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GENERALIZED INTERVAL METHOD OF BISECTION FOR METROLOGICALLY BASED 
SEARCH FOR SOLUTIONS OF SYSTEMS OF EQUATIONS WITH INACCURATELY 
SPECIFIED INITIAL DATA

K. K. Semenov and A. A. Tselishcheva UDC 681.2.088+004.67

A method of solving systems of nonlinear equations for use in metrological applications based on the gener-
alized method of bisection is presented. It is shown that through the use of the proposed approach it is pos-
sible to satisfy requirements imposed on the solution as regards the set of results of indirect measurements 
and to take into account data on the inaccuracy of the coeffi cients of the equations to be solved, which are 
the results of direct measurements. The resulting solution is automatically tracked by a reliable estimate of 
the limiting error of its components.
Keywords: solution of systems of nonlinear equations, bisection, indirect measurements, metrological self-
tracking of calculations with inaccurate data.

 Many physical quantities may be measured only indirectly. Such a situation arises in estimation of the parameters of 
the state of complex objects which it is impossible to measure directly. The values of these parameters are, therefore, deter-
mined from the results of direct measurements of the characteristics of the object by solving systems of equations that form 
a known mathematical model of its behavior. Since any measurement is always performed with error, the resulting character-
istics prove to be distorted. Since the latter are present in the system of equations as the coeffi cients of these equations, when 
estimating the precision of solutions the error inherited from these characteristics must be taken into account. Such an error is 
generally the most substantial component of the uncertainty of the results of indirect measurements and signifi cantly exceeds 
the components of the uncertainty due to the use of particular computational methods of solving systems of equations [1]. 
Thus, ignoring the error of the results of direct measurements leads to an inadmissible understatement of the estimated error 
of the desired results of indirect measurements.
 There are several different iteration methods that are usually used in practical applications to solve systems of equa-
tions. These methods form a mathematical model of a test object and are often nonlinear. The essence of the approach realized 
by these methods is as follows. An initial approximation of the solution of the system is fi rst specifi ed, and then successive, 
step-by-step refi nement of this approximation is realized by means of a computational algorithm until the necessary precision 
is achieved. The error of the coeffi cients of the equations, which are the results of direct measurements, are often not taken 
into account in the course of solving the system. An estimate of the error of the solution is carried out even after the solution 
is found. The estimation is performed either from a previously found analytic expression or by statistical stimulation based 
on the Monte-Carlo method. The techniques that underlie the fi rst approach usually assume that the error of the results of 
direct measurements within the framework of the particular problem are quite small, which it is diffi cult to verify. The second 
approach is time-consuming and may involve situations in which the iteration procedures used for the solution of the system 
of equations diverge.
 In the present article, we wish to propose a method of solution of systems of equations of indirect measurement which, 
on the one hand, do not require substantial computational resources and, on the other hand, do not impose any requirements 
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whatsoever on the error of the results of direct measurements. Such a modifi cation of the method of bisection by means of 
which an estimate of the root of an individual equation may be obtained with certainty with specifi ed precision is described in 
[2]. The modifi cation takes into account the error of the coeffi cients of equation. In the present article the algorithm presented 
in [2] is generalized to the case in which a solution of a system of equations must be found.
 Method of bisection for fi nding solutions of systems of nonlinear equations. The method of bisection for the 
solution of systems of equations of indirect measurements basically comprises the following steps. Suppose we are given a 
mathematical model of a test object that constitutes a system of nonlinear equations [3]:

