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A METHOD OF MEASURING THE INDEX 

OF ACOUSTIC VOICE QUALITY BASED ON 

AN INFORMATION-THEORETIC APPROACH

V. V. Savchenko UDC 534.6:53.082.4

A new method is proposed for measurements of an index of acoustic voice quality using the Kulbaka–

Leybler information metric. The primary benefi t of this method consists in its high-level dynamic properties, 

as calculated by eliminating the problem of a small number of observational samples. A theoretical study 

of the method’s effi ciency was conducted, and its conclusions were confi rmed experimentally. It has been 

established that, in order to provide a suffi ciently precise assessment of the voice quality of the speaker, 

a speech signal of duration 2–3 minutes is required.
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 Speech, as a method of communication between people, has steadily attracted the attention of the scientifi c community 

for many years. Currently, automatic speech processing systems are broadly distributed around the world [1–3]. The effi cien-

cy of such systems depends on many factors, the fi rst of which is the quality of speech that is manifest in all its main acoustic 

properties, such as recognizability, loudness, timbre, and intelligibility [4, 5]. The amplitude-phase spectrum of the minimal 

sound units, phonemes and their allophones, is the universal characteristic of the acoustic properties of speech [6]. Hence, 

specialists properly associate the evaluation of acoustic voice quality with measurements of the complex frequency spectrum 

S(j, ƒ) of speech signal x(t) at current time t for limited time intervals of duration T = 10–20 msec per speech frame [7], where 

ƒ is the cyclic frequency.

 The fi rst-ever technical device capable of distinguishing the vowel sounds of Russian oral speech from the distribution 

of energy of a speech signal on 14 parallel bands of the sound range of frequencies up to 4 kHz was created in 1946 in the 

USSR [8]. The spectrum-based orientation of acoustic research was continued by scientists in the USA, within the Visible 

Speech technology of dynamic spectrography, created by them one year later [9]. Hence, a considerable amount of material 

in the fi eld of speech acoustics had been accumulated by the middle of the 20th century. In the 1960–70s, researchers already 

understood that automatic speech processing is a very challenging scientifi c and technical problem, the solution to which re-

quires a great volume of specialized knowledge and a powerful technical base. At the same time, acute problems in this line 

of research were also designated [10]. In particular, essential distinctions were discovered between the linear orderliness of 

phoneme chains in a speech stream and the physical partitioning of a speech signal into frames in which these phonemes are 

implemented. The study of the correspondence between linguistic markers of phonemes and their physical correlates turned 

out to be even more complex. It is shown in [11] that the very same sound unit can have a multivariate (variable) articulation 

and acoustic embodiment depending on the functional status of the speaker and his specifi c voice features. In specifi cally that 

way, the effect of within-speaker acoustic variability of speech, and moreover variability of random and unpredictable nature, 

is revealed [12, 13]. Hence, a non-trivial approach based on the likelihood model of a speech signal is required in order to 

evaluate the acoustic parameters of voice quality. This article is devoted to its research and execution within a new method of 

acoustic measurements.
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 Unlike methods based on traditional spectral characteristics of speech sounds such as distortion of the frequency 

range of a speech signal, log-spectral distance, Itakura–Saito distance, and others, a frequency equivalent of the Kulbaka–

Leybler measure lies at the base of the research that was conducted. This equivalent embodies a universal information-

theoretic approach and is coordinated with standard auditory estimates of acoustic voice quality [4–6, 14–19]. This made it 

possible to formulate the developed method in terms of a likelihood model of speech sounds of the speaker, taking into 

account the statistical stability of the results of measurements from sample to sample, and also the consistency of these results 

[12, 18]. Here, the solution of the small observation sample problem has essential signifi cance in the new method [6, 7].

 Task statement. The amplitude-phase spectrum S(ƒ) = |S(i, ƒ)| of a speech signal s(t) over an observation interval of 

fi nite duration t < ∞ is determined by the modulus of its spectral density in the function of frequency oscillations ƒ, measured 

in Hz [7, 8]:

 S( j, f )= s(t)exp(−i2πft)
0

T

∫ dt.�

 Different amplitude-phase spectra correspond to different speech sounds. The amplitude-phase spectrum of a speech 

signal on a fi nite J-set of realizations sj(t), j ≤ J, of a specifi c (the same) sound unit is described by J different dependences 

Sj(ƒ) in which the effect of acoustic variability appears. Consequently, one may draw a conclusion on the quantitative measure 

of this sound unit: this is a certain distance

 

between single-phoneme realizations sj(t) and sk(t) of a speech signal in the frequency domain, averaged over the set of 

corresponding spectral characteristics {Sj(ƒ)}, according to the expression

  (1)

where the symbol ≜ designates equality by defi nition.

 For example, in the case of classical Euclidean metrics, the mathematical description of the material form of a speech 

signal has the form

 

where F is the the upper frequency of ƒ in the speech signal spectrum.

