GENERAL PROBLEMS OF METROLOGY AND MEASUREMENT TECHNIQUE

DEFINITIONAL UNCERTAINTY AND ERROR OF INADEQUACY

S. F. Levin UDC 389.14.53.083

An interpretation of defi nitional uncertainty as a scattering parameter (standard deviation) of the contour 
estimate of the error of inadequacy is given for the equations of the method of indirect measurement. The 
problem of calibration of a thermometer from the Guide to the Expression of Uncertainty in Measurement 
is considered. In solving the calibration problem, an estimate of the defi nitional uncertainty obtained this 
way amounts to 74.1% of the standard uncertainty of the corrections.
Keywords: error of inadequacy, defi nitional uncertainty, reliability, confi dence probability.

 On April 19, 2017, the Federal Service of Accreditation of the Russian Federation approved the Guide for Applicants 
and Accredited Individuals for the Creation of Domains of Accreditation of Calibration Laboratories with Allowance for 
Uncertainty. There is no mention in the Guide of All-Russia State Standard GOST R 54500 3–2011/Guide ISO/MEK 98-3–
2008, Measurement Uncertainty. Part 3. Guide to the Expression of Uncertainty in Measurement (GUM), or of the similarly 
titled GOST 34100.3–2017. However, in the course of accreditation calibration laboratories are assigned the task of express-
ing measurement capabilities “in accordance with GUM,” i.e., whether in accordance with [1] or with the English-language 
original and, moreover, with allowance for the precision of the standards employed on the basis of the recommendations of 
the measurement chains. It is also necessary to specify the minimal values of the expanded uncertainty of measurements in 
calibration obtained by multiplication of the standard uncertainty by the conformance factor k = 2 corresponding to a confi -
dence level of approximately 95% under the assumption of a normal distribution.
 In fact, the measurement equation
 Y = F(X1, ..., XN) (1)

