
Measurement Techniques, Vol. 61, No. 11, February, 2019

0543-1972/19/6111-1057 ©2019 Springer Science+Business Media, LLC 1057

Moscow Institute of Examenation and Testing, Moscow, Russia; e-mail: AntoninaEL@rostest.ru. Translated from Izmeritel’naya Tekhnika, 
No. 11, pp. 15–21, November, 2018. Original article submitted April 9, 2018.

FUNDAMENTAL PROBLEMS IN METROLOGY

COSMOLOGICAL DISTANCE SCALE. PART 7. 
A NEW SPECIAL CASE WITH THE HUBBLE CONSTANT AND ANISOTROPIC MODELS

S. F. Levin UDC 519.245:519.65:52+53:520.12

Signifi cant discrepancies in estimates of the Hubble constant are discussed in terms of the measurement 
problem of calibrating the cosmological distance scale. It is shown that representing the Freedman–
Robertson–Walker problem by a 3rd order Taylor expansion with respect to the criterion of minimal error in 
the inadequacy is not optimal in terms of accuracy. An anisotropic 2nd order model based on the Heckmann 
representation is more accurate.
Keywords: cosmological distance scale, red shift, SN Ia supernovae, anisotropy.

 Since E. Hubble discovered the red shift law z = (H0/c)D (where c is the speed of light, and D is the distance) in 
1929, estimates of the Hubble parameter H0, which plays a decisive role in cosmological models, have ranged from 530 to 
50 km/s/Mpc [1]. In the 1970’s, a joke attributed to A. Sandage to the effect that “There is nothing more variable than the 
Hubble constant” was popular among cosmologists [2]. But estimates of H0 derived from observations of various cosmic 
objects continued to diverge in later decades (Table 1), despite the greater accuracy of astrophysical measurements. Here and 
in the following, we use the abbreviations: HST KP, Hubble Space Telescope Key Project; WMAP, Wilkinson Microwave 
Anisotropy Probe; SH0ES, Supernovae H0 for the Equation of State of Dark Energy; BAO, Baryon acoustic oscillations; 
CSР, Carnegie Supernova Project; and РС, Planck Collaboration.
 In 1998, the High-Z SN Search Team, which discovered the “accelerated expansion of the universe” by the so-called 
Riess χ2 method from a sample of 37 SN Ia supernovae, obtained an estimate for H0 ranging from 63.8 ± 1.3 to 65.2 ± 1.3 
km/s/Mpc [3] (the spread occurs because various methods we used for the estimates), while in 2016 this group obtained an-
other estimate H0 = 73.24 ± 1.74 km/s/Mpc [4]. At the same time, the PC campaign obtained an estimate of 67.2 ± 0.7 km/s/
Mpc based on data from a space probe [5]. A spread in different estimates from 61.4–69.8 km/s/Mpc was found by the Baryon 
Oscillation Spectroscopic Survey [6]. Yet another estimate of 91.8 ± 5.3 km/s/Mpc was obtained in that same year (2016) [7]. 
In 2017, staff from the Carnegie-Chicago Hubble project pointed out a statistically signifi cant (more than three sigma) spread 
in estimates of H0 = 74 ± 3 km/s/Mpc based on Cepheids in the “distance ladder” and H0 = 67.3 ± 1.2 km/s/Mpc based on 
microwave background measurement data [8].
 W. Freedman, the leader of HST KP, referred to this situation in cosmology as an impasse [9]. Freedman believes 
that the way out of this is to increase the accuracy of the extragalactic distance scale to 1%. If this can be done, it will only be 
through a reexamination of the calibration technique.
 A similar dynamic of the accuracy in determining the fundamental gravitational constant G, which plays an equally 
important role in cosmology, was noted at the end of the twentieth century. Then the confi dence intervals for three of the four 
best determinations of G did not overlap at all [10] and the problem of “incorrect confi dence intervals” was examined in con-
nection with an analysis of experiments searching for neutrino oscillations [11]. Thus, in 1998, the Committee on Data for 
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Science and Technology (CODATA), recommended a new value of 6.673(10)·10–11 m3/s2/kg for the gravitational constant. 
This was a “step backwards” relative to the earlier 6.67259(85)·10–11 m3/s2/kg (1986). It was followed by the recommenda-
tions 6.67428(67)·10–11 m3/s2/kg (2008), 6.67384(80)·10–11 m3/s2/kg (2010), and 6.67408(31)·10–11 m3/s2/kg (2014). In 
2014, precision atomic interferometry yielded an unexpectedly accurate estimate of G = 6.67191(99)·10–11 m3/s2/kg [12].
 At a special session of the British Academy of Sciences, even before the publication of Ref. 9, T. Quinn (International 
Bureau of Weights and Measures) [13] referred to the discrepancy in the determinations of the fundamental gravitational 
constant as a “metrological and scientifi c impasse.”
 An analysis of the situation. An estimate of H0 = 72 ± 7 km/s/Mpc that was independent of distance over a range 
of 56–467 Mpc was obtained in 2000 at the HST KP for 36 SN Ia supernovae with z ≤ 0.1 [14]. A statistical test of the data 
[14] with respect to the criterion of the minimum average modulus of the error in the inadequacy (AMEI) with the program 
MMK-stat 2.0 [15] confi rmed the independence of the estimates of H0 from distance in the class of continuous models for the 
estimates of H0

