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GENERAL PROBLEMS OF METROLOGY 
AND MEASUREMENT TECHNIQUE

BAYESIAN ESTIMATES OF SYSTEMATIC ERRORS 

OF MEANS OF MEASUREMENT
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and A. G. Chunovkina

The problem of calculating the expanded uncertainty of measurements during calibration is examined. Two 

sources of measurement error are identifi ed: the uncertainty of the reference value obtained from a standard 

and the dispersion in the readings from the measuring instrument that is being calibrated. A Bayesian 

approach is used to determine the dependence of the coverage factor on the number of repeated measurements 

and the relationship of these uncertainties.
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 The concept of measurement uncertainty [1–4] is used in metrology along with error estimates [5]. The question of 

which approach is preferable in these metrological problems remains open. Error calculations are, however, widely used in 

the calibration of means of measurement. During calibration, the systematic error of a measuring instrument is often deter-

mined as the deviation of the readings from a reference value of the measured quantity that is reproduced or obtained from a 

suitable standard.

 The following are taken into account when calculating measurement uncertainty: uncertainty in the calibration char-

acteristics of the standard measurement instruments or in the current values of the standard gauges, as well as their instability; 

nonlinearity of the calibration characteristic of the measurement instruments; random errors in the standards, the instrument 

being calibrated, and the calibration technique; and uncertainty in the corrections for the deviations from standard conditions 

specifi ed for each type of measurement and in the method for transfer of the unit of the measured quantity.

 This article discusses a simplifi ed model for the systematic error B of a measuring instrument that is being calibrated:

 B = X – Xref, (1)

where X is the average reading of the instrument being calibrated for a number of repeated measurements that approaches 

infi nity, and Xref is the reference value of the measured quantity.

 For a specifi c form of measurement and calibration technique, model (1) becomes more complicated with the intro-

duction of corrections for infl uence factors and the approach discussed below can be generalized for any particular case.

 For measurements with the aid of a standard, an estimate of the measured quantity is obtained with the corresponding 

uncertainty {xref, u(xref)} or with an indication of the limits of error {xref, θ}. In the former case, information on the measured 

quantity can be represented by a normal density distribution pref(x) with mathematical expectation xref and standard deviation 

u(xref) and in the latter case, by a uniform distribution with center xref and symmetric boundaries ±θ [6].
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 Usually, repeated measurements x1, ..., xn are made during calibration in order to evaluate the combined random 

error owing to the standards, the instruments to be calibrated, and the calibration technique. Here it is assumed that the unit 

readouts of the measurement instrument are distributed normally with unknown parameters {Xref + B, σ}, where σ is a preci-

sion (repeatability) parameter for the measurement results during calibration. Thus, in this problem there are three unknown 

parameters Xref, B, and σ. The joint probability distribution for these parameters is found using Bayes’ theorem on the basis 

of the available a priori information, as well as the information obtained during the measurements. We assume that these 

parameters are independent. We also assume that there is no a priori information on the bias of the readings from the mea-

surement instrument or the precision of the measurements and that these are described by an uninformative a priori density 

distribution p(b, σ) ∝ σ–1 for these parameters (the symbol ∝ denotes equality to within a normalization factor).

 Let us consider the fi rst of these cases. Here the a posteriori joint distribution is specifi ed by

 

 

 Integrating with respect to the interfering parameter makes it possible to fi nd an a posteriori distribution for the 

systematic error:

 

After some simple calculations, we obtain:

 

 

  (2)

where Γ(n/2) and Γ(n – 1/2) are gamma functions, and x is the mean value for a fi nite sample.

 Therefore, in the Bayesian approach the systematic error is described by the random quantity B in the distribution (2), 

for which the mathematical expectation and standard deviation are estimates of the error and standard uncertainty, respective-

ly. An estimate for the systematic error can be obtained by substituting the estimates of the input quantities in Eq. (1):

 ∫ = x – xref.

 According to [1], the corresponding standard uncertainty is calculated using the formula

  (3)

 The Bayesian approach, however, yields another formula for the standard uncertainty [7]:

  (4)

 Equation (4) is meaningful only for n > 3. It is interesting to note that in [8], repeated measurements are also taken 

to have n > 3. Equation (4) decreases monotonically and approaches Eq. (3) with increasing n. For suffi ciently large n, Eqs. (3) 

and (4) are essentially the same.
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 The purpose of this article is to calculate the expanded uncertainty of measurements for a probability (confi dence 

level) P; it is given by the product of the combined standard uncertainty and the coverage factor k:

 

 An expression for k with P = 0.95 has been found for the cases discussed above (B and σ independent, with no a priori 

information on their possible values). In this case, it is generally assumed that k = 2. Here we analyze the differences in the 

estimated uncertainty for k = 2 and for its exact value.

 We consider the transformed random variable:

 

 The distribution of Ä is determined by transforming Eq. (2) for B:

  (5)

 Equation (5) is the convolution of the normal distribution and the Student scaling distribution with n – 1 degrees 

of freedom, which depends on the parameter γ = n1/2u(xref)/S. As γ → 0, the distribution (5) converges to the Student dis-

tribution, while for γ → ∞ it approaches the normal distribution. The parameter γ is the ratio of the standard uncertainty 

resulting from the standard that is used to the sample standard deviation of the averaged result, which characterizes the 

random error of the measurements during transfer of the unit of the quantity. Evidently, the values of this parameter are 

always limited in practice.

