
The mechanism responsible for the effect of noncontact zones in metal-shaping operations is examined.

A theoretical relation is derived to determine the magnitude of thrusting stresses that are formed, and

a comparison is made between results obtained by calculation. An algorithm is developed to calculate the

energy-force parameters of the process with allowance for the effect of nonuniform plastic deformation

caused by the presence of noncontact zones.

Keywords: noncontact zones, metal-shaping, rolling in grooves, nonuniformity of deformation, calculation

of energy-force parameters.

In some of the loading schemes used in metal-shaping operations, the noncontact zones which are formed end up

being adjacent to a local deformation zone. Such a situation is encountered in the longitudinal rolling of shapes and tubes and

the helical rolling of solid and hollow shapes. Figure 1 shows examples of the presence of noncontact zones (the hatched

regions) during the deformation of metal.

In the upsetting of tall cylinders (h > 3d) with ε = 5–10%, the maximum strains are formed only in the surface lay-

ers [1]. Frictional forces on the contact surface impede deformation, with the interior mass of metal tending to move lateral-

ly and forming barrel-shaped convexities next to the ends of the semifinished product. When a thick bar is being drawn, the

internal part of the bar’s cross section should undergo the same degree of elongation as the upper layers near the contact zone.

According to Tomlenov [2], tensile stresses reaching the value of σs form in the central part of bar when the ratio of the length

of the arc of contact l during the rolling operation to the thickness of the bar l /h < 1. Lengthening of the noncontact zones

creates a thrusting force over the area F0 of the compressed part of the bar’s cross section. It can be approximately assumed

that the entire volume of metal that is displaced goes into elongating the bar and that the actual amount of elongation depends

on the contact length l and the depth of deformation hd. The value of hd was determined by S. I. Gubkin, A. I. Tselikov,

V. A. Livanov, P. S. Istomin, and A. I. Kolpashnikov.

With a certain degree of approximation, we can take hd = 1.2l based on experiments performed by the authors of [3].

The effect of noncontact zones on the rolling force was examined in [4].

The diagram that is used to describe the rolling and upsetting of cross-shaped specimens was chosen to represent

the stress-strain state of the semifinished product in the present study (Fig. 2). With a certain degree of approximation,

the main principles and methods used in analytical calculations performed in accordance with the cross-shaped cross section
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scheme can also be used to analyze results from calculation of the forces for rolling in grooves (such as in the rolling of

beams, channels, etc.), longitudinal and helical rolling, the piercing of tubular semifinished products, slab reduction, and

other shaping operations.

By virtue of the continuity of the medium in question, the elongation of the part of the cross section that is under-

going compression – the area F0 = b1h0 (where b1 is the final width of the bar, and h0 is its initial thickness) – creates the

tensile stress σt in the noncontact zones. This stress should in turn create the compressive stress σcm in the part of the cross

section undergoing compression.

767

Fig. 1. Examples of rolling with noncontact zones in the case of: a) the flattening of wire;

b) the planetary rolling of a bar of square cross section on its edge; c) a beam-shaped bar;

d) the rolling of a tube on a mandrel; e) a bar with a cross-shaped cross section; ƒ) the rolling

of a thick bar.



In the deformation of a bar whose cross section is in the shape of a cross, the tensile forces in the lateral zones – in

the area F – F0 (where F is the total cross-sectional area) – can be estimated as follows:

σcm = σ*,

where σ* is the resistance of linear deformation in tension with allowance for the temperature, rate, and degree of deformation.

The condition of equality of the compressive and tensile forces in the zones F0 and (F – F0) can be expressed by the

following equation:

(1)

where σcm is the compressive stress in the zone in which the bar undergoes plastic compression – the thrusting stress that

develops from the action of the noncontact zones. This compressive stress is equal to

(2)

The effect of the thrusting stress from the noncontact zones on the contact stress that develops during rolling can be

determined using the coefficient nh from the formula obtained by Hessenberg and Sims [6] (the formula was obtained from

an analysis of diagrams of the contact stresses over the arc of contact during rolling):

nh = 1 + (σ0 + σ1) /4k, (3)

where σ0 and σ1 are, respectively, the thrusting stresses upon entry and exit, MPa; k = 0.57σf (σf is the flow stress with

allowance for the temperature, rate, and degree of deformation, MPa).

If we consider that σf = σs – the resistance to deformation which develops during the action of the vertical force –

and we allow for a certain degree of approximation (assuming that the contact pressure nσ′ = 1), we can determine the coef-

ficient nh from the expression

nh = 1 + (σh/2σs). (4)

With allowance for Eq. (2), Eq. (4) will have the form

(5)
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Fig. 2. Diagram of the deformation of a bar with a cross-shaped cross section.



where σs
* is the stress created by linear tension with allowance for the horizontal displacement. The following empirical rela-

tion [5] was obtained from the experimental rolling of specimens of aluminum alloy D1 with noncontact lateral zones (Fig. 3):

nh = 0.6 + 0.4F /F0, (7)

which can be obtained through transformations of Eqs. (6) with the ratio σ*/σs ≈ 0.8. The latter corresponds to values of yield

strength (σ0.2 = 180 MPa at ε = 10% and σ0.2 = 150 MPa at ε = 8%) [3].