is the subject of the study [1], where Y is the desired quantity, or output variable and F(·) a given functional dependence or 
mathematical model of the measurement object; the values of the input variables X1, ..., XN are obtained in measurements or 
from outside sources.
 As a result of a calibration of a measurement instrument an equation of form (1) must represent, by RMG 28–2013, 
State System for Ensuring the Uniformity of Measurements (GSI). Metrology. Basic Terms and Defi nitions, a calibration curve, 
where Y and X1 are the corrected value and the measured value, respectively, of a measurable quantity, while the other input 
variables are auxiliary quantities needed for construction of the calibration curve F(·). The requirements associated with the 
minimal value of the expanded uncertainty of measurements in calibration must be referred to the calibration diagram.
 By [1] (sec. 3.3.2), “in actual practice, there exist many possible sources of uncertainty in measurement, including: 
(a) incomplete determination of a measurable quantity; (b) imperfect realization of a measurable quantity; (c) nonrepresenta-
tive sample – the measured model may not represent a defi nite measurable quantity; (d) inadequate knowledge of the effects 
of environmental conditions that infl uence the measurement or imperfect measurement of the environmental conditions; 
(e) a subjective systematic error of the operator or in taking the readings of similar devices; (f) fi nite resolution of a device or 
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fi nite sensitivity threshold; (g) inaccurate values assigned by the standards used in the measurements and by standard samples 
of substances and materials; (h) inaccurate values of constants and other parameters obtained from outside sources and used in 
the data processing algorithm; (i) approximations and assumptions used in the measurement method and in the measurement 
procedure; (j) variations in repeated observations of a measurable quantity under clearly identical conditions. These sources 
are optionally independent, and some of the sources in the list from (a) to (i) may introduce a contribution to source (j). Of 
course, an unknown systematic effect cannot be taken into account in an estimate of the uncertainty of the result of measure-
ments, though it may introduce a contribution to its error.”
 The main point in [1] (sec. D.1.1) concerning the quantitative measure of “inadequacy” is that “The fi rst step in 
performing a measurement is to decide on the measurable quantity, i.e., the quantity which is to be measured. A measurable 
quantity thus cannot be determined in terms of some value but only in terms of its description. In principle, however, a com-
plete description of a measurable quantity requires an unlimited amount of information. Incompleteness of the description of 
a measurable quantity leaves room for different interpretations and, thus, introduces into the uncertainty of the result of a 
measurement a component that may be, and, in fact, may not be signifi cant by comparison with the precision required of the 
measurement. ... At any level of specifi cation of a determination of a measurable quantity, the latter will possess an inherent 
uncertainty that, in principle, may be estimated in one way or another. This uncertainty characterizes the extreme accuracy 
with which a measurable quantity may be known and every measurement in which such uncertainty is attained may be con-
sidered the best possible measurement of the given quantity. In order to obtain a result of a measurement with lesser uncer-
tainty, it will be necessary to determine the measurable quantity with greater completeness.”
 In a comment on this point it is stated that “although a measurable quantity must be determined in suffi cient detail in 
order that any uncertainty caused by incompleteness of its determination be negligibly small by comparison with the required 
measurement precision, it must be acknowledged that this is not always practical (i.e., realized in practice – revision to GOST 
R 54500.3–2011).”
 Moreover, in GOST 34100.1–2017/ISO/IEC Guide 98-1:2009, Uncertainty in Measurement. Part 1. Introduction to 
Guide to the Expression of Uncertainty in Measurement, it is stated:
 “7.2.3. For many measurement situations reliable results are obtained by the method used to calculate uncertainty 
based on GUM [cf. JCGM 100 (sec. 5)]. If the measurement function is linear relative to the input quantities and if these quan-
tities are distributed by a normal law, the method used to estimate uncertainty on the basis of GUM yields exact results [cf. 
JCGM 101 (5.7)]. But even if these conditions are not observed, the method may function well enough in practice [cf. JCGM 
101(5.8)].
 7.2.4. However, there exist measurement situations for which the method of estimation of uncertainty based on GUM 
cannot be considered satisfactory. This is particularly the case if (a) the measurement function is nonlinear; (b) the probability 
distributions for the input quantities are asymmetric; (c) |c1|u(x1), ..., |cN|u(xN) yield a contribution to uncertainty (cf. 4.14) 
that are not quantities of roughly the same order of magnitude [cf. JCGM 100 (G.2.2)]; (d) the probability distribution for 
the output quantity is either asymmetric or differs substantially from a normal distribution or t-distribution. Sometimes it is 
diffi cult to decide in advance whether a given measurement problem permits the use of a GUM-based method of estimation 
of uncertainty.”
 But at least one of the conditions (a)–(d) will always be satisfi ed in practice [2]. This special case at once acquired the 
name , “drama of inadequacy” [3], since, relative to reliability, it is known that the conformance probability, confi dence level, 
and confi dence probability are not all the same [4]. The problem is that no individual specifi c method (let alone a principle) of 
estimation of “inherent” uncertainty was specifi ed. It was supposed that uncertainty due to incompleteness of determination 
of a quantity, i.e., an equation of form (1), is negligibly small by comparison with the required measurement precision, a risky 
preposition which a calibration laboratory cannot dispense with (in view of the above Guide for Applicants and Accredited 
Individuals of April 19, 2017).
 Thus, there arose the problem of defi nitional uncertainty under extremely strange formulations that lack any real 
solution, a problem that also became central for the Guide [1]. At the same time, the compositional approach of R 50.2.004–
2000, GSI. Determination of the Characteristics of Mathematical Models of Relationships between Physical Quantities in the 
Solution of Measurement Problems. Basic Assumptions, represents an alternative feature-based approach to estimation of the 
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precision of solutions of measurement problems based on the error of inadequacy for models of type (1). In fact, defi nitional 
uncertainty and error of inadequacy relate to the same property of the measurement equation (1) in the basic measurement 
problem of the Guide [1] which, from the qualitative point of view, is directly related to the analytic expression of this equa-
tion and is referred to as “inadequacy.”
 Defi nitional uncertainty and inadequacy. The term “defi nitional uncertainty” does not occur in [1] or in its English-
language original, but there exists the word “defi nition” [1] (sec. 3.1.3), the Russian-language term “neadekvatnost” [1] (sec. 
4.1.2), and the English-language term “inadequacy” in the original. Nevertheless, detailed explanations are presented in [1].
 In the fi rst place, “since a mathematical model may be incomplete, ranges of variability of the infl uencing quantities 
corresponding to what occurs under practical measurement conditions must be available in order to estimate uncertainty on 
the basis of observation data. In order to obtain reliable estimates of uncertainty, it is recommended that, if at all possible, 
empirical mathematical models based on long-term measurements of quantitative quantities should be used. Comparison stan-
dards and control charts in order to decide whether a measurement is under statistical control should also be used. If the data 
of observations, including results of statistically independent measurements of one and the same measurable quantity, attest 
to incompleteness of the model, the model must be reviewed. The reliability of estimates of uncertainty may be substantially 
improved with the use of well-designed experiments, hence experimental design must be considered an important component 
of the technique of performing measurements” [1] (sec. 3.4.2). But in the theory of experimental design adequacy or inade-
quacy is considered as the conformance of nonconformance to some statistical criterion at a given signifi cance level.
 Secondly, a number of revisions are given in [1], Appendix G:
 “G.1.4. If the probability distributions of the input quantities X1, X2, ..., XN (their mathematical expectations and 
variance and, if these quantities are not normal, moments of higher orders (cf. C.2.13 and C.2.22)) on which the measurable 
quantity Y depends are known and if Y is linear function of the input quantities, Y = c1X1 + c2X2 + ... + cNXN, the probability 
distribution of Y may be obtained by a convolution of the probability distributions of the input quantities (cf. [5]1). Thus, the 
values kp forming intervals with specifi ed confi dence level p1 may be calculated from this convolution.
 G.1.5. If the functional relationship between Y and the input quantities is nonlinear and if the limitation to terms of 
fi rst order of an expansion in a Taylor series of this relationship cannot be considered an acceptable approximation (cf. 5.1.2 
and 5.1.5), the probability distribution of Y is not a convolution of distributions of the input quantities. In such cases other 
types of analytic or numerical methods of calculation must be used.”
 Thirdly, however, “in actual practice a convolution procedure in the calculation of intervals with given confi dence 
levels is not used or used extremely rarely because of the following reasons: the parameters of the distribution of the input 
quantity are usually not known precisely and are only estimates; it is not easy to expect that the confi dence level for a given 
interval may be known with a high degree of precision; and implementation of this procedure is complicated from the math-
ematical point of view. In addition, approximations based on the Central Limit Theorem are used” [1] (sec. G.1.6).
 Obviously, we are considering only the methods of [5] and “other analytic or numerical methods of calculation” 
known to developers [1], moreover, verifi cation of the conditions of applicability of the Central Limit Theorem is hardly open 
to question.
 The essence of the special case of the “drama of uncertainty” is set forth in the dictionary [6] (sec. 2.27) with the use 
of new terms as follows: “the uncertainty of the very defi nition of a measurable quantity (defi nitional uncertainty) establishes 
a minimal limit of uncertainty of measurements.” But it is precisely the absence of any indication of a particular method of 
estimation of the minimal limit of “inherent” uncertainty that turns “measurement uncertainty” into an unknowable and un-
known quantity.
 The above minimal level of uncertainty of a measurement belongs exclusively to the description of the quantity 
Y = F(X1, ..., XN) and is not related to the uncertainty of measurements of the arguments of Eq. (1) that may be performed in 
the course of solving a measurement problem in [1]. And since by [1] (sec. D.1.1) “in principle, a measurable quantity may 
be completely described only where there is an unlimited amount of information,” this means that defi nitional uncertainty of 
any mathematical model always exists and that the signifi cance of defi nitional uncertainty by comparison with the required 

