
A method of measuring the true temperature of bodies with unknown and variable emissive power during

heating and cooling is considered.  The method is based on the fact that the spectral emissive power

depends on the temperature.  The necessary number of spectral components is minimized by employing

relative laser reflectometry, the use of which does not require that the radiating surface should obey

Lambert’s law.  The results of measurements of the true temperature and spectral emissive powers of

specially manufactured high-melting point metals are presented.  The overall error of a measurement of the

true temperature does not exceed 1%.
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The main difficulties in determining and eliminating the effect of the emissive power on line when measuring tem-

perature are well known.  In practice, methods of measuring the true temperature based on the excessive amount of informa-

tion in the spectrum of natural radiation [1–4] are used, for which it is necessary to know tens or hundreds of spectral com-

ponents.  A large number of pyrometers are based on the use of reflectometry.  However, their Achilles heel is the need for

the radiating surface to obey Lambert’s law, which is not obeyed in practice for actual bodies.  Hence, reflectometry meth-

ods are used fairly rarely.

A new method was considered in [5] which enables one, in principle, to determine the true temperature from the

self-radiation of actual bodies without preliminary calibration and hence to realize the thermodynamic temperature scale

without using a black body.  Physically, the method is based on the change in the properties of a material resulting from the

fact that the emissive power of the spectral components depends on the temperature [6–8].  However, in these publications,

it was assumed that one has a priori knowledge of the spectral emissive power for some temperature, which eliminates the

possibility of using the method in practice.

It was shown in [5] that if the emissive power depends on the temperature, then by varying the number N of unknown

values of Tj and measuring the corresponding intensities of the spectrum of the thermal radiation in M spectral intervals for 

each of these values, one can always obtain the required number of equations to determine all the unknowns,

where mi is the number of unknowns at each spectral intensity.

In addition to the temperatures T1 and T2, the apparatus functions ξi and the emissive powers ε(λi, Tj) occur in a

number of the unkowns in the form of the products ξiε(λi, Tj), and also the coefficients of the power polynomial αi, βi, ..., γi,

which approximate the temperature dependence of the emissive power:

ε(λi, T1) = ε(λi, T2) + αi(T1 – T2) + βi(T1
2 – T2

2) + ... + γi(T1
n – T2

n).
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M
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These coefficients occur in the equation in the form

αi /ε(λi, T2), βi /ε(λi, T2), ..., γi /ε(λi, T2).

Hence

This method enables one, without any calibration, to measure the true temperatures of a body during heating and

cooling.  When there is a linear dependence on the temperature, the number of unknowns in each spectral intensity is reduced

to three.  Then, in order to determine the true temperature it is necessary to make measurements in two parts of the spectrum

for four values of the temperature or in three spectral intervals for three values of the temperature.  We will then, naturally,

have eight equations with eight unknowns or nine equations with nine unknowns.

Consequently, this method enables one to measure the true values of unknown temperatures Ttj, by eliminating the

effect of both the apparatus constant and the emissive power, but without determining the latter.  If one first uses a graduated

pyrometer in this method, i.e., one simultaneously measures the brightness temperature Tbj, the emissive power can easily be

found from the routine relation for the difference in the inverse values of the temperatures:

ε(λi, Tj) = exp[C2(Tbj – Ttj) /λiTbjTtj],

where C2 = hc/k; h is Planck’s constant; c is the velocity of light; and k is Boltzmann’s constant.

This method works more accurately the greater the temperature range employed.  However, for wide ranges the tem-

perature dependence may turn out to be extremely nonlinear, which, in turn, increases the number of unknowns and, conse-

quently, leads to an increase in the required number of equations and to a considerable sharpening of the requirements

imposed on the signal/noise ratio.

Because the emissive power depends only slightly on the temperature, the signal/noise ratio is decisive in this

method.  In order to reduce the required number of values of the temperatures and spectral intervals, we employed the method

of relative reflectometry in the pyrometric system considered [9, 10].  The distinguishing feature of the relative reflectome-

try method is that there is no need for the radiating surface to obey Lambert’s law.