Fig. 1. k0.95(γ, n) for the case in which there is a reference value and a corresponding 

uncertainty.
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 We have calculated the percentage points α0.95 of the (5) distribution for different values of γ and n and for symmet-

ric probability intervals for P = 0.95. Accordingly, the expanded uncertainty of the initial quantity B is calculated using the 

formula

 

 The fi nal goal was to obtain the functions k(γ, n), which makes it possible to proceed from the standard to the expanded 

uncertainty of the measurement. When n > 3, Eq. (4) applies for the standard uncertainty, so the coeffi cient k is given by

 

 Figure 1 is a plot of k0.95 as a function of γ for different values of n.

 k = 2 is an upper bound estimate for P = 0.95 if the standard uncertainty of the measurements is calculated using Eq. (4); 

for n > 5, k differs from 2 by less than 2%. Similar calculations of k were done for the case when estimates of the reference 

value and the limit on its permissible error {xref, θ} are known. Here the information on the value of the measured quantity is 

formalized as a uniform distribution with center xref and symmetric boundaries at ±θ. Values of k for calculating the expanded 

uncertainty were also obtained:

  (6)

 k0.95 is plotted as a function of n and γ = n1/2θ/S for P = 0.95 in Fig. 2. As opposed to the previous case, the values 

of k are signifi cantly different for different γ. However, it should be noted that for P = 0.95 and n > 4, the k(γ) curves are es-

sentially the same for different n.

Fig. 2. k0.95(γ, n) for the case in which there is a reference value and a limit on the 

permissible error.



946

 There is some interest in comparing these estimates for the expanded uncertainty with the confi dence limits on the 

error given in [8]:

  (7)

 We now denote r the ratio of the expanded measurement uncertainty given by Eq. (6) to the confi dence limits on the 

error given by Eq. (7). Figure 3 shows plots of r as a function of n and γ = n1/2θ/S for p = 0.95. Figure 4 shows that the differ-

ence between the two estimates of the accuracy can approach 10%. For 0 < γ < 2, Eq. (7) gives a low estimate of the accuracy 

compared to the Bayesian estimate (6), and for γ > 2 the situation is the opposite.

 We conclude with an example of estimating the measurement uncertainty during calibration of a liquid thermometer. 

The following measurement data for the temperature of the thermometer to be calibrated: {40.01; 40.018; 40.020; 40.017; 

40.014; 40.014; 40.011; 40.016; 40.011; 40.017}, x = 40.016. A standard was used to fi nd the measured value xref = 39.999 

with a permitted error limit of θ = 0.01. The systematic error of the thermometer was calculated using the formula b = x – xref. 

and found to be b = 0.017. Formal application of [1] gives

 

 

 

 U0.95
[1] = 2 uA

2 (X)+uB
2 (X) = 0.012.�

Fig. 3. The ratio r of the expanded measurement uncertainty calculated using Eq. (6) to 

the confi dence limits on the error calculated using Eq. (7) as functions of n and γ = n1/2θ/S 

for P = 0.95.
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 When the approach with k = 2 was used, a coverage interval of (0.005; 0.29) was found for b. The choice of k = 2 

corresponds to the assumption of a normal distribution for the systematic error of the instrument. Figure 4 shows a normal 

distribution (curve 1). When a Bayesian estimate is used for the systematic error, the coverage interval is (0.006; 0.027). 

Curve 2 of Fig. 4 corresponds to the probability distribution for the systematic error. The points on curves 1 and 2 indicate the 

corresponding coverage intervals. The approach of Ref. 1 yields a wider coverage interval. It can be obtained using the curve 

of Fig. 3 for γ = 10.29 and n = 10. For these values, k = 1.7 and the corresponding coverage interval is (0.006; 0.027), in 

agreement with the interval obtained using the Bayesian approach. Finally, using Eq. (7) gives an interval of (0.006; 0.028) 

for the systematic error of the thermometer. At the same time, formal application of Ref. 1 yields an excessive estimate of the 

measurement uncertainty.

 In this article, we have examined the problem of estimating measurement uncertainty during calibration, when the 

measurement equation is of the form (1). We have considered repeated measurements and two ways of representing the data 

on the reference value of the measured quantity. The coverage factor k and the expanded measurement uncertainty have been 

calculated using a Bayesian approach. The results have been compared with those obtained using [1] and the calculations of [8]. 

The conditions for using k = 2 for the standard combined uncertainty according to the Bayesian approach have been formulated.

 These calculations of the expanded uncertainty in a determination of the systematic error of a measuring instrument 

during calibration can be used to calculate the measurement uncertainty in a situation where the following measurement data 

are available: the results of more than three repeated readouts from the instrument; a priori information on the accuracy of 

this instrument, which can be represented by the instrumental uncertainty uB or the measurement error limit θ. In this case, it 

is necessary to fi nd the distribution of the measured quantity, which can be obtained in a way similar to the calculations of [9].

 In this situation with two sources of uncertainty, Eq. (7) for the confi dence limits of the combined error [8] is within 

10% of the Bayesian estimate for the expanded measurement uncertainty (6).
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