1 Here and below, the enumeration of the sources in the citations were changed in accordance with the list of references to the present article.
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precision of the result of the solution of a measurement problem must always be verifi ed. But it is precisely this which is 
missing from [1] and from the scheme of the revision [7]. Moreover, in [1], despite its claim in sec. 3.4.8 regarding “critical 
thinking and intellectual integrity and competence,” it is not only “inherent” uncertainty which is considered to be negligibly 
low by comparison with the other components of measurement uncertainty, but also the desired quantity in the basic measure-
ment problem, which is assumed to be uniquely defi ned.
 However, the principal problem [1] is stated thus: “true value” and “error” are declared to be highly likely unknow-
able and unknown. And in the international dictionary VIM-3 [6] certain terminological improvements appear deus ex ma-
chine. Whereas in [1] the method of substitution and the differential and null methods are classifi ed as measurement methods, 
in [6] this list is complemented with the method of direct measurement and method of indirect measurement, with the latter 
coinciding with the method of solving the basic measurement problem [1] by means of Eq. (1).
 A number of circumstances spoil the pattern of “coincidence.” By [6] (sec 2.1) a “measurement is a process of ex-
perimental derivation of one or more values of a quantity, all of which may be justifi ably assigned to a quantity,” while by 
RMG 29–2013, GSI. Metrology. Basic Terms and Defi nitions, in Comment 1 to the term “4.19 direct measurement” it is noted 
that “strictly speaking, a measurement is always a direct measurement.” And it is not clear what is more important in RMG 
29–2013 – a remark or a defi nition.
 But neither the “method of indirect measurements” nor, even more so, the “indirect method of measurement” (cf. [6], 
sec. 2.1, Remark 1) are measurement methods, since they contain a nonexperimental procedure for deriving a computed value 
of the output variable of a mathematical model (1) from the data of measurements of the input variables. A computational “ex-
periment” by the Monte-Carlo method is a nonexperimental procedure when the lack of data is compensated for by a conjecture 
concerning these data. Nevertheless, “Use of a method of estimation based on GUM is complicated in the search for partial 
derivatives (or their numerical approximations) for a complex model of measurements, which is necessary for application of 
the law of transformation of uncertainties, particularly if it is necessary to calculate derivatives of higher orders (cf. JCGM 
100 (sec. 5). In such cases the Monte-Carlo method is more appropriate and easier to use (cf. sec. 7.4)” [1] (sec. 7.2.5).
 Without mentioning problems of sensors of pseudorandom numbers, let us again recall that the Monte-Carlo method 
is not a true source of measurement data.
 “Analytic methods by means of which an algebraic formula for the probability distribution of an output quantity may 
be obtained do not contain any approximations but may be used only in comparatively simple cases. The potential to be 
gained from the use of such methods is demonstrated in [8. 9]. Among the measurement problems for which an analytic der-
ivation is possible, there are problems where the output quantity is a linear function N of the input quantities ... which are all 
distributed by a normal law or by a rectangular law with the same set of boundaries. An example for two quantities ... with 
rectangular probability distribution which yield a trapezoidal distribution of the output quantity (cf. [5]) ...) [1] (sec. 7.3.1). 
But analytic formulas for probability distributions have their own uncertainty and the physical sense and method of identifi -
cation of this uncertainty are not disclosed in [1] or even mentioned. This component of the error of inadequacy may also be 
identifi ed by the method of contour estimation by MI 2916–2005, GSI. Identifi cation of Probability Distributions in the 
Solution of Measurement Problems. And the claims [1] of several “generally recognized interpretations of probability” (more 
than four are known today) do not suddenly explain anything.
 Though, conceptually speaking, defi nitional uncertainty is a standard deviation, it should be recalled that uncertainty, 
in the broad sense, is a probability distribution and, in the narrow sense, a scattering parameter of the same distribution [10]. 
Moreover, it is not the “variance of an observable quantity which is an appropriate measure of the uncertainty of the result of 
a measurement, but rather the variance of the arithmetic mean of a sample of observations. It is necessary to clearly distin-
guish the variance of the random variable z and the variance of its arithmetic mean z” [1] (sec. C.3.2). And the question arises, 
can a known scheme for determining the error of inadequacy be used to estimate an uncertain defi nitional uncertainty?
 Error of inadequacy of a mathematical model. Practically simultaneously with the publication of the translation 
[1], recommendations related to metrology R 50.2.004–2000 were introduced that presented a defi nition of the terms “mea-
surement problem” and “error of inadequacy,” a classifi cation of methods of solution of measurement problems was specifi ed, 
and methods and criteria for statistical identifi cation of errors of inadequacy for mathematical models of functional-type 
measurement objects were specifi ed with examples.
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 Traditional criteria for testing hypotheses of suffi ciency of completeness or specifi cation of mathematical models 
were previously considered within the framework of dispersion analysis [11] on the basis of the noncentral distribution χ2 and 
Fisher distribution F [12].
 “Suppose, for example, it is necessary to approximate the experimental points of some curve and we are using for 
the approximation the following form:

 Here ε is the residual error (error of approximation [S. F. L.]) with variance σ2 while we do not know the value of r. 
The criterion F by means of which the signifi cance of the coeffi cient αr is verifi ed is a powerful method for the solution of the 
problem” [12].
 This example illustrates an approach of the theory of experimental design to the concept of the adequacy of mathe-
matical models. In GOST 24026–80, Experimental Design. Terms and Defi nitions, the “adequacy of a mathematical model” 
is defi ned as the “degree of conformance of a mathematical model to the experimental data according to a selected criterion” 
with the remark that “Fisher’s F-criterion is often used to verify the adequacy of a model.” But it is precisely the arbitrary 
choice of level of signifi cance in statistical hypothesis testing of the structure of a model even in the range 0.05–0.1 which is 
a fundamental drawback not only of the Fisher criterion. In this sense, adequacy may exist and, in fact, may not exist. On the 
other hand, the inadequacy of the description of a quantity always exists. And this is closer to the essential nature of defi ni-
tional uncertainty from the point of view of [1] (sec. D.1.1).
 In regression analysis the cross validation scheme is a method of estimating the inadequacy of mathematical models 
that has been used since 1949. It has been considered by M. Kenny, J. Tukey, A. G. Ivakhnenko, H. Akaike, H. Waba, M. Stone, 
B. Efron, V. Ya. Katkovnik, and others. A more effective variant of the scheme based on the relation of the Kolmogorov dis-
tance between probability distribution functions for a trial Ft(x) sample and a control Fc(x) sample of the data of joint mea-
surements with the probability of their conformance relative to the fraction of the intersection of the probability distributions 
ft(x) and fc(x) is used in R 50.2.004–2000 as a measure of reproducibility:

