
Results are presented from a study of the surface deformation of strip as a function of the parameters of its

bending in the rolls of a section-bending machine. The methods of correlation-regression analysis are used

to analyze the experimental data that are obtained.
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This article reports results from a study of the dependence of the surface deformation of strip on the main parame-

ters of its shaping as it undergoes bending in the rolls of a section-bending machine: relative radius; relative width of the bent-

under flange; angle of bending of the flange. The initial semifinished products were thin (t0 ≤ 4 mm) hot- and cold-rolled

strips of medium-carbon steel and low-alloy steel that had been laid out to a certain width (the exact width depending on the

section being made).

The normal distribution of a random variable is completely defined by its mean value and variance. Thus, in order

to describe the dependence of the strain eiR (the function) on one of the shaping parameters (the argument), it is necessary to

show how a change in the shaping parameter changes the mean and variance of eiR. This is done through correlation-regres-

sion analysis. The problem can be stated as follows in general form. Having a given sample – especially for eiR – we find an

approximate regression equation in the form eiR = ƒ(xi). Here, xi is the shaping parameter (relative bending r/t0, where r is

the bending radius, and t0 is the thickness of the strip; α is the angle of reverse bending of the flange of the strip; the relative

width of the bent-back flange b/t0). The type of regression curve is established on the basis of a correlation table with

allowance for the physical essence of the process. Table 1 shows the data needed to construct the empirical regression line of

the function eiR = ƒ(r/t0).

The relative means of the intervals were calculated from the equation y ′ = (yav – c) / i, while the mean values of eiR
for the intervals were found from the formula

yx = c + [Σ(mxy ′)i] /Σmx,

where c = 0.269; yx = eiR; x = r/t0; i = 0.056; Σmx is the sum of the strain values that lie within the intervals.

It is apparent from an analysis of the empirical regression line (curve 1 in Fig. 1) that an increase in the relative bend-

ing radius to r/t0 ≈ 4–5 is accompanied by a fairly sharp decrease in the strain followed by slowing of the reduction in eiR.

A function of this nature is described well by an equation of the logarithmic type

y = a0 + a1logx. (1)

The term a1logx of this equation expresses the fact – which is typical of logarithmic curves – that the rate of increase

in the function decreases with an increase in the argument. The coefficients a0 and a1 of the equation are found by the least
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squares method. Applying the well-known method for finding minimum values to Eq. (1), we obtain the following two nor-

mal equations:

(2)

Solving this system of equations, we find

a0 = C /D;     a1 = B /D. (3)

The denominator of these relations includes the determinant of the system

(4)

the elements of which are the coefficients with the unknown quantities a0 and a1 on the left sides of system (2). The deter-

minant C is obtained from the determinant of system (2) by replacing the elements of the first column by the absolute terms

on the right sides of the normal equations, while the determinant B is obtained from the determinant of system (2) by replac-

ing the elements of the second column by the absolute terms on the right sides of the normal equations. Table 2 shows the

method used to calculate the coefficients.
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Σmy

0–1/0.5 1–2/1.5 2–3/2.5 3–4/3.5 4–5/4.5 5–6/5.5 6–7/6.5 7–8/7.5

–4 0.017–0.073 – – – – – – – – 14

–3 0.073–0.129 2 – – 3 10 – – 1 –

–2 0.129–0.185 2 2 1 38 37 1 2 83 144

–1 0.185–0.241 9 7 35 68 29 2 – 1 153

0 0.241–0.297 15 29 72 32 10 1 – – 134

1 0.297–0.353 41 67 39 13 – – – – 101

2 0.353–0.409 45 43 16 1 – – – – 81

3 0.409–0.465 49 30 6 – – – – – 72

4 0.465–0.521 40 22 1 – – – – – 45

5 0.521–0.577 21 5 – – – – – – 22

6 0.577–0.633 27 1 – – – – – – 29

7 0.633–0.689 9 2 – – – – – – 9

Σmx 260 208 170 155 86 4 2 2 887

Σ(mx y′) 749 157 –1 14 –295 –219 –8 –6 –6 –

y = Σ(mx y′)/Σmx 2.88 0.75 –0.67 –1.9 –2.55 –2 –3 –3 –

yx 0.430 0.311 0.232 0.163 0.126 0.157 0.101 0.101

Note. y′ is the relative mean of the interval; my is the sum of the strain values that lie within the interval.
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TABLE 1. Correlation Table for the Dependence of eiR on r/t0



As a result, we obtain a regression equation of the form

y = 0.345 – 0.30logx. (5)

Replacing x in this equation by the successive values of r/t0 for the eight intervals (see Table 1), we find the prob-

able values yp = eiR of surface deformation for the corresponding values of the relative bending radius. We then use those

probable values (Table 2) to construct the theoretical regression line (see curve 2 in Fig. 1). It can be seen from the graph

that the thermal regression line agrees satisfactorily with the experimental line, which confirms the correctness of the

method and the initial conditions that were used.

