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METHODS AND MEANS OF MEASUREMENTS
OF THE DISPERSION PARAMETERS OF
PARTICLES OF SUSPENSIONS IN THE
SUBMICRON AND NANOMETER RANGE

E. V. Lesnikov, M. V. Balakhanov, UDC 006.91:541.182.4/.65:620.3
and D. M. Balakhanov

Basic algorithms for processing autocorrelation functions for the method of dynamic light scattering,
the most efficient method for the determination of the sizes of particles, are considered. Algorithms for
processing the functions for the case of a polydisperse distribution of particles are proposed. Results of
measurements of the parameters of particles in liquid media, in particular, natural mineral waters, are
presented and a technique for their identification is proposed.
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In view of the widespread use of nanotechnologies in different fields, such as biology, medicine, energy, electron-
ics, optics, and photonics, we wish to study the problem of taking measurements of the dispersion parameters of aerosols and
particles of suspensions in the nanometer range. Following the approval of State Primary Standard GET 163-2003 of the units
of the dispersion parameters of aerosols, suspensions, and powdered materials, which had reproduced the dispersion param-
eters in the range of particle sizes 0.5-10 um, studies designed to improve the standard and to create a state secondary stan-
dard intended for reproduction of the sizes of the units of the dispersion parameters of nanoparticles of suspensions were
begun. In GET 163-2003 [1], the lower limit of measurements of the sizes of particles was expanded all the way down to
30 nm and the newly created State Secondary Standard of the units of the dispersion parameters of suspensions in the
nanometer range VET 163—-1-2010 assures the uniformity of measurements of nanoparticles in liquid media in the range of
concentrations 105-10'* cm™ and inspection and calibration of instruments for the measurement of the parameters of parti-
cles in the range down to 10 nm [2]. The measurements are based on the method of dynamic scattering of light, the primary
method of analysis of the parameters of nanoparticles in liquid media.

Particles of both natural and technogenic origin exert a significant effect on the processes that occur in air [3, 4] and
in liquid media, which, in turn, affect the climate and ecological situation, since a significant proportion of the particles trans-
ported by these media are found in the composition of the disperse phase of matter. In order to study and control the action
of particles on processes that occur in natural and technogenic media, the assurance of the uniformity and reliability of mea-
surements of the basic parameters of these media, such as the size (in units of length), countable concentration (expressed in
terms of the number of particles per unit volume), specific surface area (expressed in terms of units of area per unit volume),
and the volumetric and mass concentration (expressed in terms of the volume and mass of particles per unit volume), as well
as the form, structure, and chemical or biological composition of particles is of extraordinary importance.
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Several standard methods of measuring the size of particles, such as a method that uses features of the diffraction of
laser radiation by particles [5]; the method of dynamic light scattering in liquid media (in the range of sizes down to 3 nm) [6];
a method based on the differential electrical mobility of nanoparticles (in the range from 1 pm to 7 nm) [7]; and the method
of diffusion spectroscopy [8] are used in standard equipment.

Devices that use these methods are manufactured by a number of foreign firms, such as Malvern (Great Britain),
Fritsch (Germany), and others. For monodispersed particles, the estimates of the nonexcluded systematic error, the standard
deviation, and the expanded uncertainty with 0.95 confidence probability are 4.0, 1.5, and 8.0%, respectively. The limitation
of the lower limit of the measured particle sizes to 0.08-0.1 pm is a major drawback of these devices.

Dynamic light scattering is one of the most effective methods of determining the sizes of particles in liquid media [9].
The method is based on the analysis of the autocorrelation function of radiation that has been scattered by colloidal particles.
The applicability of the method for the analysis of monodispersed solutions of particles in a broad range of sizes from several
nanometers to several microns has been demonstrated in a host of experiments. However, there still does not exist a single
algorithm by means of which complex mixtures containing groups of particles of different sizes could be analyzed with a suf-
ficient degree of precision.