inf
f

ft (x), fc(x){ }dx
−∞

∞

∫ ≡1− 0.5 ft (x)− fc(x) dx x=x0
−∞

∞

∫ ≡1− sup
F

Ft (x)−Fc(x) =1−D(x0 ).�

 Here x0 is the unique point where ft(x0) = fc(x0). Identity is generalized to the case of a fi nite number of points of 
intersection of the densities ft(x) and fc(x), while the control window “1/2” [13] is generalized to “1/(M + 1)” relative to the 
number M of parameters of the model. Thus, models of different degrees of complexity, including models of probability dis-
tribution, may be compared.
 With this variant of the cross observation scheme
 – the remaining portion of a sample may be used as a trial sample for the control windows and for this sample the 
parameters of models of a given structure estimated by given traditional methods, such as the method of least squares (MLS), 
method of least moduli (MLM), method of median interpretation (MMI), and others;
 – the resulting models may be extrapolated to the data of control windows, thus forming an extrapolation functional 
of a model of given structure with given method of estimation of its parameters;
 – from the distribution of the deviations of the data of measurements of an output variable from an extrapolation 
functional, its probabilistic estimate, what is known as the compactness function, may be obtained and the mean modulus of 
the random component of the error of inadequacy (MMEI) and the mean modulus of the error of closure (MMEC) calculated 
as estimates of the nonexcluded systematic component. The dimension of the control window is then related to the prediction 
interval and to the binary code θ of the structure of the model while the number of digits in the code, to a model of maximum 
complexity, while the sum of its units is equal to the number M of parameters of the model.
 Through use of this variant of the cross observation scheme, the question of distance in the Feller variation [14] be-
comes a closed question and the conformance probability is introduced as a “measure (criterion)” of the reproducibility of the 
results of a solution of measurement problems.
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 The error of inadequacy of the mathematical model of a measurement object is defi ned in R 50.2.004–2000 as 
“a computed quantity, or difference of the computed value of the output variable of a model of the object relative to data of 
measurements of the input variables and the results of its measurement under conditions that correspond to the calculation.” 
Based on the original sources, the components of the error of inadequacy of mathematical models of measurement objects are 
divided into three groups – dimensional components, parametric components, and structural components.
 Dimensional components: errors of given measurements of the input variables relative to the output variable; round-
ing errors; errors due to interruptions in the calculations with representation of functions by means of series; errors of trans-
formation of the data of measurements and calculations.
 Parametric (observable) components: errors of approximation by a model of the data of joint measurements due to 
errors of estimation of the parameters of a model based on sample data, parameterization of the variables, and implementation 
of a computational scheme.
 Structural components: errors of prediction; errors of selection of the structure of a model of a functional dependence 
or model of probability distribution; error of selection of method of estimation of the parameters of a model; errors associated 
with discontinuity of functions; errors due to statistical nonuniformity of measurement data.
 These components of the error of inadequacy correspond to the “inherent uncertainty of measurement equations” of 
form (1) in the course of calibration.
 The error of inadequacy of a model of a measurement object is estimated in the course of metrological validation, 
which is the fi rst item in the list of basic problems of metrological appraisal in accordance with the recommendations of RMG 
63–2004, GSI. Assurance of the Effectiveness of Measurements in Control of Production Processes. Metrological Appraisal 
of Technical Documentation.
 By type of mathematical description (constant quantities, known functions, statistical and probabilistic distributions, 
intervals, and discrete sets) and the form of the domain of defi nition of the error of measurements, in accordance with GOST 
8.401–80, GSI. Classes of Precision of Measurement Instruments. General Requirements (sec. 2.3.1), errors of adequacy of 
described by a unifi ed mathematical apparatus.
 For given values of the input variables of a mathematical model of a measurement object, the error of inadequacy 
may be represented as a component of a convolution in accordance with MI 1317–2004, GSI. Results and Characteristics of a 
Measurement Error. Forms of Representation. Methods of Use in Tests of Samples of Products and Control of their Parameters 
(Appendix D) and MI 2916–2005. In the general case, a multidimensional probability distribution of deviations of the data of 
measurements of an output variable Y from the position characteristic of a model constitutes a tolerance zone [15], the bound-
aries of which correspond to a determination of a statistical tolerance (P, γ)-interval found from a general population relative to 
a random sample in such a way that with confi dence probability P not less than a fraction γ of this population is identifi ed [4]. 
The errors of inadequacy of probability distribution functions for these deviations are determined by the method of contour 
estimation in accordance with MI 2916–2005 and in measurement problems P = γ is adopted in accordance with the norms of 
confi dence probability.
 There is a special feature of structuro-parametric identifi cation of models in the function of the number of parame-
ters, i.e., complexity in the sense of Kolmogorov [16]. To a fi rst approximation, the errors of measurements which are only 
supposed to be used for the construction of a functional dependence naturally do not depend on the number of parameters of 
the future model. On the other hand, however, the errors of approximation by a model for a sample of measurement data of 
fi xed size exhibit a tendency to decrease with increasing number of parameters of the model, and when this number is equal 
to the size of the sample, these errors may become equal to zero, whereas under these conditions the errors of prediction ex-
hibit a tendency to increase. Thus, there also arises an “awkward situation” referred to in [1] (sec. 3.4.2) consisting in a test to 
determine “whether a measurement is under statistical control.” As the size of a sample of measurement data increases the 
parameters of the model must be recalculated or the structure of the model supplemented, otherwise new data will be inter-
preted in most cases as outliers. And in this sense the cross observation scheme serves as a natural source of “new” data which 
had not been used for the construction of the model. In fact, in order to obtain reliable estimates of uncertainty it is recom-
mended in [1] (sec. 3.4.2) that “if possible, empirical mathematical models based on long-term measurements of quantitative 
values as well as comparison standards and control charts should be used,” i.e., in accordance with RMG 63–2004 and 
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R 50.2.004–2000, a model of the “measurement equation” (1) must fi rst be validated. This must also be related to the “fi rst 
step in performing measurements” (cf. [1], sec. D.1.1).
 Traditional methods of estimation of parameters (method of least squares, method of least moduli, method of median 
interpretation, etc.) of regression models that disregard inadequacy prove to be methods of “smoothing” of data by means of 
models of order no higher than third order. This is due to the increase in the sensitivity of the model to random deviations, the 
manifestation of multicollinearity, and the appearance of “stray” correlation in the course of data rounding [17]. Therefore, 
a combination of the above traditional methods in R 50.2.004–2000 with the cross observation scheme and modular criteria 
such as the method of maximum compactness (MMC) is denoted by the algorithms MMCMLS, MMCMLS, MCMLM, 
MMCMMI, etc. [18].
 The existence of a model of optimal complexity with structure corresponding to the balance of the parametric and 
structural components of the error of inadequacy is a special feature of the above cross observation scheme. Moreover, the 
MMEI minimum depends on the errors of the data of joint measurements; that is, with increasing measurement error it shifts 
towards models with fewer parameters that are also more primitive, while in the opposite case, to more complex models. 
Meanwhile, complementing a model of optimal complexity may, from the point of view of [1] (sec. 3.4.2), lead only to an 
increase in its error of inadequacy.
 A defi nition of the error of inadequacy as an analog of the “ minimal limit of uncertainty of the description of a 
quantity” desired in a measurement problem, i.e., with defi nitional uncertainty [1], is related to the analytic description of 
mathematical models of measurement objects by functional relationships (by R 50.2.004–2000) and by probability distribu-
tions (by MI 2916–2005) [1].
 Specifi cation. By [6] and RMG 29–2013, “2.27. Defi nitional uncertainty is a component of measurement uncertain-
ty which is the result of limited specifi cation in the determination of a measurable quantity.
 Remark 1. Defi nitional uncertainty is the practical minimum of the uncertainty of measurements in any measurement 
of a given quantity.
 Remark 2. Any change in specifi cation in the determination of a quantity leads to a different defi nitional uncertainty.”
 The defi nition contains undetermined parts that require some explanation from the point of view of the theory of 
measurement problems in accordance with R 50.2.004–2000 and MI 2916–2005.
 1. The binary code of the structure ϑ = ϑ0ϑ1...ϑr...ϑR–1ϑR, for example,