[1] = 71.725 ± 4.014 km/s/Mpc and H0
[2] = 72.186 ± 3.969 km/s/Mpc, respectively, of MMKMEDS, based on 

a median algorithm, and MMKMNK, for a least squares algorithm. Otherwise, conventional (parametric) averaging of the 

TABLE 1. Estimates of the Hubble Parameter H0

Project, group, program Year Object/method Error estimates for H0, km/s/Mpc

High-Z SN 
Search Team 1998

SN Ia / Multicolor light curve shape method 65.2 ± 1.3

SN Ia / Template-fi tting method 63.8 ± 1.3

HST KP 2001

Cepheid. SN Ia 71 ± 2 (ran);  ± 6 (sys)

Cepheid 71 ± 3 (ran);  ± 7 (sys)

Cepheid 72 ± 8

WMAP

2003 Cosmic microwave background 72 ± 5

2007 Cosmic microwave background 73.2+2.1/–3.2

2009 Cosmic microwave background 71.9+2.6/–2.7

SH0ES

2009 Cepheid 74.2 ± 3.6

2011

Cepheid 74.4 ± 2.5

Cepheid 74.8 ± 3.1

Cepheid 73.8 ± 2.4

WMAP 2011 Cosmic microwave background 70.4 ± 2.5

WMAP. BAО 2011 Cosmic microwave background 70.2 ± 1.4

CSP 2012 Cepheid 74.3 ± 1.5 (ran);  ± 2.1 (sys)

WMAP 2013 Cosmic microwave background 70.0 ± 2.2

WMAP. BAO 2013 Cosmic microwave background 69.32 ± 0.8

PC 2014 Cosmic microwave background 67.3 ± 1.2

PC 2015 Cosmic microwave background 67.8 ± 0.9

SH0ES 2016

Cepheid 71.82 ± 2.67

Cepheid 72.02 ± 2.51

Cepheid/ Cepheid distances ladders 73.00 ± 1.75

SN Ia 73.24 ± 1.74

PC 2016 Cosmic microwave background 67.2 ± 0.7

Note: ran, sys are the random and unexcluded systematic components of the error.
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data using the MMK and MEDS algorithms yielded estimates of H0
[2] = 72.186 km/s/Mpc and H0

[1] = 71.725 km/s/Mpc, re-
spectively. However, models with “disorder” seemed more plausible:

 Here it turned out that there were only two SN Ia supernovae out of the 36 within an interval of 391.5–467 Mpc.
 In 2012, the HST KP estimate was refi ned in the Carnegie-Chicago Hubble program by essentially the same group 
of researchers: 74.3 ± 2.1 km/s/Mpc [16].
 A still larger difference in estimates of H0 was found at the Special Astrophysical Observatory of the Russian 
Academy of Sciences in 2004–2005 based on photometric data from a combined sample of N = 220 elliptical galaxies: from 
71.5 ± 10 to 77.7 ± 10 km/s/Mpc and from 53.0 ± 10 to 65.4 ± 10 km/s/Mpc according to the GISSEL and PEGASE models, 
respectively (the spread is caused by the step sizes for grouping the data in z, 0.2 and 0.3) [17].
 The situation with parametric identifi cation of the Freedman–Robertson–Walker model [3, 18] for the cosmological 
distance scale is equally complicated. First of all, the simplest version of the Freedman–Robertson–Walker model with a 
curvature parameter of Ωk = 0 is used in Ref. 3; in terms of the standard cosmology, this is determined by the position of the 
fi rst peak in the angular spectrum of the fl uctuations in the cosmic microwave background (CMB) near an angle of roughly 
1° [19] and in Ref. 4 a Taylor series expansion of the Freedman–Robertson–Walker model [20] was used:

  (1)

where q0 is the slowing down parameter, and j0 is the impulse parameter.
 The fi rst order Taylor expansion (the Heckmann model) was already known in 1942 [21]:

  (2)

 Second of all, the best results in terms of the “minimum” χ2 = 1.04 of parametric fi ts for a specifi ed structure of the 
model yielded different estimates for the parameters of dark matter ΩM = 0.72+0.44/–0.56 and dark energy ΘΛ = 1.48+0.56/–0.68 
or ΩM = 0.80+0.40/–0.48 and ΩΛ = 1.56+0.52/–0.70 [3]. There was also a result for χ2 = 1.03. But “...” instead of that in Ref. 3. 
It was assumed that ΩΛ = 0.76 and ΩM = 0.24, with Ωk = 1 – 0.76 – 0.24 = 0. This was a fi t of the Freedman–Robertson–
Walker model to a “fl at” universe.
 Third of all, the statistical nonuniformity and anisotropy of the data [3, 17] were also noticed previously during 
identifi cation of uniform interpretive models [22–24]. Their clustering with respect to the transparency windows of the Milky 
Way justifi ed a transition from equatorial to galactic (l, b) coordinates. Ultimately, a Taylor series expansion with anisotropy 
parameters θk(l, b) was assumed in the form [25]

 DL (l, b, z)= 1+θk (l, b)[ ]
k=0

K
∑ zk .�  (3)