In a typical experiment in an analysis performed by means of dynamic light scattering, a test solution of particles is
illuminated by a narrow beam of light from a monochromatic coherent source (laser) with wavelength A, [10]. The light scat-
tered by the particles is detected coherently at an angle 0 relative to the direction of initial propagation of the beam. It is assumed
that the particles in the solution do not coalesce and do not expand. As a consequence of Brownian motion, the density of
the particles in the medium fluctuates over time and, consequently, the laser radiation scattered by the particles fluctuates.
The field created by the total wave constitutes a superposition of the fields scattered by the Brownian particles [11]:

N
En=Y Eje! 07000,
j=1

where Ej is the amplitude of the scattered wave, which depends on the form of the particle, its optical properties, the distance
to the detector, and the scattering angle; N, number of particles; ®,, frequency of incident radiation; (pj(t) =qr;, phase advance
associated with a random shift of the jth particle; r, radius vector of jth particle; and q = Kk, — Kk, difference of wave vectors
of incident and scattered waves. The modulus of the vector q is defined as

q = 4mny/ Aosin (6/2), (1)

where ny) is the index of refraction of the medium filling the scattering volume and 0 the scattering angle.
The intensity of the scattered radiation,

N
j=1 k=1

where E and E” are the complex-conjugate values of the strength of the electrical field of the incident radiation, is the quan-
tity we wish to measure.
The autocorrelation function of the intensity:

G, (v) =Dt + 1))
is constructed in order to obtain valuable information about the scattering particles. Here { ) denotes averaging over time.

If we are given a discrete series of measured values of the intensity /(z;), the autocorrelation function for a given
value of T may be calculated by the formula
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For spherical particles of identical size (degenerate distribution), the correlation function assumes the form:
GV =P E§(N* +(N? = N)e ™),

where B = E 12 / Eg ; E1 and E are the strengths of the electrical field of the scattered and incident waves, respectively; N, num-
ber of scattering particles; and I', damping factor. The term N in the coefficient of the exponential expression is negligible by
comparison with N 2 (we are assuming that the number of scattering particles is always great). Thus, the problem of deter-
mining the diameter of the particles reduces to that of finding the factor I", which is related to the diameter of a particle d by
the diffusion coefficient D:

T = ¢°D = ¢*kgT/(3nnd), 2)

where kg is Boltzmann’s constant; T, temperature; and 1, dynamic viscosity of the liquid. The modulus of the wave vector of
the fluctuations of the concentrations of particles is described in (1).
The correlation function of the intensity of scattered light, which has the form

=21/t +b

G(t)=ae
where a and b are empirical constants and 7, the correlation time, is analyzed in the course of implementing this method of
measurement, which is regulated by the standard [6].

In accordance with the solution of the diffusion equation, the inverse correlation time tcfl =T.
If there exists a discrete series of values of the intensities /(#;) obtained as a result of measurements, the correlation
function for a given value of T is calculated by means of the formula

N
1 T

G(t)= lim N—Zl(ti)l(ti +1),
T =1

Np—o

where N_ is the number of measurement points.

In the case of a polydisperse distribution of particles by size, the problem of determining the diameter of the particles
becomes complicated. Where the particles that are being investigated do not interact and where scattering of light is single
scattering, the correlation function may be represented in the form [10]:

It

Gmy=A+| Y Be |,
i

where B; = Bl-Nl-Eg =(1I;); (1;) is the time-averaged intensity of the light scattered by particles of the same type, and A is the
base line.

Usually, in the analysis of obtained data it is not the correlation function of the intensity G(t) which is used, but
instead the function g{(1), the correlation function of the field, defined as g,(1) = [G(T) — A] 12 For a polydisperse distribu-
tion with A = 0, the function g,(7) assumes the following form in integral form:

g1(0= [ BT )
0
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and in the form of a discrete series,

gi(m= Be i, )

The dimensionless coefficients B; contain information about the distribution of the particles by size.