determines a specifi cation of a model y(x) of complexity R.
 2. An exhaustive search of codes yields variants of the structure of the model in the cross observation scheme and for 
a given set of measurement data is directed towards a search for a model with minimal error of inadequacy and model of 
optimal complexity. In the case of several arguments, the situation of the error of inadequacy is complicated exclusively as 
regards the cross observation scheme, in that now the space of input variables must be divided into hypercubes.
 3. In both cases, the logic of statistical inference is preserved: in the method of maximum compactness this presup-
poses successive validation of a system of null hypotheses of degeneracy H0, continuity H00, and compositional uniformity 
H000. Hypothesis H0 corresponds to the absence of any dependence. Hypotheses of nonzero values of the parameters with 
integral nonzero degrees of the input variables are alternative hypotheses. Hypotheses of piecewise-continuous characteristic 
of a position separated by “change points,” where the position characteristic experiences structuro-parametric variation, are 
alternatives to hypothesis H00. A unifi ed model of the position characteristic of an ensemble of the data of joint measurements 
corresponds to hypothesis H000. Hypotheses of a division of a statistical ensemble of the data of joint measurements into 
subsets to each of which a different model of the position characteristic corresponds are alternatives.
 4. A selection of a method of estimation of the parameters of a model represents a specifi cation of a model.
 Let us now turn to the “awkward situation” [1] (sec. 3.4.2), testing whether “measurements are under statistical con-
trol,” a step that requires preliminary metrological validation of “measurement equation” (1) and to the following defi nition 
from the international dictionary [6]: “2.9 (3.1) result of a measurement – a set of values of a quantity assigned by a measur-
able quantity in addition to any other accessible and essential information.
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 Remark 1. ... This may be expressed by the probability density function ...”
 With this hint in mind we are easily led to suspect that the “set of values of a quantity assigned to a measurable 
quantity” is nothing other than the probability distribution.
 In 1925, P. Levy proved that the central difference of the probability distribution function F(x) for the characteristic 
function of the probability density yields, together with the uniform distribution on the interval ±h, the density [19, 20]

 This result is easily generalized for the sum X = Ξ + Ψ of an observable component Ξ with probability distribution 
function F*(ξ) and an unobservable component Ψ on the closed interval [a, b] with probability density function

where 1(ψ) is the Heaviside function.
 And the following equality is valid at the boundaries of the interval of uncertainty:

 We now perform the substitution of variables x – ψ = z, dψ = –dz, obtaining

  (2)