ƒ1(x, p) = 0, ..., ƒk(x, p) = 0,

where ƒ1, ..., ƒk are monotone functions that describe the relationship between the desired results of indirect measurements 
x = (x1, ..., xn), i.e., the parameters of the state of the object, and the results of direct measurements p = (p1, ..., pm), i.e., the 
measured characteristics of the object.
 Suppose a sub-domain Ωi is specifi ed for each function ƒi within its domain of defi nition such that the sign of the 
values of this function is different at different points of the boundary δΩi. Then, since ƒi is monotone, there exists at least one 
root within the sub-domain Ωi that most likely satisfi es all the equations of the system. Thus, the possible solutions of the 
system are determined within the specifi ed domain of localization. On the fi rst step, this domain comprises Ω(1) = Ω1 × Ω2 × 
× ... × Ωn, i.e., an n-dimensional rectangular parallelepiped. On the second stage, the boundaries of the domain are refi ned to 
values Ω(2) ⊆ Ω(1), on the third stage, to Ω(3) ⊆ Ω(2), and so on. A refi nement on an arbitrary step of the method is produced 
by partitioning the current domain which localizes a solution into parts from which those parts are discarded which obviously 
do not contain any solutions. The given partitioning process may be realized by any one of a number of different methods. In 
the method we wish to propose, a division into rectangular sub-domains (n-dimensional parallelepipeds) Ω(jk), k = 1, 2, ..., K, 
each of the same volume is produced on each jth step. The signs of the values of the functions ƒi at all vertices of the n-dimen-
sional parallelepipeds) Ω(jk) are calculated on each iteration of the method. The errors of the coeffi cients p are also taken into 
account, since it is because of these errors that the sign of the function may be undefi ned; that is, the sign may be positive for 
certain possible values of the parameters p (within the limits of the error) and may be negative for other values. Next, those 
parallelepipeds which are certain not to contain any solutions of the system are determined from the combination of the signs 
of the obtained values (i.e., parallelepipeds at the boundaries of which there does not occur any change whatsoever in the sign 
of any of the functions ƒi) and are discarded. A transition to the next iteration of the algorithm is then performed. The bound-
aries of a domain that localizes a solution of the system are refi ned until the dimensions of the domain satisfy a metrologically 
based criterion for a halt in the iteration process presented in [2]. The process halts when the limits (boundaries) of the possi-
ble values of the components of the solution found in the current and previous iterations of the algorithm coincide (with 
rounding according to the rules adopted in metrology).
 Let us now explain a generalization of the method of bisection for the case of a system of equations for two unknown 
results of indirect measurements (x, y) that contain two inaccurate parameters p1 and p2 with measured values. Such a system 
has the form

 Suppose intervals Sx = [Sx1, Sx2] and Sy = [Sy1, Sy2] are specifi ed from a priori considerations within which it is 
necessary to fi nd values x = x0 and y = y0 that satisfy the given system of equations. The functions ƒ1 and ƒ2 must be monotone 
in the domain Sx × Sy. On the fi rst step of the algorithm we verify that the functions on the boundaries of this domain in fact 
do take values with different signs. Then the algorithm certainly converges to a solution of the system of equations. We will 
use the rectangle Ω(1) = Sx × Sy (Fig. 1) as the domain of localization of the solution on the fi rst step of the algorithm and 
divide it into four equal rectangles by means of the lines x = mx and y = my, where mx = 0.5(Sx1 + Sx2) and my = 0.5(Sy1 + Sy2) 
are the midpoints of the intervals Sx and Sy, respectively:

Ω(21) = [Sx1, mx] × [Sy1, my];
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Ω(22) = [Sx1, mx] × [my, Sy2];

Ω(23) = [mx, Sx2] × [my, Sy2];

Ω(24) = [mx, Sx2] × [Sy1, my].

 For each rectangle Ω(21), Ω(22), Ω(23), and Ω(24), we calculate at all the vertices an estimate of the values of the func-
tions ƒ1 and ƒ2 with allowance made for the errors of the parameters p1 and p2. For example, the following four intervals are 
obtained for the rectangle Ω(21) and function ƒ1:

  (1)

  (2)

  (3)

  (4)