Problems of the form (4) belong to the class of ill-posed problems. There are methods for processing data by means
of which as much information as desired may be extracted from the correlation function (4). Below, we present several gen-
eral methods used for the analysis of dynamic light scattering data in the case of a polydispersed distribution of particles by
size [12].

Using the method of cumulants [13, 14], information may be obtained concerning the disperseness of the system in
the following way:

_oDtf Mo o M3
g(=e |:1+ 2 T 3 +...:|, %)

where

W, = J-B(l")(l" —T)dr.
0

In this method, the correlation curve is approximated by one and only one exponential curve, which is characterized
by the damping factor I'. From (2), we find the harmonic mean of the size (average hydrodynamic diameter of the system).
By means of this method, it is also possible to determine the relative width of the distribution from the relationship

PI =y, /T2

This method functions effectively whenever the sizes of the particles possess a smooth distribution around a single mean
value. In the multimodal (more than a single maximum) case, it does not yield real information about the sizes of the particles.

With the use of the nonnegative method of least squares [15], it is possible to calculate the distribution histogram of
the particles by size for a given set of damping factors through minimization of the expression

M 2
-I'.t. .
X% :Z gl(’tj)—ZBie v —> min,

where 8(1) is an experimental autocorrelation function.
An exponential sample [16] is an alternative method of determining the damping factors, the distribution functions
of which are specified by the set {B;, I';}. The set of damping factors I'; is defined as

/o
L =Tem mme,

where ®,. is an empirical parameter. The coefficients B; are calculated by means of minimization of expression (4).

max
The general-purpose CONTIN algorithm of constrained regularization for inverting noisy linear algebraic and integral

equations [17, 18] is based on the Laplace transformation of the correlation function g(t), where the distribution function of
the damping factors B(I') is calculated by means of minimization of the expression

2

B = (1/6}) gl(Ti)—TB(F)e_FTdF +a“LB(F)2“,
i 0

1

where 0, is the standard deviation of an experimental point of given g(t;), and ol LB@) | Zisa regularizing term with regu-
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TABLE 1. Results of a Study of the Parameters of Latex Particles by Different Dynamic Light Scattering Methods of Processing
Data [20]

Sample
Parameter Method
5 5y 53 54 S5 Sg
Nominal 1915 54+£2.7 91+3 19 19 54
diameter, nm - 91 34 91
Ratlg relative _ _ _ 48 23 17
to diameter
(d) 20.3 55.0 87.0 36.9 29.5 69.0
cumulants
PI 0.029 0.009 0.008 0.248 0.191 0.069
dy, nm - - - 18.2 16.4 -
d,, nm . 80.7 50.1 -
NMLS’
B, - - - 0.45 0.42 -
B, 0.55 0.58
dy, nm - - - - 19.0 -
dy, nm . 54.0
ES
B, - - - - 0.45 -
B, 0.55
dy, nm - - - - 18.1
d, nm or 537
DEM
B, - - - - 0.45 -
B, 0.55
¥ Nonnegative method of least squares; - exponential sample; “* dual exponential method.

larizing coefficient 0 < o0 < 1 and operator L, where the second derivative is usually selected as the latter. By means of this
method, it is possible to easily describe a polydispersed system by approximating its monomodal distribution over the entire
range of sizes of the particles present in the mixture.

In the dual exponential, or bimodal method [19], a sample consisting of two clearly distinct modes of monodispersed
particles is represented, i.e., the correlation function is represented in the form of a sum of two exponential functions with
different sets of free parameters B; , and I'; 5:

gl(T) = Ble_l—‘l’c + Bze_rzt, (6)

which are determined by the nonnegative method of least squares through minimization of an experimental correlation func-
tion and a model function (6).

Experimental Testing of Different Methods of Processing the Data. Results obtained by these methods for three
monodisperse latex samples s,—s3 of different size and three samples s,—sq with bimodal distribution fabricated from differ-
ent combinations of monodisperse substances are shown in Table 1.