 The model of Eq. (3) turned out to be stable to the “outburst” of SN 1997ck at z = 0.97. Doubts have been raised [17] 
about the justifi cation for including it in the main sample.
 Fourth of all, the unexpected thing was that to combine the samples of data from Refs. 3 and 17 into a set of N = 79 
SN Ia the model with optimum complexity with respect to the minimum AMEI criterion [15] became the model of Eq. (3) 
with K = 3, but without the z3 term. This is equivalent to taking the more complicated (than Eq. (2)), but less exact, model (1) 
in Ref. 4.
 In other words, a purely statistical description of the accuracy of the models without accounting for the structural 
component of the inadequacy error leads to the illusion of greater accuracy without a justifi ed increase in the complexity of 
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the models or an increase in the size of the data samples. This does not mention the fact that the accuracy estimates used for 
the cosmological distance scale apply only to its position characteristic, as assumed in the classical linear regression analysis.
 The metrological interpretation is optimal in terms of the complexity of the mathematical model of the object of 
measurements in the theory of measurement problems. Separation of the inadequacy error into dimensional, parametric, and 
structural components [15] has shown that their sum as a function of the number of model parameters when the parametric 
and structural components are balanced has a minimum whose position depends on the dimensional component. And this 
minimum decreases and shifts toward more complicated Kolmogorov models (with a larger number of parameters) only when 
the accuracy of the measurements is increased, i.e., when the dimensionality of the components reduced. Otherwise, for less 
accurate measurements the minimum increases and shifts toward simpler models (with fewer parameters).
 Special cases with estimates of the fundamental cosmological constants have the well known general “statistical” 
causes:
 – “confusion” between confi dence and tolerance intervals;
 – postulating a “normal” probability distribution law;
 – breakdown of the condition for a stationary statistical measurement data series owing to a trend with respect to a 
controlled factor or a correlation in uncontrolled factors, including multicollinearity;
 – breakdown of the condition of homoscedasticity (uniformity of dispersions) for regression analysis models when 
data from different sources are combined, “superaccuracy” in the dispersion weighted average, and an “increase” in accuracy 
with increasing sample size when the data are statistically nonuniform.
 All of these problems in measurement calibration problems are related to the lack of a test of the conditions for ap-
plication of probabilistic-statistical methods [22, 26].
 The cosmological distance scale and mathematical statistics. The problems of verifying the conditions for ap-
plicability of statistical methods, and not just in cosmology, have been well known since the time of the discussion between 
R. Fisher and A. Eddington [2, 22]. An unexpected acknowledgement of the existence of these problems during identifi ca-
tion of the Freedman–Robertson–Walker model appeared in B. Schmidt’s Nobel lecture: the High-Z SN Search Team and 
Supernova Cosmology Project “were both grappling with how to deal with these statistical issues – it wasn’t that they hadn’t 
been solved by science, it was just that we were in new territory for us ... in 1996, none of us had ever seen this technique used 
before in astronomy” [27]. A method of this sort was proposed in 1934 by A. Aitken: a least squares method for correlated 
observational data with different dispersions. The fi rst use of a least squares method in astronomy was by A. Legendre for 
determining the orbits of comets in 1805.
 Increasing the accuracy of the cosmological distance scale is directly related to the problem of calibrating it with 
respect to standards employing “standard samples” of luminosity – type SN Ia supernovae at the brightness maximum with 
known red shifts.
 We recall that for calibration of means of measurement for specifi ed conditions, in the fi rst stage a relationship is 
established between values of the quantities provided by the standards and the readings from the means of measurement with 
corresponding accuracy characteristics and in the second stage, a relationship between these readings and the results of the 
measurements is established [28].
 For calibrating the cosmological distance scale, the “standard” values are provided by the luminosity maxima of SN 
Ia supernovae, while the specifi ed conditions correspond to the physical mechanism of the outburst in the Chandrasekhar 
model and a photometric distance model. The specifi c feature of this calibration problem is that the relationships for the fi rst 
stage are the empirical luminosity functions of the supernovae as functions of time for determining the brightness maximum, 