where Δp1 and Δp2 are the greatest values of the moduli of the admissible absolute error of the coeffi cients p1 and p2, 
respectively.
 In (1)–(4), estimation of the possible error of the value of the function ƒ1 caused by the errors of its coeffi cients 
is performed by the technique of linearization generally accepted in metrology. The values of the derivatives ∂ƒ1/∂p1 and 
∂ƒ1/∂p2 may be determined by any one of a number of methods. In the general case, they may be calculated by the method of 
metrological self-tracking [4]. By means of this method, a required estimate of the possible error of the value of any one of the 
functions ƒi with any (systematic, random, or mixed) type of error in the coeffi cients p1 and p2 may be obtained automatically 
and an individual calculation of each of the derivatives is not required. If both limits of any of the obtained intervals z211, z212, 
z213, and z214 of values of the function ƒ1 prove to be of the same sign, then it is obvious which sign this is. But if it turns out 
that the signs are different due to the infl uence of the error of the coeffi cients p1 and p2, the sign of the function ƒ1 cannot be 
precisely specifi ed at the corresponding point.
 After processing the rectangles Ω(21), Ω(22), Ω(23), and Ω(24) in this way, we may conclude whether or not these 
rectangles contain a solution of the system. For this purpose, we calculate the sum of the values of the functions ƒ1 and ƒ2 
for values of x and y corresponding to the vertices of each rectangle. If it is impossible to precisely determine the sign of the 

Fig. 1. Domains Ω(1) and Ω(21), Ω(22), Ω(23), and Ω(24) of localization of a solution of a system of two equations 
on the fi rst (a) and second (b) steps of implementation of the algorithm.
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function because of the errors of the coeffi cients, it is assumed that the function is equal to zero. If the modulus of the sum 
which has been found for ƒ1 and for ƒ2 proves to be less than 4, i.e., less than the number of vertices of a rectangle, the solu-
tion of the system is contained precisely in the analyzed rectangle. Otherwise, there is no solution present in this domain of 
values of the arguments x and y and this rectangle is eliminated from further consideration. On the next step of the algorithm, 
rectangles from the list Ω(21), Ω(22), Ω(23), and Ω(24) that have not been previously discarded must be considered in the same 
sequence of operations. Systems that contain more than two equations may be solved in the same way as in this description. 
The iteration process is continued until a halt condition that satisfi es a series of considerations typical in metrological applica-
tions is satisfi ed. A rule is presented in [2] for halting the algorithm in the case in which the root of only one equation is found. 
For the system of equations, an estimate of the solution must be refi ned until the limits of the possible error of the components 
(the coordinates x and y in the two-dimensional case) no longer decrease as new iterations are performed. On each iteration we 
suggest rounding the limits of the error according to rules adopted in metrology, that is, rounding only in increasing direction 
and to one and no more than two signifi cant digits. The limits of the error of the components of the solution on the jth itera-
tion must be estimated through a search for their minimal and maximal values relative to the boundaries of all n-dimensional 
parallelepipeds Ω(jk), k = 1, 2, ..., K, that realize a localization of the solution.
 The approach which we have proposed is based on the fact that if some domain of values of arguments of a monotone 
function contains a root of this function, the function assumes values of different signs on the boundaries of this domain. The 
inaccuracy of the parameters that occur in the equations of the system, on the other hand, may lead to uncertainty of the sign 
of the function. In such a situation, it makes sense to assume the function is equal to zero. In fact, if at some point the value 
of the function proves to be less in modulus to an estimate of its limiting error, this will mean that there is no reason to consider 
the function to be nonzero. But if such a situation occurs when determining the sign of the function at the vertices of n-dimen-
sional parallelepipeds that localize the solution of the analyzed system, such n-dimensional parallelepipeds must not be elim-
inated from the search domain. An example of a situation with a determination of the signs of the values of the functions ƒ1 
and ƒ2 at the vertices of one of the rectangles Ω(21), Ω(22), Ω(23), and Ω(24), taking into account the error in the parameters p1 
and p2, is shown in Fig. 2.
 Examples illustrating the use of the generalized interval method of bisection. The present approach was applied 
to several problems borrowed from metrological applications.
 Example 1. Let us consider a problem from applied hydrodynamics. We wish to determine the height of a wave on a 
water surface from the values of the pressure in the liquid beneath the surface. As the initial values we use the results of mea-
surements of the range of the hydrodynamic pressure Δp in the liquid at a depth z induced by propagation of waves with 