 However, this metric is insuffi ciently sensitive to distinctions in the spectral characteristics of speech sounds outside 

the regions of their primary (dominant) formant [14, 15]. This indicated shortcoming is excluded from the Itakura–Saito 

distance, which is broadly distributed in acoustics research and is coordinated with auditory estimations of speech quality [5]:

  (2)

 It has been confi rmed in [19] that the admissible degree of variability of speech sounds within a set of realizations 

{Sj(ƒ)} is defi ned in the metric of (2) by the threshold condition ρj,k ≤ 0.1. Here, in recalculating to the symmetric form of 

COSH distance [15]

  (3)

we write, in accordance with (1),
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  (4)

 Currently, the COSH distance is one of the most widespread numerical measures of spectral variability in speech 

acoustics. However, its practical use is limited in this case by the unique nature of the results obtained (calculation on a spe-

cifi c speech stream, and the defi ned conditions of its production and the specifi c speaker). This is a direct consequence of the 

deterministic models (2) and (3) of the speech signal that are the foundation of the COSH distance (4). Hence, hereafter the 

author proposes in its stead a different index of speech sound quality, within which a universal information-theoretic approach 

is implemented.

 Indicator of acoustic speech quality. Expression (2) formally repeats the defi nition in the frequency domain of the 

informational mismatch (divergence), in accordance with Kulbaka–Leybler, of the Gaussian signals sj(t) and sk(t) [16]. 

Moreover, the essential position of the theory in relation to the speech signal model being used is concealed behind the formal 

side of the problem. If a deterministic model that has been specifi ed by energy spectra or signal power spectra Sj
2(ƒ) and Sk

2(ƒ) 

was used within expression (2), then with reference to the Kulbaka–Leybler divergence one should mention the statistical 

estimates Gj(ƒ) and Gk(ƒ) of the power spectrum density (PSD) G(ƒ) of a hypothetical (modeled) random process over its 

interval of stationarity of duration T [17, 20].

 At fi rst sight, an inadmissible substitution of concepts has occurred: the initial deterministic model of a speech signal 

is unjustifi ably replaced by a likelihood model. However, taking account of the asymptotic defi nition of the PSD:

 

as T → ∞ (M[·] is the symbol for population mean) through the normalized mean statistical value of the power spectrum of a 

signal, the replacement taken above is theoretically strictly conditioned by the equality of general form [20]:

 

 Then by analogy with (2), one may write

 
ρ j,k = F−1 {Gj ( f ) /Gk ( f )+ ln[Gk ( f ) /Gj ( f )]−1}df

0

F

∫ .�
 (5)

 In symmetric form, the expression has the form

  (6)

 Substituting (6) into (1) within the calculation framework of (3), we derive the dependence

 

  (7)

where
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 G( f , J )=
Δ
J−1 Gj ( f )

j=1

J

∑ , G−1( f , J )=
Δ
J−1 Gj

−1( f )
j=1

J

∑ �

is the mean arithmetic and mean inverse (harmonic) value over the set {Gj(ƒ)} of PSD estimates.

 Expression (7), taking into account equalities (5) and (6), characterizes the probabilistic Gaussian model of the 

minimum sound units [6]. This model will be coordinated with results of fi eld studies of the sounds of Russian speech, based 

on the systemic principle of the minimax of entropy [12, 21].

 The task consists in strictly defi ning the criterion for evaluating the voice quality of the speaker in the form of 

objective and statistical characteristic using acoustic parameters (7). With a suffi ciently large volume J of the sample, this 

characteristic is extended with a high degree of confi dence to a given speaker’s speech fl ow, obtained at different times 

and in various conditions. The speed of convergence of index (7) to its asymptotic limit value ρ* = ρ(∞) thus is of crucial 

importance.

 It is known from spectral analysis theory that for any fi nite T < ∞, both spectral estimates entering the right side of 

expression (7) do not possess the property of consistency [20]. However, they do converge asymptotically (as J → ∞) to the 

optimum on dispersion of variations, since statistical averaging is used in them. Moreover, they converge relatively quickly 

under the 1/J power law. Therefore, it is possible to confi rm that in the fi rst approximation under the power law the statistical 

estimate (7) as a whole also converges to its limit value ρ*. Here, the metric relationship is ρ* ≥ 0, with equality to zero only 

in the degenerate case, in the absence of any variability within the set of implementations of the PSD of the same index 

{Gj(t)}, i.e., when the equality  is fulfi lled.

 An acceptable result (at a signifi cance level on the order of several percent) will generally be available for J ≥ 100. 

And these are very low requirements from the point of view of practice of acoustic measurement [5–7]. The conclusions that 

have been drawn are confi rmed by the successive results of physical testing.