From the data of Table 1 (samples sy, s,, and s3), it follows that in a cumulative analysis PI < 0.01, which corresponds
to a polydispersivity size less than 5% (samples s, and s3). Consequently, for the bimodal samples s, 55, and s, cumulative
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analysis yields a value PI > 0.05 in all cases. The average diameter of the particles determined in a cumulative analysis for
the bimodal samples s, and s5 is less than the theoretical value. In sample s¢, the value of the average size of the particle
approaches the expected value. In order to achieve an exact measurement of the size distribution of the bimodal samples by
means of dynamic light scattering, sample s5 is quite difficult to analyze, since the ratio between the diameters of the two
types of particles is close to the critical value of 2 and the limit of the resolution for this method. In this case, the nonnegative
method of least squares yields two inaccurate average particle sizes, whereas both the exponential sample method and dual
exponential method yield similar results within a 5% error from the true values as well as a more precise size for fractions of
large particles. The basic problem in the description of bimodal particles measured by means of dynamic light scattering lies
in the precision with which the size of small particles is determined where there are large particles present. For sample sy,
the scattering intensity is much greater than (I) ~ d6, and the bimodality resolution will not affect the problems due to the
value of the size coefficient of the particles (4.8), whereas the nonnegative method of least squares yields a less precise result.
On the other hand, the bimodality of sample s, with the ratio of particle sizes less than 2 is found outside the range of capa-
bility of measurements performed by means of dynamic light scattering.

The exponential sample and dual exponential methods are more efficient from the point of view of the precision with
which particle size is determined. The algorithm of the nonnegative method of least squares is the most reproducible method
and makes it possible to track different combinations of monodisperse components present in the solution (under the condi-
tion stipulated above).

New algorithms possessing the advantages of those we have discussed have now been developed. One such study is
that of [20], in which the algorithm is based on the use of additional data obtained in static light scattering at several angles.
But none of these methods function if the examples of the particles differ less than three-fold.

It should be noted that the process of solving the problem is substantially complicated by the presence of a noise-
contaminating nonzero base line A in (4).

Equation (3) is a Laplace transformation, which is a special case of the general class of linear integral Fredholm
equations of the first kind with common kernel e 1T, However, there exist two constraints [18] that arise in a dynamic light
scattering experiment which renders the transformation ill-posed. The first constraint is related to all the different types of
noise that do not exhibit the nature of exponential descent and frequently distort the autocorrelation function due to the non-
ideal conditions of the experiment, e.g., nonuniform profile of the laser beam, insufficient resolution of the quantization sig-
nal and other base errors.

The second constraint is related to the fact that the bandwidth (range of delay times) in the correlator is always lim-

ited, i.e., the limits of integration in (3) are bounded from I' ; to I', ...

min

The essence of the algorithm of the nonnegative method of least squares consists in predetermination of the system
by addition of an a priori assumption concerning the value of the unknown vector x,, and subsequent minimization of the rate
of discrepancy by the method of least squares in order to obtain a unique stable solution. We have complemented the algo-
rithm of the nonnegative method of least squares with yet one more a priori component, the thesis that multimodal compo-
nents containing a group of particles of different sizes are present in the form of combinations of discrete Heaviside functions

the direct Laplace transformation of which constitutes a correlation function g(7) as follows:

g (1) = Z[Bi(e_r"T - e_(ri+A)T)/t], (7

1

where the parameter A is selected arbitrarily based on a given range of measurements of particle sizes and the noise compo-
nent of the correlation function, while the coefficients B; are determined by means of minimization of the difference of the
experimental correlation function and the sum of model functions with given damping factor:

& & T, (T;+A) i
-It; —([;+A)T; .
X%:Z gl(tj)—ZBi(e "—e 1)1, — min. ®)
j=1 i=1
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Fig. 1. Correlation function for a polydispersed mixture:

) experiment;
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Fig. 2. Results of processing an experimental autocorrelation function of a polydispersed
mixture by means of: @) CONTIN and the nonnegative method least squares, curves /
and 2, respectively; b) proposed approach.