 A contour estimate of the statistical distribution function is a corollary of formula (2), while the closed interval [a, b] 
in the case where, by MI 2916–2005, the Smirnov statistics are used to determine its boundaries, has the sense of an interval 
of uncertainty for the error of inadequacy of the adopted function F*(ξ).
 Recall that Smirnov statistics (the greatest statistic is the Kolmogorov distance) constitute the extreme terms of 
the variational series of the greatest deviations of the characteristic points (accumulated relative frequencies) of the statisti-
cal distribution function from the hypothetical probability distribution function [5]. The contour estimates are discussed by 
A. N. Kolmogorov, H. Cramer, F. P. Tarasenko, and others. These types of estimates of the error of inadequacy of probability 
distributions derived from a worst-case calculation, therefore, will not allow us to consider alternative hypotheses for the 
most plausible distributions, which corresponds to the principles of a confi dence, and not a “realistic” estimation. But with 
the use of an extrapolation functional for a model of the probability distribution function, it becomes possible to also perform 
statistical testing of nonparametric hypotheses relative to its error of inadequacy as well [21].
 Thus, the standard deviation of the error of inadequacy defi ned by R 50.2.004–2000 corresponds, within the frame-
work of a compositional approach, to estimation of the precision of the results of a solution of measurement problems [22] in 
the form of convolutions or compositions of probability distributions of components proper of the defi nitional uncertainty by 
RMG 29–2013. Meanwhile the recommendations of MI 2916–2005 may be used to calculate the defi nitional uncertainty of 
the probability distribution of possible values of the “corrected result of a measurement” in a calibration performed “in accor-
dance with GUM” [1].
 Problem of calibration of a thermometer from Guide to the Expression of Uncertainty in Measurement. By [1] 
(sec. H.3), a “thermometer is calibrated through a comparison of readings tk, k = 1, ..., 11, of a thermometer possessing neg-
ligibly low uncertainty, with corresponding reference values of the temperature tR,k in the range from 21 to 27°C in order to 
obtain values of the corrections bk = tR,k – tk to the readings. Measured corrections and measured temperatures tk are the input 
quantities for the estimation. The linear calibration characteristic

 b(t) = y1 + y2(t – t0) (H.12)
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adjusts the corrections and temperatures (relative to the measurement data) by the method of least squares. The parameters y1 
and y2, correspondingly, the free term and the angular coeffi cient of the calibration characteristic, are two measurable (output) 
quantities. The temperature t0 is selected by stipulation as some fi xed point, hence it is not included among the independent 
parameters that are subject to a determination by the method of least squares. After the estimates y1 and y2 and their variance 
and covariance have been determined, formula (H.12) may be used to calculate the correction, which must be introduced into 
the readings of the temperature t of the thermometer and its standard uncertainty.”
 With t0 = –20°C, y1 = –0.1712°C, s(y1) = 0.0029°C, y2 = 0.00218, and s(y2) = 0.00067°C, the sample standard devi-
ation of the corrections s = 0.0035°C [1] (sec. H.3).
 This problem was previously analyzed in [3], and the initial data and results of a solution of the problem obtained 
in [1] (sec. H.3) are presented in columns 1–5 of Table 1 of the present study, while in columns 6 and 7 may be found the re-
sults of a verifi cation of the calculation [1] (sec. H.3) by the MMCMLS algorithm, i.e., the computed values of the MMCMLS-
correction b11(tk) with code ϑ = 11 and deviations from the correction bk – b11(tk).
 Using these data, a model of the correction function with structure code ϑ =11 for MMEI = 0.007066667°C was 
identifi ed for purposes of control in accordance with R 50.2.004–2000 using the MMC-stat 2.0 program:

  (3)

 Digits that coincided with the digits of the estimates in [1] (sec. H.3) are identifi ed in (3). Statistical testing of hy-
potheses was not adopted in [1]. Therefore, an identifi cation in accordance with MI 2916–2005 of the probability distribution 
of possible deviations of the corrections bk from model (3) based on uniform distributions of the components of the convolu-
tion in accordance with MI 1317–2004 in light of statistical control [23] of the parameter Ωr ≤ MMEC = MMEI – MAD = 
= 7.066667·10–3 – 2.579371621·10–3 = 4.487295379·10–3 [°C], where MAD denotes the mean absolute deviation, |bk –
– bMMCMLS(tk)|, relative to the defi nition given in MI 187–86, Procedural Specifi cations. GSI. Measurement Instruments. 
Reliability Criteria and Parameters of Verifi cation Techniques, yields the trapezoidal distribution (Fig. 1a) cited in [1] though 
not used there. This corresponds to the reliability boundary of the error of fi rst-order working standards (GOST 8.558–2009, 
GSI. State Measurement Chain for Instruments for Temperature Measurement) with 0.95 confi dence probability.
 The procedure implemented by the two programs MMK-stat and MMI-verifi cation and described in R 50.2.004–
2000 and MI 2916–2005 is a key element in metrological certifi cation of functional models. Complementing this procedure 
with a stability study of a calibrated measurement instrument solves the problem of “statistical control” [1] (sec. 3.4.2).

TABLE 1. Verifi cation of Solution of Problem of Calibration of a Thermometer by the GUM Technique Using the MMCMLS Algorithm

k tk, °С bk = tR,k – tk, °C b(tk), °C bk – b(tk), °C b11(tk), °C bk – b11(tk), °C

1 2 3 4 5 6 7

1 21.521 –0.171 –0.1679 –0.0031 –0.1684725801 –0.00252741993

2 22.012 –0.169 –0.1668 –0.0022 –0.1668117508 –0.00218824916

3 22.512 –0.166 –0.1657 –0.0003 –0.1657205358 –0.00027946416

4 23.003 –0.159 –0.1646 +0.0056 –0.1646489627 0.00564896271

5 23.507 –0.164 –0.1635 –0.0005 –0.1635490180 –0.00045098201

6 23.999 –0.165 –0.1625 –0.0025 –0.1624752624 –0.00252473757

7 24.513 –0.156 –0.1614 +0.0054 –0.1613534934 0.00535349341

8 25.002 –0.157 –0.1603 +0.0033 –0.1602862851 0.00328628514

9 25.503 –0.159 –0.1592 +0.0002 –0.1591928877 0.00019288771

10 26.010 –0.161 –0.1581 –0.0029 –0.1580863957 –0.00291360430

11 26.511 –0.160 –0.1570 –0.0030 –0.1569929983 –0.00300700173
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 The analysis would have been incomplete had it not specifi ed that a procedure by means of an MMCMLS model of 
optimal complexity relative to the minimal criterion MMEI with MMEI = 2.712152·10–3; MAD = 1.843555225·10–3, and 
MMEC = 8.685967747·10–4 leads to the expression

  (4)