while the relationship for the second stage is the Freedman–Robertson–Walker model as an isotropic function of red shift and 
the free parameters. Both relationships are ultimately the result of statistical parametrization of the identifi cation without 
testing of the nonparametric hypothesis regarding the form of the distribution of the deviations from the characteristic position 
of the assumed model. They are usually assumed to follow a normal distribution.
 Since the result of calculating the photometric distance from the measured red shift in the spectrum of an SN Ia su-
pernova or “parent” galaxy is often referred to as the result of the measurement, this “insignifi cant” incorrectness in the ter-
minology “hides” the inadequacy of the formulas used for these calculations. Indeed, an instrumental aspect of the problem 
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shows up fi rst in an analysis of the error budget of this kind of “measurements,” while the errors in the corrections are asso-
ciated to a substantial extent with inadequacy errors and untested hypotheses which should have supported the results of the 
parametric identifi cation.
 Of course, far from all supernovae can serve as “standard candles.” They must be carefully selected spectrally and 
“certifi ed” as standards by constructing the luminosity function. Supernova outbursts, however, are not always predictable 
and, despite the extensive catalogs of these objects, by no means all supernovae are “certifi ed.” This requires extremely de-
tailed work on refi nement of photometric distances by extrapolating an empirical model of brightness attenuation based on 
the limited sample of photometric data at the time of the luminosity maximum [3].
 The problem was created in the χ2-method proposed by A. Riess [27] as “a weighted least squares method” involving 
taking the logarithm of a likelihood function in the form of a product of Gaussian distributions with different dispersions. 
And the problem is not that the distributions of the deviations of the astrophysical estimates from the interpreted models are 
more plausible, but more precisely that their characteristic positions are different and the distributions are truncated, such 
as a truncated Laplace distribution. It is also not that the dispersion of the weighted mean with respect to the dispersions of 
the components in the least squared method is less than the smallest dispersion among the components, despite the fact that 
the heteroscedacity of the components signifi es a statistical nonuniformity. Declared “percentage” estimates of the accuracy 
of the extragalactic distance scale of the type 2.4% are actually estimates of the accuracy of a regression curve or position 
characteristic, rather than of the model as a whole with the distribution of its residues, for which (P, γ) statistical tolerance 
intervals are used [29].
 As an example, Ref. 30 gives the limits of 95% confi dence intervals for the regression curve of a Hubble diagram 
with respect the photometric distance which characterize the error in a statistical estimate of the position characteristic of the 
random function DL(z) and clearly do not contain 95% of the sample of “pure” supernovae. For this, it is necessary to construct 
broader, tolerant boundaries for the same confi dence coeffi cient. And if now a “cross” centered on the regression curve is 
drawn at some point on the regression curve, the tolerance limits will indicate the spread intervals of the data for DL and z. Then 
it is immediately clear that the fraction of supernovae with the same red shifts will be considerably greater with a reduction in 
the slope of the diagram, i.e., as the red shift increases. But for z = 1.00+0.10/–0.08, based on the red shift the uncertainty interval 
of the distance modulus for “confi dence intervals of 95%” will be 44.07+0.47/–0.60 (+1.05/–1.34%) and for z = 1.4, it will exceed 
±4.5%. For the tolerance limits, the uncertainty interval will be “slightly” wider. This is a fundamental point; consequently, 
the cosmological distance scale based on red shift still does not have the status of a metric. Ultimately, the minimum AMEI 
criterion in the calibration problem has made it possible to proceed from parametric to structural-parametric identifi cation.
 The accuracy of the model of the scale and the volume of the sample of data on a type SN Ia supernova. An 
analysis [25] according to Ref. 15 of the combined data from Refs. 3 and 17 on SN Ia supernovae used to detect “the accel-
erated expansion of the universe” shows that representing the Freedman–Robertson–Walker model by the 3rd order Taylor 
expansion (1) based on the minimum AMEI criterion is not optimal in terms of accuracy [15]. But a return to the isotropic 
model (2) is impossible for the same reasons. In this regard, the minimum AMEI criterion is extremely stringent. An aniso-
tropic model of lower order in the galactic coordinates (l, b) for the photometric distance,1 given by