Here g 1(1:j) is an experimental autocorrelation function; M, number of points of correlation times or number of channels form-
ing the experimental correlation function; and K, number of damping factors being considered.

Performing the operation of the inverse Fourier transformation on the function g,(t) with the coefficients B, that have
been found, we determine one-component distribution functions for a mixture of particles of different sizes present in the

solution:
M

K
-Tit; - +A)T;
g(m=D | Y Bie " —e il

j=1] i=1

In order to verify the proposed approach, we carried out a series of experiments with the dynamic light scattering
method using polydispersed mixtures consisting of monodispersed latex particles with sizes differing less than three-fold.
The results of processing the experimental correlation functions for such mixtures are presented in Fig. 2.

Theoretical autocorrelation functions calculated by means of (4) and (6) and an experimental autocorrelation func-
tion obtained on a dynamic light scattering analyzer for a mixture consisting of three types of monodispersed latex particles
20, 40, and 80 nm in size are shown in Fig. 1. From Fig. 1 it follows that the autocorrelation function obtained by means of
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Fig. 3. Examples of dispersed distributions of nanoparticles by size: a) nanoparticles
of spherical latex 21 and 105.7 nm in diameter; b) nanoparticles of gold 13.5, 32.6,
and 68.1 nm in size.

numerical modeling using formula (4) repeats the features of the function modeled by means of formula (8). This fact may
indicate that the two descriptions (5) and (8) of the autocorrelation function of the signal in the case of a polydispersed dis-
tribution of particles by size are equivalent.

Results found by processing an experimental autocorrelation function for a mixture of latex particles with sizes 20,
40, and 80 nm by means of the CONTIN algorithm and the algorithm of the nonnegative method of least squares are pre-
sented in Fig. 2a. An example illustrating the processing of this autocorrelation function by means of the approach proposed
by the present authors is presented in Fig. 2b.

Six latex suspensions of particles with nominal sizes of 20, 60, 100, 200, and 1000 nm and nanoparticles of gold 10,
30, and 60 nm in size produced by NIST (United States) were prepared and experimentally investigated as the model object.
The suspensions were prepared directly in a measurement dish by dissolving 200 pl of a test sample in 1.4 ml distilled water.
The results of the measurements are summarized in Table 2, and typical histograms of the distribution of the particles by size
are shown in Fig. 3.

Note that the mixture of latex particles 63.3 and 100.4 nm in size (cf. Table 2) does not possess any resolution, that
is, the analyzer yields a unimodal distribution of the particles by size. This may be due to the rather broad dispersed distri-
bution of the latex components. At the same time, mixtures of nanoparticles of gold the components of which have a narrower
dispersed distribution possess total resolution.

Thus, by complementing the algorithm used to process the data of the nonnegative method of least squares with one
more a priori component (representation of multimodal components containing a group of particles of different sizes in the
form of a combination of discrete Heaviside functions), we are able to substantially increase the resolution of the dynamic
light scattering method.
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TABLE 2. Results of Measurements of the Sizes of the Components of Mixtures of Particles of Latex and Nanoparticles of Gold

Characteristics of test mixture of particles
Characteristics of measured dispersed distribution of nanoparticles
substance particle size, nm size distribution
Bimodal distribution with centers 21 and 105.7 nm
Latex 212, 1004 6:1 Total distribution of peaks (Fig. 3a)
Latex 212,633 61 Bimodal dlSt.I'lbutIOIl with centers 13.5 and 68.1 nm
Total resolution of peaks
Latex 63.3, 100.4 61 Unimodal filstrlbutlon with center 77.1 nm
No resolution of peaks
Latex 63. 203, 1002.8 61:1 Trimodal d1s.tr1but10n with centers 63.3, 203, and 1002.2 nm
Total resolution of peaks
Gold 157, 68.1 61 Bimodal dlst.rlbutlon with centers 15.7 and 68.1 nm
Total resolution of peaks
Trimodal distribution with centers 13.5, 32.6, and 68.1 nm
Gold 16,38, 68 6:2:1 Total resolution of peaks (Fig. 3b)