Fig. 2. Determination of the signs of the functions ƒ1 and ƒ2 at the vertices of a rectangle based on the errors 
of the parameters of the solved equations.
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period T on the surface of a layer of water at a depth d ≥ z. The height of the waves h must be determined indirectly based on 
the results of direct measurements of the quantities Δp, T, d, and z.
 To solve the problem, we use a mathematical model of the propagation of waves on the surface of a fl uid that de-
scribes the relation between the quantities h and Δp by means of the equations [5]
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where ρ is the density of water; g, free-fall acceleration; a, amplitude factor; and k, wave number.
 In order to determine the unknown quantity h, we solve the system of equations (5) relative to the unknown param-
eters k and a, which we then substitute into formula (6). For this purpose, we use the method proposed in the current article. 
To estimate the reliability of the obtained estimates of the metrological characteristics of the solution of the system, we com-
pare the present results to the results of joint measurements of the quantities Δp, T, d, z, and h. These measurements were 
performed by one of the present authors in the course of special experiments described in [6]. The experiments were conduct-
ed in a hydraulic wave laboratory with the use of sensors for fi nding the current values of the pressure in a fl uid along with 
fl uid-level gauges that measure the current values of the water level.
 We indirectly calculate the values of Δp, T, and h by mathematical processing of the results of the above measure-
ments, relying on the readings of the devices. We perform an estimation of the error of the results inherited from the error of 
the measuring instruments employed. It is known that the depth of the pressure sensors z = 26.5 ± 0.2 cm, while the depth at 
the installation site d = 65.7 ± 0.2 cm. The initial data for the solution of the system of equations (5) of the mathematical model 
are as follows: intervals of initial approximations for the arguments k and a relative to which the system is solved, correspond-
ingly Sk = [0.5; 2.0] m–1 and Sa = [0; 0.15] m. The results of measurements of the range of the hydrodynamic pressure Δp 
and the period of regular seas T as well as the limits of their admissible absolute error are presented in Table 1.
 In solving the system of equations, we round off the estimates of the error of the quantities a and k inherited from the 
quantities Δp, T, d, and z to the next signifi cant digit. Then we substitute the values of a and k thus obtained into formula (6) 

TABLE 1. Results of a Solution of System (5) Represented by the Present Method

Experiment No.
Initial data [6] Solution of system (5)

Δp, cm T, s k, m–1 a, m

1 10.1 ± 0.5 1.930 ± 0.005 1.435 ± 0.009 0.063 ± 0.004

2 6.0 ± 0.5 1.928 ± 0.003 1.447 ± 0.009 0.038 ± 0.004

3 16.8 ± 1.0 1.938 ± 0.007 1.390 ± 0.05 0.103 ± 0.010

4 5.97 ± 0.35 1.697 ± 0.005 1.710 ± 0.02 0.042 ± 0.004

5 10.60 ± 0.35 1.702 ± 0.003 1.683 ± 0.015 0.071 ± 0.005
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in order to calculate the height of the seas h. We compare the results with the measurement data and the resulting estimate of 
the limit of its absolute error with the results of calculations from [6] performed by the Monte-Carlo method (Table 2).
 The data presented in Table 2 demonstrate the reliability of the results obtained by the proposed method. That is, all 
the computed limits of the possible values of the height of the wave h are in good agreement with the results of the Monte-
Carlo method and contain the results of direct measurements of this quantity.
 Example 2. We wish to determine the coordinates of an object in an external magnetic fi eld created by a special 
generator. The essence of such a problem of positioning and the technical instruments for its solution are described in [7–9].
 A special generator creates an alternating magnetic fi eld by means of two perpendicularly oriented brackets Br1 and 
Br2 through which electric current is alternately transmitted. Positioning of the object in this fi eld is achieved in the OXYZ 
coordinate system with origin at the center of the generator G (Fig. 3). In order to fi nd the coordinates of the object, we mea-
sure three mutually orthogonal components of the magnetic induction at the point where the object is situated in different 
phases of operation of the generator. We determine the linear coordinates (x0; y0; z0) of the object and the angles (α0; β0; γ0) 
of its orientation in the OXYZ coordinate system by means of a mathematical model that relates the induction of the magnetic 
fi eld at different points in space with the known parameters of the generator. We measure the components (Bx; By; Bz) of the 
magnetic induction vector B by means of three Hall sensors situated on the object the axes of sensitivity of which specify a 
coordinate system OXʹYʹZʹ. The problem of fi nding the values of x0, y0, z0, α0, β0, γ0 reduces to solving the system of nonlin-
ear equations [9]