The effect of noncontact zones in the deformation of thick bars can be expressed by means of the method proposed

by Smirnov and Tselikov [7]: “by the compression of rectangular specimens of the dimensions l, b, and h between parallel dies

and by local compression of specimens of substantial length L on the section bounded by the length l.” The specimens being
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Fig. 3. Specimen for studying lateral noncontact zones.

TABLE 1. Results of Calculation of the Thrust Coefficient nh with the Use of Eq. (6) and the Formula Obtained by Smirnov

Specimen parameters
Ratio l /h

nσ″ calculated from the formula

n, mm l, mm of Smirnov (6)

Lead

30

30 1.0 1.0 1.0

15 0.5 1.4 1.3

10 0.333 1.6 1.6

7.5 0.25 1.73 1.7

5 0.167 2.3 2.8

22.5
10 0.444 1.42 1.4

7.5 0.333 1.5 1.75

15

7.5 0.5 1.3 1.35

5 0.333 1.52 1.53

2.5 0.167 2.15 2.4

Steel

30
15 0.5 1.37 1.3

10 0.333 1.54 1.6



compared have the same thickness h and same width b > 5l [7]. It is proposed that the effect of the “external zones” be account-

ed for by introducing the coefficient nσ″:

nσ″ = (l /hav)–0.4.

Having used this method to also conduct a study for lead specimens and having taken hd = 1.2l, we used the above

data and Eq. (6) to find a value of the coefficient nh that accounts for the effect of thrust from the noncontact zones. The elon-

gation of the bar was determined from the displaced volume (see Fig. 1ƒ), while the area that was compressed was deter-

mined as F0 = hdb. Comparison of the results (see Table 1) showed satisfactory agreement between the experimental values

of the coefficient nh and the values calculated with the use of Eq. (6).

The slight disagreement that is seen is due to the need to account for spreading in the contact zone. It would prob-

ably be best to also take into account other factors, such as the friction coefficient and the geometric factor l /h.

The differential equation that describes the contact stresses px of an isolated element in the region in which the cross-

shaped bar undergoes compression (Fig. 2) has the form:

(8)

where the sign “+” corresponds to the sign of the thrusting stresses and the sign “–” corresponds to the tensile stress.

After integration of the equation, we obtain:

(9)

where μ is the friction coefficient; C0 is a constant.

The boundary conditions at x = 0

σx = σcm;     p0 – σcm = 2k → p0 = 2k + σcm.

From this, we find the value of the arbitrary constant:

C0 = 2k + σcm.

Solving system (8)–(9) with the assigned boundary conditions and with x = 0.5l, we find that in the absence of non-

contact zones the average contact stress will be equal to

(10)

Equation (10) makes it possible to find the value of the coefficient that characterizes the effect of the noncontact zones

(11)

The effects of μ and the ratio l /h are clearly negligible for thick bars and a friction coefficient within the range

0.4–0.1.

The method proposed here can be used to determine how the nonuniformity of deformation of a rolled bar over its width

affects the average contact stress when equalization of the natural elongations gives rise to compressive stresses (thrust) in the

regions with large reductions and to tensile stresses in the regions with small reductions. The magnitude of these stresses can be

determined with allowance for the average elongation factor by using the formulas found by Chekmarev and Mutiev [8].
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Above-derived Eq. (11) can also be used in practical calculations of the energy-force parameters that characterize

plastic deformation during hot-rolling in passes. In this case, the expression used to determine the average contact stress takes

the form

(12)

To automate these calculations, we developed a program with the algorithm shown in Fig. 4. The algorithm is based

on the well-known algorithm in [4] that is used to calculate energy-force parameters. The algorithm makes it possible to cal-

culate the temperature of a bar in the deformation zone with a high degree of accuracy. The innovation introduced here con-

sists of modifications that were made to the block which analyzes the geometric parameters of the deformation zone (checks
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Fig. 4. Algorithm for calculating the energy-force parameters of hot rolling.



for the presence of noncontact zones) and the block that calculates the coefficients of the stress state (to make them consis-

tent with the proposed methodology).

Conclusions
1. The transverse and longitudinal noncontact regions that are formed during various metal-shaping operations

impede the movement of metal from the compression zone to the contact surface, which in turn increases the acting contact

stresses due to the creation of compressive stresses associated with thrusting forces (studies by S. I. Gubkin, I. M. Pavlov,

M. V. Storozhev, E. A. Popov, N. I. Gromov, A. I. Tselikov, and V. V. Smirnov).

2. The increase in the average contact stress pav depends on the ratio of the area of the compression zone F0 to the

cross-sectional area of the specimen F.

3. The results obtained here can be used to solve many different practical problems that involve determining rolling

forces and moments.

4. For the rolling of bars of rectangular cross section, when b > 5l the area of the compressed part F0 = hdb. Here,

hd = 1.2l – the (average) depth of penetration of the strain.

5. The increase in the average contact stress pav depends on the friction coefficient μ and the ratio l/h and is found

from Eq. (11).
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