 For model (4) with structure code equal to 11111, the convolution of the truncated Gaussian probability with uniform 
distribution (Fig. 1b) proves to the most likely convolution within the boundaries [–0.00846736644; +0.00753892269]°C, 
which is 48.1917502% narrower, while the “equivalent standard relative to Ωr” is 5.1661391318 times more precise than in 
the example [1] (sec. H.3).
 Distributions of the observable component of the deviations of the corrections bk from model (3) with scattering 
parameter 0.005194°C, nonparametric component of the inadequacy of a uniform distribution with scattering parameter 
0.0021795°C, and parametric component of the inadequacy of a model with scattering parameter 0.004487295379°C form a 
convolution on the interval [–0.011853; +0.011867]°C. Moreover, the defi nitional uncertainty of the result of a GUM-based 
calibration amounts to (0.0021795°C + 0.004487295379°C)/√3 = 0.003849076107°C) or 74.1% of the total standard uncer-
tainty specifi ed in [1] (sec. H3). The obtained result for a “model example of a GUM-based calibration” represents a response 
to the essential question, namely whether defi nitional uncertainty may be ignored in practical applications and whether statis-
tical control of defi nitional uncertainty is needed for equations of form (1).
 However, it should be noted that an “appropriate defi nition of measurement uncertainty” is not mentioned in this 
example and is indicated only in the Appendix [1] (sec. C.3.2) and differs from the basic defi nition [1] (sec. 2.2.3) as “sim-
ply” the standard deviation. And though from the point of view of an “estimation of Type A measurement uncertainty” the 
difference of the “standard deviation of the arithmetic mean over a sample of observations” desired in the basic problem [1] 
of a quantity from “simply” its standard deviation is essential, there is something else more important. Despite the constant 
reminder [1] that “error” and “uncertainty” are essentially different concepts, in order to arrive at the best estimate of the mea-
surement equation (1) proper and of its mathematical expectation as a systematic component, the fact that the convolutions 
of the distributions of the components of the budget of uncertainty estimated relative to Type B and the uniformly distributed 
components of the budget of errors obtained from “outside sources” coincide remains indisputable [24]. And in that case, as 
noted in [1] (sec. E.5.2–E.5.4), the estimate of error and estimate of uncertainty will, in fact, coincide.
 For this reason, Appendix B together with a sample calculation of measurement uncertainty the result of which co-
incided with the result of a calculation of error in Appendix A was eliminated from the scheme R 50.2.038–2004, GSI. Direct 
Repeated Measurements. Estimation of Errors and the Uncertainty of the Result of a Measurements. In other words, the 
statement of the objective of a measurement problem expressed in terms of the characteristics of a mathematical model of the 
measurement object, in accordance with R 50.2.004–2000, from the point of view of the principal objective of the Federal 

Fig. 1. Identifi cation of distribution of deviations from models of the correction function in the MMI-verifi cation program [15]: 
a) model (3), convolution interval [–0.011853; +0.011867]°C; b) model (4), normalizing value Δ0.95 = 0.00507°C, convolution 
interval [–0.00846736644; +0.00753892269]°C.
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Law, On Ensuring the Uniformity of Measurements, in the case where the concern is with a function of corrections, while in 
accordance with MI 1317–2004, the “probability distribution law of this random variable constitutes a mirror image of the 
probability distribution law of the measurement error,” already presupposes the possibility of using the concept of the “error 
of inadequacy” to interpret the concept of “defi nitional uncertainty.”
 Calibration concludes once a relationship for the corrections to the readings of a measurement instrument has been 
obtained that indicate the corresponding confi dence boundaries. For this purpose the boundaries of the shortest tolerance 
(P, γ)-interval in accordance with GOST R ISO 16269-6–2005, Statistical Methods. Statistical Representation of Data. 
Determination of Statistical Tolerance Intervals, are found on the basis of a convolution of distributions of corrections and 
their errors of inadequacy and errors of the standard. The problem involving a search of a model of optimal complexity based 
on the minimum criterion MMEI is solved within the framework of the MMI-verifi cation program [15] in accordance with 
MI 2916–2005.
 And the international standard ISO/IEC DIS 17025:2017, General Requirements for the Competence of Testing and 
Calibration Laboratories2 supporting the “introduction of thinking based on estimation of the level of risk relative to noncon-
forming studies and claims of conformance, such as false adoption and false deviation as well as statistical presuppositions” 
then appeared at an inopportune time. Laboratories must constantly and objectively determine these risks, moreover, the 
“principal risk is that an unreliable result may be obtained in the course of a calibration or in the course of tests.”
 In an example of calibration of a thermometer, hypotheses of the structure and parameters of functional-type metro-
logical characteristics, such as transformation functions, calibration characteristic, functions of corrections, and functions of 
the errors of a standard, along with probability density and probability density functions that are subject to statistical identifi ca-
tion relative to sample data are all classifi ed as “statistical presuppositions.” Models of the drift of metrological characteristics 
as functions of time are also classifi ed as functional-type characteristics. Moreover, article 7.2 of ISO/IEC DIS 17025:2017 
also introduced the concept of verifi cation of a technique implemented by competent personnel for the purpose of “obtaining 
confi rmation that a laboratory possesses required characteristics.” In addition, the standard also specifi ed the following:
 “7.6.1. A laboratory that performs calibration, including calibration of its own equipment, must estimate the error of 
measurements for all calibrations.
 7.6.2. A laboratory that performs sampling or tests must estimate the uncertainty of measurements.”
 With that in mind, how should we understand the requirements of the Guide for Applicants and Accredited Individuals 
with Regard to Construction of Areas of Accreditation of Calibration Laboratories with Respect to Uncertainty relative to all 
calibrations of measurement instruments where it is necessary to estimate the reliability of results of calibrations and tests?
 Expressed in terms of VIM-3 [6]: “2.5 measurement method” and “ 2.6 measurement technique” as well as in the du-
plicate terms “4.1 measurement” and “4.23 measurement problem” of RMG 29–2013, techniques of “indirect measurements” 
are classifi ed as “measurements.” For these terms, the “defi nitional uncertainty of measurement equations” also determines the 
measurement capabilities of calibration laboratories. Of course, not to mention the method of joint measurements, the method 
of indirect measurements is an essential element of techniques used in the calibration of measurement instruments, and in order 
to determine the “measurement capabilities” of calibration laboratories these techniques must, in fact, undergo validation.
 Now it only remains to cite VIM-3 [6]:
 “2.45 validation, or certifi cation – verifi cation in which already established requirements are related to a proposed use.
 2.44 verifi cation (of a measurement instrument) – provide objective evidence that a given object fully satisfi es es-
tablished requirements.
 Remark 2. A process, measurement technique, material, substance or measurement system, for example, may be an 
object. Remark 5. Verifi cation must not be confused with calibration. Not every verifi cation is a validation.”
 Conclusion. Metrology is the fundamental science of methods and means of describing physical reality by means 
of mathematical models. For practical applications, however, only those methods and means that assure a required precision 
of coincidence of the results of calculations with the results of measurements are appropriate. This property of mathematical 