TABLE 3. Results of Measurements of the Size of Latex Spheres in Deionized Water

Method

Nominal size of

particles, nm Interferometric Based on diffraction of laser radiation

measured particle size, nm | deviation of measurement result, % | measured particle size, nm | deviation of measurement result, %

20 18 -10 does not work -
40 38 -5 does not work -
60 56 -7 53 -12

In order to obtain an estimate and confirmation of the characteristics of the dispersion parameters obtained through
the inclusion of a dynamic light scattering spectrometer in the set of standard equipment, an independent method of deter-
mining these characteristics is needed. A new interferometric method of determining the size of particles in the nanometer and
submicron ranges on the basis of a Fabry—Perot interferometer was proposed and developed by the present authors [21, 22].
The method also makes it possible to determine the index of refraction of the material of these particles.

Interferometric methods of measuring the index of refraction of different media have long been known [23].
However, the integral characteristics of the index of refraction are measured by means of these methods. Thus, for example,
if the index of refraction of a suspension of particles in liquid is measured, the result of the measurement will be a combina-
tion of the indices of refraction of the particles and of the medium, and the greater the number of particles that are present in
the liquid, the closer the result will be to the index of refraction of the particles, i.e., the result will depend on the concentra-
tion of the particles N. To avoid this dependence, we wish to suggest calculating the index of refraction of the particles using
the dependence of the index of refraction n on the ratio NReS(0)/NImS(0), where S(0) is the extinction cross-section of a par-
ticle with a known diameter of the particles, ReS(0) and ImS(0) its real and imaginary parts, and N the concentration of the
particles. The index of refraction of diamond nanoparticles 106 and 854 nm in size suspended in water was determined by
this method and found to be 1.78 and 1.79, respectively [22].

Table 3 presents results of measurements of the size of latex spheres in pure deionized water obtained by an inter-
ferometric method and the method of diffraction of laser radiation.
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The obtained data are in agreement with the nominal particle sizes determined by the dynamic light scattering
method and, despite the fact that the error of the nominal sizes is not normalized, these results are not inferior to the results
of measurements found by means of diffraction of laser radiation. The countable concentration of the particles N is comput-
ed for a given diameter of the particles. A countable concentration of 50 pm_3 is a limiting value for this method, since the
measurement of phase and the amplitude relationships then become difficult.

Conclusion. The measurement methods and instruments that have been described here have been implemented in
the equipment of the State Secondary Standard of the units of the dispersional parameters of suspensions of nanometer-range
nanoparticles VET 162-1-2010 [25] in a newly developed and certified technique of measurement of the parameters of
nanoparticles in liquid media under the conditions of a polydisperse multimodal distribution [26] and have also been used in
comparisons carried out as part of COOMET Project No. 575/RU/12, “Pilot Comparisons in the Field of Measurements of
the Size and Concentration of Nanoparticles” [27]. Through the use of the measurement methods and instruments that have
been developed at VNIIFTRI, it has become possible to assure the uniformity of measurements in the production of nanoprod-
ucts at enterprises in the electronic, pharmaceutical, and astronautic industries and also in the development of such critical
technologies as the technology underling the creation of new generations of space-rocket, aviation, and marine equipment,
nanotechnologies and nanomaterials, technologies of mechanotronics and the creation of microsystems instruments, the tech-
nology underlying the creation of electronic microcircuitry, biomedicine, and veterinarian technologies of life support and the
protection of man and animal.

The use of these methods in standard equipment has made it possible to assure the uniformity of measurements of

nanoparticles in liquid media in the range of concentrations 10%-10"*cm™

, inspection and calibration of instruments for the
measurement of the dispersion parameters of nanoparticles in the range of sizes all the way down to 10 nm as well as COOMET

pilot comparisons in the range of measurements of the size and concentrations of nanoparticles.
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