  (7)

TABLE 2. Values of Height of Seas h, cm, Obtained as a Result of Measurements and from Calculations by the Monte-Carlo Method and 
by the Proposed Method

Experiment No. Direct measurements [6] Monte-Carlo method [6] Proposed method

1 12.93 ± 0.25 13.2 ± 0.7 13.1 ± 0.8

2 7.7 ± 0.2 7.8 ± 0.7 7.7 ± 0.7

3 22.23 ± 0.25 22.7 ± 1.6 22.2 ± 2.0

4 8.0 ± 0.2 8.3 ± 0.7 8.3 ± 0.5

5 14.87 ± 0.25 14.9 ± 1.1 14.7 ± 1.3

Fig. 3. Coordinate systems in positioning in an external magnetic fi eld: G – generator of fi eld; O – positioned object; 
Br1 and Br2 – brackets of generator.
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where B1
T = (Bx1; By1; Bz1) and B2

T = (Bx2; By2; Bz2) are the magnetic induction vectors of the fi eld created by the fi rst, respec-
tively, second bracket of the generator at a point with the coordinates (x0; y0; z0) according to the mathematic model of the 
generator; Bx1, By1, Bz1 and Bx2, By2, Bz2, functions of the parameters of the generator; E, Euler matrix, which determines the 
orientation of the Hall sensors situated on the object in the OXYZ coordinate system; and B

~
1
T = (Äxʹ1; Äyʹ1; Äzʹ1) and B

~
2
T = 

= (Äxʹ2; Äyʹ2; Äzʹ2), vectors of the results of measurements of the components of the magnetic induction at the point (x0; y0; z0) 
in the coordinate system OXʹYʹZʹ adopted on the object.
 The values of Bx1, By1, Bz1 and Bx2, By2, Bz2 depend on the geometric dimensions of the generator G and the force of 
the transmitted electric current. We next write out equations that relate these parameters to the components of the vector B1:

where I1 is the force of the electric current travelling through the fi rst bracket; μ0, magnetic constant; r11, r12, r13, and r14, 
vectors formed by the point (x0; y0; z0) and the vertices of the fi rst bracket, which is assumed to be thin; ||r11||, ||r12||, ||r13||, 
and ||r14||, lengths of the given vectors; and r11x, r11y, r11z, r12y, r12y, r12z, etc., projections of the vectors onto the OX, OY, 
and OZ axes.
 We determine the components of the vector B2, which describes the magnetic fi eld produced by the second bracket 
of the generator, from analogous relationships in which the coordinates of the vertices of this bracket must now be used.
 Since the positioned object may be oriented in space in such a way that the axes of sensitivity of the Hall sensors 
installed on it may be rotated relative to the axes of the generator, we apply the matrix E of the rotation of the OXYZ coordi-
nate system into the OXʹYʹZʹ coordinate system:

where
a11 = cosβ0cosα0;     a12 = cosβ0sinα0;     a13 =  – sinβ0;     a21 = sinγ0sinβ0cosα0 – cosγ0sinα0;

a22 = sinγ0sinβ0sinα0 + cosγ0cosα0;     a23 = sinγ0cosβ0;     a31 = cosγ0sinβcosα0 + sinγ0sinα0;

a32 = cosγ0sinβ0sinα0 – sinγ0cosα0;     a33 = cosγ0sinβ0.