  (4)

was more accurate according to this criterion.
 Models (4) correspond to an AMEI of e2

[2] = 249.81485 Mpc, as well as the parameters H0 = 61.43289962 km/s/Mpc 
and q0 = –0.1676786792. Models (4) have the feature of structural-parametric identifi cation with respect to the criterion of 
minimal inadequacy error [15], while the other models associated with the data of Table 1 are results of parametric identifi ca-
tion alone. We emphasize that the model with maximum complexity among all the models mentioned above is an expansion 
of the Freedman–Robertson–Walker model in a multivariate Taylor series.

1  The protocol form (without rounding) is assumed for the estimates in this article. The accuracy characteristic for the models is taken to be 
the AMEI eϑ

[s], where ϑ is the binary code for the model structure or the exponent on the highest power of the arguments in the Taylor series 
(MMS); [s] is the index for the structural-parametric identifi cation algorithm in the scheme for overlapping observation of the inadequacy 
error with s = 1 corresponding to MMKMEDS and s = 2, to MMKMNK [12].
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TABLE 2. Tests for Compositional Uniformity of Data on SN Ia* [3, 17, 30]

Composition 
of sample N

Presence of structural elements
q0

H0,
km/s/Mpc

AMEI,
Mpc

Combined AMEI,
Mpcθ000 θ..0(l, b) θ001z θ002z2 θ..3z3

27 27 No Yes Yes No No – 61.61158337 11.068886 –

33 33 No Yes Yes No No – 62.52214331 78.911354 –

10 10 No Yes No No No – – 89.506042 –

42 42 Yes Yes No Yes Yes – – 257.432740 –

27+33 60 No Yes Yes No No – 57.61546093 70.458221 –

{27}+33 27+33 – – – – – – – –
(27·11.068886 + 

33·78.911354)/60 = 
48.3822434

27+10 37 Yes Yes Yes No Yes – – 58.518127 –

{27}+10 27+10 – – – – – – – –
(27·11.068886 + 

10·89.506042)/37 = 
32.26811735

27+42 69 Yes No Yes No No 1.000733861 52.66547093 173.63211 –

{27}+42 27+42 – – – – – – – –
(27·11.068886 + 

42·257.43274)/69 = 
161.0294928

33+10 43 No Yes Yes Yes No –2.150035384 72.65568241 136.25961 –

33+{10} 33+10 – – – – – – – –
(10·89.506042 + 

33·78.911354)/43 = 
81.37523493

33+42 75 Yes Yes Yes Yes No 1.541311597 87.55912376 227.31390 –

33+{42} 33+42 – – – – – – – –
(42·257.43274 + 

33·78.911354)/75 = 
178.8833302

27+10+33 70 No Yes Yes No No –3.350638341 93.90931934 78.289024 –

{27+10}+33 37+33 – – – – – – – –
(37·58.518127 + 

33·78.911354)/70 = 
68.13207687

27+10+42 79 No No Yes Yes No –0.1676786792 61.43289962 249.81485 –

{27+10}+42 37+42 – – – – – – – –
(37·58.518127 + 

42·257.43274)/79 = 
164.2701997

10+42+33 85 No No Yes Yes No –0.247404035 63.47458096 261.63760 –

27+42+33 102 Yes Yes Yes Yes Yes –1.441257709 86.27635027 170.36908 –

27+10+42+33 112 No Yes Yes Yes No 0.6092962354 51.5893877 227.00719 –

{27+10+33}+42 70+42 – – – – – – – –
(70·78.289024 + 

42·257.43274)/112 = 
145.4679175

{10+42+33}+27 85+27 – – – – – – – –
(27·11.068886 + 

85·261.63760)/112 = 
201.2326422

{27+33+42}+10 102+10 – – – – – – – –
(10·89.506042 + 

102·170.36908)/112 = 
163.1491659

{27+10+42}+33 79+33 – – – – – – – –
(79·249.81485 + 

33·78.911354)/112 = 
199.4593556
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 It is important that the more complicated version of model (2) adopted in Ref. 4 led to a higher inadequacy error 
owing to the inclusion of 3rd order Taylor series terms. In addition, the doubt expressed in Ref. 17 about the possibility of in-
creasing the estimates H0 = 65.2 km/s/Mpc for ΩΛ = 0.76 [3] and H0 = 63.0 km/s/Mpc for ΩΛ = 0.72 [17] by 10% to H0 = 70.0 
km/s/Mpc is confi rmed in Ref. 25. The doubt arises because the “age of the universe” (H0

–1 > 13 billion years) is consistent 
with the “age” of old stars in globular clusters only for the Hubble constant H0 < 70.0 km/s/Mpc. In Ref. 5, the Hubble constant 
is included in the functional χ2 for the estimate and in Ref. 17 the photometric distance is determined independently of H0.
 We recall that the data on supernovae [3, 17] used to derive model (1) consist of sample sizes N = 27+10 [3] and 
N = 42 [17]. Each element of the samples required special handling: selection in terms of type, recovery of the luminosity 
curve, and an estimate of the brightness at the maximum and the errors in the “luminosity standard,” as well as (which was not 
done) an estimate of the inadequacy errors for the theory of the assumed mechanism of the outburst and testing of the data for 
statistical uniformity. In this case, we should consider not just statistical, but, strictly speaking, compositional uniformity [15]. 
Table 2 lists the results of this kind of testing with respect to the condition of “minimum AMEI of the model for combining 
samples less than the total AMEI of the components” by the MMKMNK algorithm [15] based on a maximum complexity 
model with K = 3 for different combinations of samples: 27 SN Ia with z = 0.00834–0.1245 and 10 SN Ia with z = 0.30–0.97 
[3]; 42 SN Ia with z = 0.172–0.830 [17]; and 33 SN Ia with z = 0.010–1.390 [30]. The brackets {·} denote samples that have 
been combined or separated for hypothesis testing. The distinctive feature of the test is the indicated structural elements of 
model (4), which make it possible to determine the cosmological parameters q0 and H0: θ001 is the parameter for the term in 
an expansion containing only the variable z; θ002 is the parameter for the term in an expansion containing only the variable z2.
 We note a number of anisotropy parameters that are not related to the variable z and represent the zero-point, which 
serve more as an index of the statistical (compositional) nonuniformity of the data: θ000, the free term in the expansion; 
θ..0(l, b), anisotropy parameters unrelated to to the variable z but related to the variables l and b at nonzero powers. Here θ..3z3 
is the parameter for the term in z3.
 An analysis of the data of Table 2 showed the following: all the listed samples and their combinations do not form a 
compositionally uniform set, since any combination leads to an increase in the total AMEI. This is (primarily) related to the 
unbalanced and random character of the plan for forming the samples because of the unpredictability of the times at which the 
supernovae appear. The position characteristics of the DL(z) dependence for the boundary structure did not reach the maxi-
mum complexity model (4) with K = 3, except for the data of Refs. 3 and 17. In two cases the zero-point is compensated:

DL(l, b, z)|N = 79 = (4879.9985 + 10.070535b)z + (2854.0151 – 12.452332l)z2 ± 249.81485;

DL(l, b, z)|N = 85 = 4723.0317z + (2945.7644 – 9.6923456l)z2 ± 261.63760.

 The full combination of the data is described by the model

DL(l, b, z)|N = 112 = –0.21844190l + (5811.1265 + 7.9642649l – 6.4452453b)z – 1135.2145lz2  ± 249.81485.

 There may be no “impasse in cosmology.” Indeed, large values of H0 are obtained from type SN Ia supernovae for 
red shifts of z ≈ 1 or less, and smaller values are obtained from the microwave background radiation corresponding to the 
boundaries of the observable part of the universe and very large red shifts.
 An idea of an answer to the question of the discrepancy in the estimates of H0 was indicated in Ref. 31 and involved 
“direct measurement” of H(z) based on the derivatives (Δz/Δt). The corresponding diverging estimates of H0 are given in 
Ref. 17, and the competing hypothesis posits a “discrepancy” in the H(z) dependence. Thus, it is possible to avoid dramatizing 
the situation with the Hubble constant, although the discrepancies in estimates of the fundamental constant of gravitation and 
the Hubble constant are related to one another in the model for the cosmological distance scale.
 Conclusion. Testing for compositional uniformity of the data of [3, 17, 30] with respect to a structured expansion in 
a three-dimensional Taylor series [15, 25] for the Freedman–Robertson–Walker model is a more rigorous test than with a 
structured expansion in a one-dimensional Taylor series [23]. And the main conclusion that follows from calibrating the dis-
tance scale with SN Ia supernovae is thus far that this is yet another argument in favor of the statement that the cosmological 
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distance scale is not metric. This scale is an analog of the “standards method” [28] based on an indirect measurements [15], 
which only supplements the estimate of the leader of the HST KP. Nevertheless, these calibration approaches are also useful 
in other problems.
 We recall that the basic metrological characteristic of any means of measurement besides a primary standard that es-
tablishes a measurement scale for a physical quantity is a function of its error [32–34]. In accordance with the classifi cation of 
identifi cation measurement problems, distinctions are made between statistical and dynamic, and individual and type models 
of the errors of a means of measurement as functions or operators [15]. In the statistical case, the error function of a means of 
measurement consists of a systematic component (position characteristic) and a multivariate probability distribution (spread 
characteristic). which represents a combination (convolution or composition) [35] of random and unexcluded systematic 
components. Indeed, a more successful name for these components is “observed” and “unobserved,” which corresponds to 
their sources in a measurement problem.
 If verifi cation, calibration, gradation, and testing of means of measurement can be regarded as varieties of control 
and defi ning tests, when they are conducted under laboratory (normal) conditions the error function can be represented as a 
function of a single argument – the measured quantity. However, during research tests, including in accelerated tests and tests 
for confi rming the type of a means of measurement, the error function can also become a function of infl uencing quantities. 
And in this case, the method described here for analyzing the cosmic distance scale based on multivariate models in the form 
of structured Taylor series in a scheme with crossover observation of the inadequacy error [15] turns out to be useful. And the 
more so, since for many means of measurement within the range of the measurements, the systematic component of the error 
function makes at least one or two full oscillations and is described by a trigonometric function or a polynomial of no higher 
than 3rd order [36].
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