2 GOST ISO/MEK 17025–2009, General Requirements Imposed on the Competence of Testing and Calibration Laboratories, was in force 
prior to the introduction of this standard.
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models of measurement objects is related directly to the concept of inadequacy and the need for preliminary testing of the con-
ditions of applicability of mathematical models in concrete measurement problems. The latter circumstance turns the concept 
of “defi nitional uncertainty” into a base concept of a feature-based approach to the estimation of precision. The question of 
the observability of mathematical models corresponding to this concept is central here. And only its solution will “in one way 
or another” give us a basis for asserting the comprehensibility or incomprehensibility of the phenomena of physical reality.

REFERENCES

  1. Guide to the Expression of Uncertainty in Measurement [Russian translation], Mendeleev VNIIM, Moscow (1999).
  2. S. F. Levin, “Is there a need for the Explanations of Measurements Uncertainty, appendix to Guide to the Expression 

of Uncertainty in Measurement,” Sovet. Metrologa, No. 2, 49–56 (2011).
  3. S. F. Levin, “Metrology. Mathematical statistics. Legends and myths of the twentieth century,” Partn. Konkurenty, 

No. 1, 13–25 (2001).
  4. Yu. V. Prokhorov (ed.), Probability and Mathematical Statistics: Encyclopedia, Bol’shaya Ross. Entsiklop., Moscow 

(1999).
  5. C. F. Dietrich, Uncertainty, Calibration, and Probability, Adam-Hilger, Bristol (1991).
  6.  JCGM 200:2008, International Vocabulary of Metrology. Basic and General Concepts and Associated Terms (VIM-3) 

[Russian translation], Mendeleev VNIIM, BelGIM, St. Petersburg (2010), 2nd ed.
  7. S. F. Levin, “Guide to the Expression of Uncertainty in Measurement: revision – a change of paradigm or a new 

sanction?” Zakonodat. Prikl. Metrol., No. 5, 31–44 (2016).
  8.  G. C. Casella and R. L. Berger, Statistical Inference, Duxbury Press, Pacifi c Grove (2001).
  9. M. G. Cox and P. M. Harris, SSfM Best Practice Guide No. 6. Uncertainty Evaluation, Tech. Rep. DEM-ES-11, 

National Physics Laboratory, Teddington, UK (2006).
10. S. F. Levin, “Uncertainty of the results of a solution of measurement problems in the broad and in the narrow sense,” 

Metrologiya, No. 9, 3–24 (2006).
11. H. Scheffer, Dispersion Analysis [Russian translation], Mir, Moscow (1963).
12. D. Hudson, Statistics for Physicists: Lectures on Probability Theory and Elementary Statistics [Russian translation], 

Mir, Moscow (1967).
13. A. G. Ivakhnenko, “Method of grouped calculation of arguments – a competitor to the method of stochastic approx-

imation,” Avtomatika, No. 3, 58–72 (1968).
14. W. Feller, Introduction to Probability Theory and Its Applications [Russian translation], Mir, Moscow (1984), Vol. 2.
15. S. F. Levin, “The measurement problem of identifi cation of the error function,” Zakonodat. Prikl. Metrol., No. 4, 

27–33 (2016).
16.  A. N. Kolmogorov, “On tables of random numbers,” Semiot. Informat., Iss. 18, 3–13 (1982), deposited in VINITI.
17. I. Vuchkov, L. Boyadzieva, and E. Solakov, Applied Linear Regression Analysis [Russian translation], Finansy i 

Statistika, Moscow (1987).
18. S. F. Levin, “Method of maximum compactness and complex measurement problems,” Izmer. Tekhn., No. 7, 15–21 

(1995).
19. P. Levy, Calcul des Probabilités, Gauther-Villars, Paris (1925).
20. H. Cramer, Mathematical Methods in Statistics [Russian translation], Mir, Moscow (1975), 2nd ed.
21. S. F. Levin, “Identifi cation of probability distributions,” Izmer. Tekhn., No. 2, 3–9 (2005).
22. S. F. Levin, “Guide to the Expression of Uncertainty in Measurement: problems, unrealized capabilities, and revi-

sions. Part 1. Terminological problems,” Izmer. Tekhn., No. 2, 3–8 (2018), DOI: 10.32446/0368-1025it.2018-2-3-8.
23 S. F. Levin, “Mathematical theory of measurement problems: Applications. Statistical control procedures in preci-

sion measurements,” Kontr.-Izmer. Prib. Sistemy, No. 3, 8–11 (2018).
24. S. F. Levin, “Guide to the Expression of Uncertainty in Measurement: problems, unrealized capabilities, and revisions. 

Part 3. Reduction to a common terminological denominator,” Izmer. Tekhn., No. 7, 14–22 (2019), DOI: 10.32446/ 
0368-1025it.2019-7-14-22.


	ABSTRACT
	Definitional uncertainty and inadequacy
	Error of inadequacy of a mathematical model
	Specification
	Problem of calibration of a thermometer from Guide to the Expression of Uncertainty in Measurement
	Conclusion
	REFERENCES