 After multiplication of B1
TE and B2

TE, we obtain expressions in which the desired unknowns – the coordinates x0, y0, 
and z0 and the orientation angles α0, β0, γ0 – occur nonlinearly.
 The positioning precision in the magnetic fi eld created in the approach that has been described here depends substan-
tially on the precision of the generator G, in particular, on the precision with which its brackets are produced, the stability of 
the force of the current transmitted through the brackets, the precision of the positioning of the Hall sensors on the object O, 
noise, and other factors the infl uence of which may be substantially reduced with where the required level of technological 
effi ciency of the article is achieved. The inaccuracy of the Hall sensors employed is an unavoidable source of the error in the 
determination of the coordinates of the positioned object. The potentially attainable precision of positioning in the present 
method of positioning depends above all on their metrological characteristics.
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 The present authors carried out calculations that demonstrate the limits of the precision of a determination of the 
coordinates in similar positioning which is attainable with the use of modern serially produced Hall sensors. For this purpose, 
it was assumed that all the components of the error of the sensors (caused by nonlinearity, hysteresis, intrinsic noise, etc.) 
collectively lead to an admissible relative error that does not exceed γ = 0.1% in modulus. With such an assumption, it be-
comes possible to obtain a quantitative representation of the limiting positioning error attainable within the framework of the 
approach used in [7–9] in the modern state of technology. The following parameters were used in the calculations: length and 
width of fi rst and second brackets, 0.25 and 0.50 m; 0.50 and 0.25 m, respectively; the values of the forces of the currents 
travelling through the brackets were borrowed from [10]: I1 = 0.5 A and I2 = 1.0 A.
 The system of equations (7) for the three unknowns – the coordinates x0 and y0 and the angle α0 – are solved by the 
proposed method in the case in which the positioned object does not travel along the Z axis (travel of the object O in the OXY 
plane is considered). The values of z0, β0, and γ0 are assumed to be fi xed and equal to 2.5 m, 0.12 rad, and 0.24 rad, respec-
tively. The calculations were carried out for different initial approximations of the coordinates: Sx = [0; 2] m – the interval 
for x0; Sy = [0; 2] m – the interval for y0; and Sα = [–0.75; 0] rad – the interval for α0. The fi nal results, moreover, coincide.
 Estimates of the desired coordinates and their errors calculated by the proposed method as well as model values of 
the coordinates of the positioned object incorporated into the calculations are given in Table 3.
 The intervals found by means of the method proposed in the present study contain the specifi ed values of the coor-
dinates. In a limit of the admissible relative error of Hall sensors equal to 0.1%, the limit of the absolute positioning error in 
the plane with travel of several meters from the fi eld generator reaches around 1 cm, which for certain applications may prove 
to be quite substantial. But if it is assumed that the limit of the admissible relative error of Hall sensors is one only one-tenth 
as great and amounts to 0.01%, the error in the determination of the coordinates falls to roughly a millimeter (cf. Table 3).This 
result points in general to a limiting precision of positioning of the object in a magnetic fi eld that is not very great if the above 
method of management is used.
 Conclusion. A modifi cation of the interval method of bisection is proposed. By means of this modifi cation, it is 
possible to solve systems of equations in measurement problems and to take into account the characteristics of the error of all 
the results of the measurements that occur in the system as coeffi cients of the equations. A rule for halting the iteration process 
that correlates the halting moment with the precision of the initial data of the problem is presented. The method produces 
guaranteed generation of results if the equations are specifi ed by functions that are monotone in the solution search domain. 
The proposed method, together with solutions of the systems of equations, provide estimates of the characteristics of their 
errors which makes it desirable to use it as a component of a metrologically important software package. An estimate of the 
limiting precision of a particular method of indirect measurements with known composition of the set of measuring instru-
ments employed may be obtained by means of the method.

TABLE 3. Results of a Solution of the System of Equations (7) for the Problem of Positioning of an Object in a Magnetic Field

γ, % Experiment 
No.

Specifi ed model values of coordinates Results of calculations by proposed method

x, m y, m α, rad x, m y, m α, rad

0.1 

1 1.90 1.20 –0.38 1.90 ± 0.01 1.20 ± 0.01 –0.381 ± 0.005

2 1.50 1.75 –0.10 1.500 ± 0.008 1.75 ± 0.02 –0.100 ± 0.005

3 1.85 1.20 –0.30 1.85 ± 0.01 1.20 ± 0.01 –0.300 ± 0.004

0.01

1 1.90 1.20 –0.38 1.900 ± 0.001 1.200 ± 0.001 0.3800 ± 0.0005

2 1.50 1.75 –0.10 1.5000 ± 0.0005 1.75 ± 0.001 0.1000 ± 0.0004

3 1.85 1.20 –0.30 1.850 ± 0.001 1.20 ± 0.001 0.3000 ± 0.0004
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