 Program and results of research. The author’s Voice Self-Analysis software system was involved in the conducted 

experiment [22]. Based on algorithms (2)–(6) and the Berg–Levinson computational procedure [20] for T = 10 msec and the 

digitization frequency of the speech signal 8 kHz (coordinated with a 4 kHz pass band on a standard telephone communications 

channel), the speech quality index (7) estimated from acoustic markers is implemented in a relative (percentage) expression 

in this system:
  (8)

 This index is determined automatically: sequentially for segments of a speech signal of identical duration 20 sec. 

Here, the vowel speech sounds: A, O, U, I, Y, and E were used exclusively, as the most informative among all other sound 

units of Russian speech in the acoustic-articulation sense [18]. Human speech is oscillations of complex form that depend on 

the words being pronounced, the timbre of the voice, intonation, sex, and age of the speaker. Hence, the control group of 

speakers consisted of three people: men 60 and 31, and a woman 30 years old. Each of them read in on-line mode into a 

microphone the same artistic text from Chapter 1 of “The Captain’s Daughter” by A. S. Pushkin. The results obtained for each 

speaker were displayed on the PC monitor in the form of a dependence graph (8) dynamically, sequentially for each segment 

of the speech signal in order. In order to monitor the information index (7) and record the moment at which the acoustic voice 

quality of the speaker reaches a high value, the corresponding index was placed in the software system. In the experiment 

being examined, recording such events required no more than two to three minutes.

 The voice quality minimum, as estimated from acoustic markers, generally occurred at the beginning of the period 

of the speaker’s reading the control text, when the reader had not yet managed to concentrate. On the contrary, the voice 

quality maximum was recorded most often by the program closer to the end of reading, i.e., during moments of maximum 

concentration of attention of the speaker. At the very end of this period, index (8) decreased, albeit insignifi cantly, in the 

process of natural exhaustion of the speaker in the course of continuous reading. In this, the high precision of the conducted 

measurements was ensured by a considerable volume of data test sample.

 At the specifi ed digitization frequency of a speech signal, 1.6·105 data samples were obtained within each of its 

segments, or on the order of L = (8–9.6)·104 (about 50–60%) with reference to vowel sounds. In recasting to one vowel (of 
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the six), on the average this gave each Russian vowel not fewer than J = L /6·80) = 200 of its samples (allophones), which 

provides evidence of the suffi ciently high precision of measurements of an index (8).

 High speed or minimal requirements for the amount of the control sample of a speech signal is the chief advantage 

of the developed method among its modern analogs. This is particularly shown in Fig. 1, which presents three charts of the 

dispersion of the index of acoustic voice quality dynamically for all speakers and with reference to the vowel sound O. 

According to the presented results, the convergence of index (7) to its lower bound ρ* is reached with a relatively small num-

ber J = 40–50 of samples of the speech sound. Moreover, for all other vowels spoken by different speakers, the dynamics of 

convergence by the character had practically no change. Thus, the pressing issue of small observation samples in the acoustic 

measurement task has been resolved successfully. Here, the acoustic features of different speakers are shown mainly in the 

value that is maximally achievable for each of them: the smaller this value, the less the variation in pronunciation of the 

specifi c speaker.

 The experimental estimates that were obtained confi rm as a whole the results of the theoretical study conducted 

previously. Along with the guaranteed reliability in the asymptote, the developed method possesses high dynamic properties 

and can be recommended for application in tasks with small samples, the amount of which is commensurate with the response 

time (or memory) of a signal processing system.

 Discussion of the obtained results. In the majority of work so far on studying the quality of oral speech, the heuristic 

approach based on auditory or expert estimates still dominates. And although their authors formulate their results in terms of 

statistical estimates and conclusions, in the absence of a strict criterion of effectiveness they have an essentially deterministic, 

individual nature and are consequently not beyond the subjective characteristics of specifi c texts and the evaluation of specifi c 

speakers. This article presents a criterion of a different type. Its theoretical justifi cation is based on the principle of the minimum 

of information mismatch by Kulbaka–Leybler. The main distinctive feature of the criterion is the presence of high dynamic 

properties in the calculations for resolving the issue of small samples. It was shown in practice, using an example of speech 

analytics, that when using the information index (7) it is necessary to have a speech signal duration of several minutes so that 

the evaluation of the acoustic voice quality of this speaker be suffi ciently precise and informative.

 Conclusion. Strict substantiation of a new method of measuring voice quality using the Kulbaka–Leybler information 

metric follows from the results of the test that has been conducted. Requirements have been defi ned for the volume of 

representative speech material. The proposed method, unlike the majority of known methods, extends to different speech 

streams, various times, and any conditions of speech production. The results obtained in this article are important for both the 

theory and the practice of acoustic measurement. The fi elds of application of the studied method includes the theory and 

technology of digital speech processing, as well as modern speech technologies in daily life, production, and transport, where 

voice quality is a key factor from the point of view of overall performance of system as a whole.

Fig. 1. Dynamics of the convergence on the dispersion of the estimate of the acoustic quality of the sound of 

the vowel O for the fi rst (a), second (b), and third (c) readers.
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