The bichromatic pyrometer described below, each of the two channels of which is calibrated in brightness tempera-

tures Tb1 and Tb2, contains a built-in two-wave laser reflectometer, which measures the ratio of the directional reflection coef-

ficients ρ*(λ1, T1) /ρ*(λ1, T2) and ρ*(λ2, T1) /ρ*(λ2, T2) for two values of the temperatures T1 and T2 at two wavelengths λ1
and λ2.  It is obvious that

ρ*(λ1, T1) /ρ*(λ1, T2) = x1ρ(λ1, T1) /x1ρ(λ1, T2);

ρ*(λ2, T1) /ρ*(λ2, T2) = x2ρ(λ2, T1) /x2ρ(λ2, T2),

where ρ(λ1, T1), ρ(λ1, T2), ρ(λ2, T1), and ρ(λ2, T2) are the normal reflection coefficients and x1 and x2 are coefficients which

take into account the scattering of the radiation due to the surface roughness.  If the surface obeys Lambert’s law, we have

x1 = x2 = 1, and hence from Kirchhoff’s law we have

ρ*(λ1, T1) /ρ*(λ1, T2) = [1 – ε(λ1, T1)] / [1 – ε(λ1, T2)].

We will introduce the following notation:

A = 1 – ρ*(λ1, T1) /ρ*(λ1, T2); (1)

B = 1 – ρ*(λ2, T1) /ρ*(λ2, T2). (2)
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We will write the difference of the inverse values of the brightness temperatures at two wavelengths, measured by the pyrom-

eter, in the form

Tb
–1(λ1)1 – Tb

–1(λ2)1 = λ1/C2lnε(λ1, T1) – λ2/C2lnε(λ2, T1);

Tb
–1(λ1)2 – Tb

–1(λ2)2 = λ1/C2lnε(λ1, T2) – λ2/C2lnε(λ2, T2)

or, involuting,

(3)

(4)

Hence, we obtain four equations (1)–(4) for determining the four unknown emissive powers.

If λ2 = 2λ1, we obtain a simple solution in the form of a quadratic equation

ε(λ2, T2)2[J1(1 – B)2 – J2(1 – A)] + J12B(1 – B)ε(λ2, T2) + J1B2 – A = 0. (5)

In this method it is not the absolute values of the reflection coefficients that are used but their ratios.  This enables

the necessary measurement accuracy to be obtained comparatively simply.  However, the temperature dependence of the

emissive power is fairly weak and we need to be convinced that changes in the effective wavelengths due to the temperature

have no appreciable effect on the results of the measurements (or they can be taken into account).  It is well known that the

effective wavelength λeffi is a hyperbolic function of the temperature.* As a result of exhaustive investigations [12, 13], the

expression for λeff can be represented in the form

λeffi = λ0i(1 + µi /T),

where

(6)

where D is a coefficient which takes into account the form of the spectral characteristic (the filter + detector), for a Gaussian

form D = 0.18; ∆λ0i is half the width of the spectral characteristic; and λ0i is the center wavelength.

Hence, the self-radiation signal can be written as

where C1 = 2πc2h.

Equations (3) and (4) then become

(7)

(8)ln ln[ ( , ) / ( , ) ] ( ) / /( ) /( ).J T T T C T C T2 1 2 2 2 1 01 2 02 2 2 2 1 2 2 2
01 02 5= − µ − µ − + µ + + µε λ ε λ λ λλ λ

ln ln[ ( , ) / ( , ) ] ( ) / /( ) /( ) ;J T T T C T C T1 1 1 2 1 1 01 2 02 1 2 1 1 2 1 2
01 02 5= − µ − µ − + µ + + µε λ ε λ λ λλ λ

ln ( , ) ln / ln ( , ) / ( / ) ,U T C T T C T Ti j i i i j i j i i j jλ ξ λ ε λ λ= − µ + − + µ−
1 0

5
2 05 1

µ = ∆ − ∆i i i i iD λ λ λ λ2
0
3 2

0
21 6/ ( / ) ;

J T T2 1 2 2 2
2 1= ε λ ε λ λ λ( , ) / ( , ) ./

J T T1 1 1 2 1
2 1= ε λ ε λ λ λ( , ) / ( , ) ;/
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* The first communication on the hyperbolic relation, as pointed by Foote [11], was by Natting in 1908.  For different forms of the spec-

tral characteristic, the temperature dependence of the effective wavelength was obtained in a form convenient for calculation by Coats and

confirmed by Svet in the papers indicated.