If deformation rate were determined solely by the relative bending radius, then all of the values of eiR would be on

the regression line. The deviations of the mean values of eiR and of individual values for strain are due to the effect of other

factors: in the case being discussed, those factors are obviously the angle of reverse bending and the width of the flange that

x yx logx (logx)2 yx yp

0.5 0.430 –0.301 0.090 –0.129 0.435

1.5 0.311 0.176 0.031 0.055 0.292

2.5 0.232 0.398 0.158 0.092 0.226

3.5 0.163 0.544 0.296 0.089 0.182

4.5 0.126 0.653 0.426 0.082 0.149

5.5 0.157 0.740 0.548 0.116 0.123

6.5 0.101 0.813 0.661 0.082 0.101

7.5 0.101 0.875 0.765 0.088 0.083

Σ 1.621 3.898 2.975 0.475 –
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Fig. 1. Empirical (1) and theoretical (2) curves of the dependence of eiR on r/t0.

TABLE 2. Values of the Parameters for Calculation of the Coefficients of Eq. (2)



is bent. The stronger the effect of these factors, the larger the deviations that are seen not only for the means of the intervals

but also for the points of the entire correlation field. It is necessary to distinguish between the variation of the interval means

from the theoretical values and the variation of the function values from the overall mean.

The quantity that indicates the closeness of the relationship between y and x in the nonlinear regression is the cor-

relation ratio
η = S(yx) /S(y), (6)

where S is the quadratic mean of the corresponding estimate of the variance. Here, S2(yx) = (1/n)Σmxyx
2 – yx

2 is the estimate

of the variance of yx relative to the overall average y, while S2(y) = (1/n)Σmy(y – yx)
2 is the estimate of the variance of y rel-

ative to the overall average yx.

The correlation ratio is a general index of the closeness of a relationship but does not account for the structure of

that relationship. Thus, for nonlinear correlations we introduce the regression coefficient η′:

η′ = S(yp) /S(y), (7)

where S2(yp) = (1/n)Σmxyp
2 – y2 is the estimate of the variance of the calculated values of yp obtained from Eq. (5) relative to

the average y.

The regression coefficient η′ = 0.79 calculated from Eq. (7) reflects the relationship between eiR and r/t0 expressed

by Eq. (5), while the correlation ratio η = 0.80 calculated from Eq. (6) indicates that the rate of surface deformation depends

relatively heavily on the relative bending radius [1, 2].

The dependence of surface deformation on the angle of bending α is expressed by a correlation equation of the expo-

nential type:

y = a0 xa1. (8)

The empirical regression line (Fig. 2) was constructed from the data in Table 3, which was compiled with allowance

for features of the schedules for the shaping of angles and channels: The scheme used to calculate the coefficients in Eq. (8)

is similar to that used to calculate the coefficients in Eq. (1). The only difference is that y is replaced by logy in the calculat-

ed table (similar to Table 2) and in the determinants of system (4), while loga0 is calculated using Eqs. (3). We performed

calculations to obtain a correlation equation that expresses the dependence of the rate of surface deformation on the bending

angle α: eiR = 0.05α0.44. We then used this equation to construct a theoretical regression line (see Fig. 2) and calculate the
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Fig. 2. Empirical (1) and theoretical (2) curves of the dependence of eiR on

the bending angle α.



regression coefficient η′ = 0.50 and the correlation ratio η = 0.26. In comparing the correlation ratios ηr/t0
= 0.80 and ηα =

0.26, we should point out that the highest rate of surface deformation depends on the relative bending radius more than it does

on the bending angle.

We similarly examined the effect of the relative width of the bent flange b/t0 on the value of eiR. The regression equa-

tion has the form

eiR = 0.2(b / t0)0.15. (9)

eiR

Shaping parameters

y′ 15° 30° 45° 60° 90° Σmy

0.17–0.073 –4 3 5 3 2 1 14

0.073–0.129 –3 2 36 8 32 5 83

0.129–0.185 –2 1 53 19 47 24 144

0.185–0.241 –1 2 50 15 48 36 153

0.241–0.297 0 2 37 15 44 36 134

0.297–0.353 1 – 33 15 29 24 101

0.353–0.409 2 – 20 12 29 20 81

0.409–0.465 3 – 21 10 24 17 72

0.465–0.521 4 – 8 5 20 12 45

0.521–0.577 5 – 7 – 5 10 22

0.577–0.633 6 – 4 – 8 17 29

0.633–0.689 7 – – – 1 8 9

Σmx 10 274 102 289 887

Σ(mx y′) –22 –57 0 73 –

y = Σ(mx y′)/Σmx –2.2 –207 0 0.252 –

yx 0.146 0.257 0.269 0.283 –
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TABLE 3. Correlational Dependence of eiR on the Bending Angle α (x = α)

Fig. 3. Empirical (1) and theoretical (2) curves of the dependence of eiR on b/t0.



The scheme used to calculate the coefficients is similar to that employed above. Empirical regression curve 1 and

theoretical curve 2 are shown in Fig. 3. The effect of the dimensions of the bent flanges increases with an increase in the

thickness of the strip and the bending angle and a decrease in the relative bending radius. The effect of this factor on defor-

mation decreases with an increase in flange width (at b/t0 ≈ 15–20, see Fig. 3), as is shown by Eq. (9). The regression coef-

ficients for (9), η′ = 0.507 and η = 0.24, show that the change in surface deformation is more influenced by the relative width

of the bent flange than by the bending angle.

Conclusion. Thus, studies have shown that the rate of surface deformation of strip on the section on which bending

takes place depends mainly on the relative bending radius and is considerably less dependent on the bending angle and the

relative width of the product’s elements that undergo bending. As a consequence, the main focus in designing the shaping

operation should be on the relative bending radius.
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