It follows from (7) and (8) that terms with the coefficient C2 = 14388 µm·K introduce the main error.  To eliminate

this error, it is necessary to put µ1 = µ2 = µ.  Then the error δ = 5µ/T(λ01 – λ02) remains uneliminated. 

In an experimental pyrometer the half-width of the self-radiation band ∆λ1 at a wavelength λ1 = 0.53 µm was cho-

sen from the minimum required signal/noise ratio: ∆λ1 = 0.05 µm.  The calculation from (6) with µ1 = µ2 gives µ =

= 3.1116·10–3.** Hence, the half-width of the band ∆λ2 = 0.1953 µm.

We constructed interference filters from these data and the spectral characteristics of the silicon photodiodes

employed.

The basic arrangement of the experimental pyrometer is shown in the figure.  Here the beam from a continuous two-

wave laser L*** (λ1 = 0.53 µm and λ2 = 1.06 µm) is modulated by a rotating shutter S and is incident on the radiating surface

(the metal filament of a lamp) through a half-silvered mirror M1 and an exit lens O1.  The reflected radiation of the laser,

simultaneously with the self-radiation of the surface, on passing through the lens O1, is reflected from the half-silvered mir-

ror M1 and is incident, through the screen S2 and the lens O2, on the beam-splitting mirror M2 and the filters F1 (0.53 µm)

and F2 (1.06 µm).  It then falls on the photodetectors PD1 and PD2, and then enters the preamplifiers A4 and A5 and the elec-

tronic unit EU.  The intensity of the laser radiation at the two wavelengths is monitored from the radiation reflected from the

beam-splitting mirror M3 and incident on the detectors PD3 and PD4 with corresponding filters F3 and F4.  When the screen

S2 is closed, one can monitor the dark current of the detectors PD1 and PD2.  The closed screen S1 correspondingly enables

one to monitor the dark current of the detectors PD3 and PD4.

The spectral emissive power was measured at two brightness temperatures.  To determine the latter, the “self-radia-

tion” channels were first calibrated against a black body.

The signals of the self-radiation and the reflected radiation are processed in the electronic unit taking the dark cur-

rent into account.  To increase the signal/noise ratio in the reflected-signal channel, synchronous detection is employed, which
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Fig. 1.  Sketch of the experimental pyrometer.

** For this value of µ, the uneliminated error does not exceed 10–6.
*** The aluminum–yttrium laser with the splitting crystal was provided by Dr. A. N. Magunov (N. P. Lebedev Institute of Physics of the

Academy of Sciences).



is ensured by pulses from the synchronizer Sync.  From the electronic unit the signals of the self-radiation from the surface

of a filament lamp and the laser signals reflected from this surface are applied to a computer, which also carries out the algo-

rithm for determining the emissive power.

The emissive power was measured on samples of tungsten, rhenium and tantalum.  The samples were used in the

form of vacuum lamps**** with a filament of width 5 mm made of the metal being tested.  In the calculations, naturally, the

losses introduced by the glass envelope of the lamp were taken into account.  These metals were chosen since there are fair-

ly reliable data on their emissive powers at the wavelengths (0.53 µm and 1.06 µm) employed in the pyrometer [14–16].  In

addition, as we know from the literature, tantalum does not have an x-point while rhenium has an x-point at a wavelength of

about 1 µm, which practically corresponds to one of the wavelengths of the pyrometer.  When using the x-point, at which the

emissive power is independent of the temperature, and λ2/λ1 = 2 the number of unknowns is reduced.  In this case,

ε(λ2, T1) = ε(λ2, T2) = ε(λ2, T) = A / [J1 – J2(1 – A)].

From the measured brightness temperatures and the emissive power coefficients calculated using algorithm (5), we

determined the true temperatures, the values of which are presented in Table 1.

The errors in measuring the emissive power with the experimental pyrometer exceeded the errors achieved in

[14–16], and amounted to 6–8%.  However, these errors enable us to obtain an error in measuring the true temperature with

the experimental pyrometer of ∆T/T<1%.
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